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We proposed a colorimetric immunosensor based on g-C3N4@Fe3O4 nanocomposite-mediated transformation strategy for
sensitive detection of carcinoembryonic antigen (CEA).*e g-C3N4@Fe3O4 nanocomposite was synthesized and characterized by
the scanning electron microscope (SEM), energy dispersive X-ray spectra (EDX), X-ray powder diffraction (XRD), and Fourier
transform infrared spectroscopy (FTIR). Fe3+ derived from g-C3N4@Fe3O4 nanocomposite could combine with sodium salicylate
to form purple complex products. Based on this color development, the sandwich colorimetric immunoassay was built by utilizing
g-C3N4@Fe3O4 nanocomposite as nanolabels on the microplate. With the increasement of CEA concentration, the purple color
showed a gradient change. Under optimal conditions, the linearity range is 0.001–50 ng/mL with the detection limit of 0.35 pg/mL
for CEA. More importantly, the colorimetric immunoassay has good selectivity, specificity, repeatability, and stability.

1. Introduction

*e level of carcinoembryonic antigen (CEA) is related to
many diseases such as breast cancer, lung cancer, colon
cancer, rectal cancer, and so on [1]. CEA as broad-spectrum
tumor marker is important for early diagnosis and treatment
of cancer [2, 3], and the methods for CEA detection are of
great concern [4–6]. In recent years, great efforts have been
made to develop various immunoassay methods, such as
photoelectrochemical [7], fluorescence [8], chem-
iluminescence [9], surface-enhanced Raman scattering [10],
enzyme-linked immunosorbent assay (ELISA) [11], color-
imetry [12], and so on. In these methods, colorimetric
immunoassay has attracted much attention due to its
simplicity and conveniency [13, 14].

A key challenge for the development of colorimetric
immunoassay is to transform the detection event into color
change. Various strategies have been developed for this
purpose, such as aggregation-based colorimetric immuno-
assay, lateral-flow colorimetric immunoassay, enzyme-me-
diated colorimetric immunoassay, and light-enabled
colorimetric immunoassay [15–18]. Aggregation-based

colorimetric immunoassay and colorimetric lateral-flow
immunoassay are user-friendly, fast, and cost-effective,
which are usually employed for fast on-site analysis. En-
zyme-mediated colorimetric immunoassay and light-en-
abled colorimetric immunoassay need the participation of
bioenzyme and laser, which is expensive and complex to
operate. Hence, it is meaningful to develop the novel col-
orimetric method to enhance practicability. Various
chemical color reactions have been developed and utilized in
the field of pharmaceutical analysis and environmental
analysis [19–21]. *e chromogenic reaction between the
phenolic hydroxyl group and Fe3+ is often used to identify
the presence of phenols, which forms a purple complex [22].

In order to improve the sensitivity of chromogenic re-
action and its application in immunoassay, nanomaterials
with a specific interfacial effect and small-size effect have
been employed [23–25]. Carbon nitrogen (C3N4), as a kind
of metal-free material, has attracted much attention in
biosensing filed due to its easy preparation, good biocom-
patibility, and high specific surface area. A series of C3N4-
based composite nanomaterials including WO3/g-C3N4/
MnO2, Ni-doped SnO2/g-C3N4, g-C3N4-COOH/ZnSe, and
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so on are synthesized and used in analytical applications
[26–29]. Zhang et al. synthesized graphitic carbon nitride
nanosheets-supported palladium nanosheets composite (Pd/
g-C3N4) with oxidase-like activity for acetylcholinesterase
(AChE) activity detection [30]. Ding et al. realized tumor
marker detection using ternary GO-C3N4-AgBr hetero-
junction nanophotocatalyst [31].

In this study, g-C3N4@Fe3O4 nanocomposites were
prepared as nanolabels to build colorimetric immunoassay
for CEA detection. Under acidic conditions, g-C3N4@Fe3O4
generates a mass of Fe3+, which reacted with sodium sa-
licylate and formed purple complex. Based on this colori-
metric phenomenon, CEA concentration in the serum is
analyzed by semiquantitative analysis by naked eye and
quantitatively analyzed by UV-vis absorption.

2. Experimental

2.1. Materials and Reagents. Carcinoembryonic antigen
(CEA), monoclonal CEA antibody (Ab1, 0.1mg/mL), and
polyclonal CEA antibody (Ab2, 0.1mg/mL) were purchased
from Sangon Biotech Co., Ltd. (Shanghai, China). Sodium
salicylate (C7H5NaO3), N-hydroxysulfosuccinimide sodium
salt (NHS), N-(3-dimethylaminopropyl)-N′-ethyl-
carbodiimide hydrochloride (EDC), melamine, anhydrous
ferric chloride (FeCl3), ethylene glycol, nitric acid (HNO3),
hydrochloric acid, sodium acetate, Tween-20, and bovine
serum albumin (BSA) were purchased from Aladdin Re-
agent Company (Shanghai, China). *e phosphate buffer
solution with various values was prepared with 0.1M
disodium phosphate.

2.2. Apparatus. Scanning electron microscopy (SEM) was
carried out on a JSM-7100F scanning electron microscope
(JEOL, Japan). X-ray powder diffraction (XRD) was tested
on a Bruker D8 diffractometer (Germany) using Cu K ra-
diation (40 kV, 40mA) with a Ni filter.*e ultraviolet-visible
(UV-vis) absorption spectra were performed with a UV-
3900 UV-vis spectrophotometer (Hitachi Co., Japan).
Fourier transform infrared spectrum was recorded on FTIR
Bruker alpha II (Germany).

2.3. Preparation of g-C3N4 Nanoparticles.
Carboxyl-modified g-C3N4 nanosheets were prepared
according to a previous report [28]. Briefly, 5 g of melamine
was calcined at 550°C for 4 h in the muffle furnace. After
cooling to room temperature, the yellow g-C3N4 product
was ground into powder for further use. *en, 1 g of g-C3N4
powder was placed into a round-bottom flask with 100mL of
HNO3 (5M), and backwash was performed for 24 h at 125°C.
Finally, the product of carboxylate g-C3N4 was obtained by
cooling, centrifugation, and cleaning with deionized water to
pH 7.0.

2.4. Preparation of g-C3N4@Fe3O4 Nanocomposites.
g-C3N4@Fe3O4 nanocomposites were prepared according to
a previous report with minor revision [29]. First, 0.40 g of

above g-C3N4 nanosheets was added into 60mL of ethylene
glycol. *en, 0.65 g of FeCl3 was added with ultrasound for
10min. After 2.60 g of sodium acetate was added, the mixed
solution was stirred vigorously for 20min. Subsequently, the
mixture was transferred to a Teflon-lined stainless-steel
autoclave and reacted at 200°C for 8 h. After cooling to room
temperature, the black product of g-C3N4@Fe3O4 was
washed with ethanol several times and dried in vacuum at
60°C. To combine polyclone CEA antibody, g-C3N4@Fe3O4
nanocomposites were activated by EDC (0.0383 g) and NHS
(0.0230 g) and shaked at room temperature for 30min.
Magnetic separation and washing were performed three
times, and the conjugation of Ab2-g-C3N4@Fe3O4 was
collected and stored at 4°C for further use. For comparison,
Fe3O4 nanoparticles and Ab2-Fe3O4 conjugation were pre-
pared according to the above steps.

2.5. Construction of Colorimetric Immunoassay. Scheme 1
displays the establishment process of colorimetric im-
munoassay for CEA detection. First, 100 μL of monoclonal
CEA antibody was added into 96-microwell plate, and the
plate was covered with plastic wrap and incubated at 4°C
overnight. *en, surface solution was removed, and the
wells were washed three times with phosphate buffer
solution (0.01M contains 0.05% Tween 20). *en, 100 μL
of phosphate buffer solution (0.01M contains 1% BSA)
was added into each well and incubated for 45min at 37°C
to block the nonspecific adsorption sites. After cleaning
steps, 100 μL of CEA standards with various concentra-
tions were added into the wells and incubated at room
temperature for 45min. Next, 100 μL of Ab2-g-C3N4@
Fe3O4 was added and incubated at room temperature for
45min, which designed as Ab1/CEA/Ab2-g-C3N4@Fe3O4.
Subsequently, the colorimetric system was constructed by
the reaction between sodium salicylate and Fe3+ [32].
Briefly, 100 μL of HCl solution (10M) was added into each
well of the above plates. *e solution was transferred to a
glass test tube containing sodium salicylate (6 mg/mL) to
develop color changes. *e absorption spectra in the range
of 400–700 nm were monitored after reaction. For com-
parison, Ab1/CEA/Ab2-Fe3O4 also was designed accord-
ing to the above steps.

3. Results and Discussion

3.1. Characterizations of g-C3N4@Fe3O4 Nanocomposites.
*e g-C3N4 nanosheets can load more Fe3O4 nanoparticles
due to its large specific surface area. *e morphology of
g-C3N4@Fe3O4 nanocomposites was characterized by SEM.
As shown in Figure 1(a), the Fe3O4 nanospheres with
200–300 nm is dispersed on the surface of g-C3N4 nano-
sheets. Energy dispersive X-ray (EDX) spectra state the el-
ements of Fe, O, N, and C coexisting in g-C3N4@Fe3O4
nanocomposites (Figure 1(b)), which preliminarily indi-
cated that the material is successfully synthesized. Fur-
thermore, X-ray diffraction (XRD) is monitored to reveal
crystalline structure of g-C3N4@Fe3O4 nanocomposite
(Figure 1(c)). It can be clearly seen that the peaks at
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2θ� 30.06°, 35.45°, 40.30°, 53.54°, and 57.16° were assigned to
(220), (311), (400), (422), and (511) planes of Fe3O4, and the
peak at 2θ� 27.49° was assigned to (002) plane of g-C3N4.
Meanwhile, the function group of g-C3N4@Fe3O4 was
proved by FTIR spectra. Figure 1(d) shows the FTIR spectra
of Fe3O4, g-C3N4, and g-C3N4@Fe3O4 nanocomposite ma-
terials. Compared with the spectrum of a, b, and c, an
apparent band at 3423 cm−1 ascribed to O-H stretching
vibrations, the band at 595 cm−1 attributed to Fe-O vibra-
tions of Fe3O4, and the band at 800–1600 cm−1 attributed to

characteristic peak of triazines. *ese characterizations
complement each other and demonstrate the successful
synthesis of g-C3N4@Fe3O4 nanomaterial.

3.2. Mechanism of the Colorimetric Assay. Ferric chloride
reagent can react with the phenolic hydroxyl group for color
development, which is a classical reaction and is often used
to identify drugs, e.g., epinephrine. *is reaction is exploited
in our color-changing system. g-C3N4@Fe3O4 nanolabels
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Figure 1: (a) SEM, (b) EDX, and (c) XRD of g-C3N4@Fe3O4. (d) FTIR of (A) Fe3O4, (B) g-C3N4, and (C) g-C3N4@Fe3O.
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Scheme 1: Schematic illustration of colorimetric immunoassay for target CEA detection.
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can produce Fe3+ in acidic conditions, and Fe3+ reacts with
sodium salicylate for generation of purple complex. *is
process can be represented by the following equation:

Fe3O4 + 8H+⟶ 2Fe3+
+ Fe2+

+ 4H2O, (1)

Fe3+
+ C7H5NaO3⟶ Fe C7H5O3( 􏼁6􏼂 􏼃

3−
+ 6Na+

. (2)

As shown in Figure 2(a), the sodium salicylate solution
has no absorption peak (curve “a”), and the purple complex
solution owns obvious absorption peaks at 530 nm (curve
“b”). Whether or not Fe3+ has complexed with sodium
salicylate, to verify this issue, EDTA is employed to chelate
Fe3+. Obviously, the purple faded (the inset picture) and the
absorption peak disappeared (curve “c”). *e experimental
results verified that the chromogenic mechanism is due to
the influence of Fe3+.

To highlight the advantages of g-C3N4@Fe3O4, two types
of colorimetric immunoassays were established based on
g-C3N4@Fe3O4 and Fe3O4 nanolabels. At the same condi-
tions, as shown in Figure 2(b), Ab1/CEA/Ab2-g-C3N4@
Fe3O4 has a larger absorption value (curve “a”) compared
with that of Ab1/CEA/Ab2-Fe3O4 (curve “b”) for 1 ng/mL
CEA. *is good performance is mainly attributed to the
participation of g-C3N4, which has a large specific surface
area and loads more Fe3O4 nanoparticles.

3.3. Performance Assessing of Colorimetric Immunoassay.
For optimal performance of colorimetric immunoassay, ex-
perimental conditions related to bioactivity or biosensor
sensitivity should be optimized. First, the construction
conditions of immune structure including pH and incubation
time were optimized. As shown in Figures 3(a) and 3(b), the
absorbances have maximum at pH 7.0 and 45min.*erefore,
pH 7.0 and the incubation time of 45min were used in
immunoassay. Meanwhile, the concentration of HCl can
resolve Fe3O4 for producing Fe3+, which is directly related to
the chromogenic system. As shown in Figure 3(c), there was a

maximum at concentration of 10M, and then, the absorbance
gradually declined with the increasing HCl concentration.
*erefore, 10M of HCl was chosen in the whole experiment.
Under optimal conditions, CEA was tested by colorimetric
immunoassay. As shown in Figure 3(d), the absorbance at
530 nm increased gradually with the increasing CEA con-
centration in the range of 0.001–50 ng/mL. *e linear
equation was y� 0.022 logC (ng/mL) + 0.120 (R2 � 0.997,
n� 27) with the detection limit (LOD) of 0.35 pg/mL
(LOD� 3σ/s, where σ is the standard deviation of the blank
and s is the slope of the calibration plot).

3.4. Selectivity, Repeatability, and Stability of the Colorimetric
Immunoassay. In order to ensure the selectivity of colori-
metric immunity, some interfering substances were selected
for colorimetric detection such as ascorbic acid (AA), Ca2+,
K+, and glucose (Glu) and prostate specific antigen (PSA). As
shown in Figure 4(a), the absorbance value of the target CEA
is the largest, while that of other interfering substances are
smaller. In addition, there was no significant difference in
the absorbance values of CEA in the presence of interfering
substances (Figure 4(b)). Moreover, five groups of the
colorimetric immunosensor were established to test re-
producibility. As shown in Figure 4(c), the coefficient of
variation (CVs) within the groups was 2.45%. Furthermore,
the prepared colorimetric sensor was stored at 4°C for 4
weeks, and its absorbance was measured weekly. Compared
with the original absorbance, the value retained 94%
(Figure 4(d)). *ese results indicate that the developed
colorimetric immunoassay has high selectivity, good re-
peatability, and stability.

3.5. Actual Serum Sample Analysis. In order to verify the
practicability of the colorimetric system in the actual serum
matrix, some clinical serum samples were obtained from the
First Affiliated Hospital of Shanxi Medical University. *ose
samples were diluted by phosphate buffer solution
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Figure 2: (a) UV-vis absorption spectra of (A) sodium salicylate (6mg/mL), (B) g-C3N4@Fe3O4 +HCl+ sodium salicylate, and (C) g-C3N4@
Fe3O4+HCl+ sodium salicylate +EDTA in 400 nm–700 nm (the inset: photograph of b and c); and (b) UV-vis absorption spectra of (A) Ab1/
CEA/Ab2-g-C3N4@Fe3O4 and (B) Ab1/CEA/Ab2-Fe3O4 for 1 ng/mL CEA in phosphate buffer solution (pH 7.0).
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(d) Calibration plot of CEA levels (the inset: UV-vis absorption spectrums in 400 nm–700 nm of colorimetric immunoassay toward
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(pH� 7.0) and detected by commercial ELISA. *e results
are given in Table 1, and the t test was calculated by the
equation: texp � (x1 − x2)/s ×

����������������
(n1 × n2)/(n1 + n2)

􏽰
(where x

is the average value of three groups of experimental results; s
is the pooled standard deviation of immunosensor and
ELISA toward three groups of experimental results; n is the
number of analysis (n� 3)). It can be seen that all texp values
were smaller than tcrit (tcrit � 4.30). *e result demonstrated
that the colorimetric immunosensor is reliable for actual
sample detection and own good clinical practical value in
future.

4. Conclusion

In summary, a novel g-C3N4@Fe3O4 nanocomposite-me-
diated immunoassay was built based on colorimetric effects.
Under acidic conditions, g-C3N4@Fe3O4 underwent disso-
ciation to produce Fe3+, which combines with sodium sa-
licylate to form purple complex. *e complex products have
a specific absorbance value in the UV-visible absorption
spectrum. *us, the quantitative detection of CEA could be
realized by a UV-vis spectrophotometer. *is strategy opens
a new perspective for the application of colorimetric bio-
analysis in the future. Future works should focus on the
detection of more biomolecule in serum.
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