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Quantitative NMR Interpretation without Reference
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As has been documented numerous times over the years, nuclear magnetic resonance (NMR) experiments are intrinsically
quantitative. Still, quantitative NMRmethods have not been widely adopted or largely introduced into pharmacopoeias. Here, we
describe the quantitative interpretation of the 1D proton NMR experiment using only absolute signal intensities with the variation
of common experimental parameters and their application.

1. Introduction

Since its inception, NMR has always been considered in-
herently quantitative [1–6] and it has been used in teaching
[7]. As opposed to all other spectroscopic methods, the
intensity of an NMR signal is directly proportional to the
abundance of the nuclei causing it [6–8], which could even
be in multiple molecules [9, 10]. In the case of simple
mixtures, NMR allows for simultaneous quantifcation of the
constituents based on one sole reference standard. Te
standard does not have to share its identity with any of the
analytes of interest. Tis key feature makes quantitative
NMR an extremely versatile technique, and numerous ap-
plications for the quantitative analysis of pharmaceutical
compounds have been proposed over the decades [6, 11–23].
Te majority of the described experiments are 1D liquid
state, but 2D and CPMAS experiments have also been
proposed. Also, most of the proposed quantitative methods
are based on proton NMR experiments, but other nuclei
have been used since the beginning: 31P [24, 25], 2H [26], and
13C [19, 27, 28]. In recent years, 23Na [29], 19F [30, 31], 35Cl

[32, 33], 11B [34], 7Li [35], and quadrupolar nuclei like 27Al
[36, 37] and 14N [38, 39] were added to the list. While some
of the proposed methods are 2D experiments or CPMAS,
mostly 1D liquid state experiments have been described.

Whichever method is chosen, the quantifcation by NMR
is always based on the comparison of the signal intensity of
referencematerial with the signal intensity of the analyte(s), as
the intensities are proportional to the molar concentrations
and the number of protons contributing to the signal. Te
reference signal can be provided by a referencematerial mixed
with the analyte in one solution, internal referencing (IR)
[18, 25, 29, 30, 32, 40–44], or by a separate solution, external
reference (ER). Two methods for ER have been described;
most commonly, two identical experiments are carried out,
one time with the analyte and the other time with the ref-
erence material [6, 45, 46]. Alternatively, a solution with the
reference is sealed into a capillary that is then added to the
solution of the analyte [47]. Hybrid methods like ERETIC
[48–50] and PULCON [46, 51–56] have also been imple-
mented, which combine ER and IR by an intermediate step.
All these methods work with the best reliability when the
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reference used has a molar concentration that is close to the
analyte’s concentration, thus requiring some previous
knowledge about the analyte. Te analysis of mixtures can
also be restricted, as the quantifcation reliability might vary
with the concentrations involved.

Several experimental parameters shown in Table 1 have
infuence on the NMR spectrum, and some of them are
fexible depending on the chosen method. Here, we dem-
onstrate a new hybrid method, fexible absolute intensity-
based quantifcation by NMR (FAINT-NMR), which can be
applied to the quantifcation of compounds, even with
largely varying concentrations, without previous knowledge.
Te work presented demonstrates that the restrictions de-
scribed for external referencing methods [46] are not nec-
essary. Te normalization of the absolute signal intensity by
a receiver gain and the number of scans results in an

Intensity Gain (IG) factor, based on which the quantifcation
of every sample becomes possible, independent of the ex-
perimental parameters. As amplifers are notoriously non-
linear, a manual linearization of the receiver gain values was
performed, in order to verify if this would improve the
quantifcation quality further.

2. Experimental

Te usability of FAINT-NMR was verifed on a Bruker
equipment AVANCE III 400MHz equipped with a 5mm
BBO Prodigy probe and a sample changer, which was used
with as much automation as possible for experiment ac-
quisition, followed by partially automated interpretation. As
the methods target small molecules, protons were chosen as
the observed nucleus due to higher sensitivity and sufcient
signal separation.

Samples were weighted on a calibrated Mettler Toledo
AG245 balance and diluted with 0.6ml of DMSO-d6 into
5mm NMR tubes. After determining values for the fxed
parameter (D1), the infuence of the fexible parameters (NS,
RG) was determined. Te longest T1 of the reference ma-
terial was determined as 2.06 s by our own measurements in
DMSO-d6, as 1.86 s in CDCl3 [57] and 2.7 s in D2O [58];
thus, the inter-scan delay D1 was fxed as 16 s for all
experiments.

Simple proton experiments with a 90° pulse and 16 k
observe points were obtained at 25°C, varying the number of
scans and receiver gain. Experiments with 2 to 64 scans (NS)
and receiver gain (RG) from 25.4 to the highest RG value
determined by the function automatic receiver gain (RGA)
for the sample were carried out in duplicates. Te RG values
available on the equipment usually reach values above 4K,
which we could not observe for our samples for proton
experiments. For proton experiments, we observe that the
maximum RG value for low analyte concentrations is ac-
tually defned by the solvent “concentration” in the sample.
When the analyte is in high concentration, it can decrease
the RG value, as seen.Tus, the experiments use only a small
slice of the possible RG values. All experiments were pro-
cessed automatically (Fourier transformation and phase
correction), followed by integration using intervals defned
on one reference experiment. With this data set a constant
IG (Intensity Gain, I∗NS− 1 ∗RG− 1 ∗ [mMol]− 1) factor was
determined, that allows the calculation of the concentration
directly from the absolute intensity of a signal. Finally, a
linearization of the RG values was carried out, and the
improvement of the back-calculated values was verifed.

Table 1: Flexibility of the parameters that infuence an NMR spectrum for quantitative applications.

Parameter Infuence on spectrum IR ER FAINT-NMR
Temperature (T) Signal position and intensity Not recommended No Not recommended
Delay between scans (D1) Signal intensity No No No
Number of scans (NS) Signal intensity and SN Yes No Yes
Receiver gain (RG) Signal intensity Yes No Yes
IR, internal referencing; ER, external referencing; SN, signal-to-noise relation.
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Figure 1: Quinine (1, C20 H24 N2 O2, MW 324.42 g/mol), used for
the qNMR application.
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Figure 2: 1H NMR spectrum of Quinine (1), the used integration
limits are delimited. Further signals were not used due to overlap
and complex coupling patterns.
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3. Results

FAINT-NMR was applied to a series of quinine samples,
Figure 1, which was chosen due to its high molecular weight.
Figure 2 shows the proton NMR spectrum of quinine in
DMSO-d6 and the signals that were used for the quantif-
cation. Further signals were not used because they overlap or

have complex multiplet patterns. In total, fve samples di-
luted in 0.6ml of DMSO-d6 were used, as shown in Table 2.

In Figure 3, the absolute signal intensities of 13 signals of
quinine were averaged, normalized against their concen-
tration, number of protons and scans, and scatter-plotted
according to their respective RG. Tese signals were chosen
because of their lack of overlap and the small number of
observed couplings. Te signal-to-noise ratio of all signals
was always above 200 :1.

Table 2: Samples of prepared quinine and the count of possible RG values and the highest RG value for each sample.

Sample Tc (mMol) W (mg) RC (mMol) possible RG values highest RG value
1 5 1.03 5.29 17 161
2 30 5.73 29.44 12 90.5
3 50 9.38 48.19 12 90.5
4 80 15.14 77.78 5 40.3
5 110 21.09 108.35 4 36
Tc, target concentration; W, real weight used; RC, real concentration; RG, receiver gain.
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Figure 3: Te average signal intensity increment was observed in
dependence on sample concentration, the number of protons, and
scans, separated for diferent RG values.

Table 3: Original RG values and linearized RG values.

Original Linearized
25.4 23.58
28.5 26.35
32 29.99
36 33.07
40.3 37.35
45.2 43.15
50.8 49.45
57 55.05
64 62.05
71.8 69.60
80.6 76.10
90.5 85.10
101 96.80
114 109.80
128 124.00
144 140.00
161 153.00

Table 4: Back-calculated sample concentrations using not line-
arized RG values (BC) and manually linearized RG values (BC-l).

Sample RC (mMol) BC (mMol) σ BC-l (mMol) σ
1 5.29 5.35 0.10 5.63 0.02
2 29.44 28.43 0.58 30.05 0.05
3 48.19 48.10 0.98 50.84 0.06
4 77.78 75.14 0.53 81.05 0.13
5 108.35 100.42 0.75 108.30 0.15
RC, real concentration; BC, back-calculated concentration; BC-l, back-
calculated concentration with linearized RG; σ, Standard deviation.
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Figure 4: Back-calculated sample concentrations using not lin-
earized RG values (original RG) and manually linearized RG values
(linearized RG) plotted against the prepared concentrations.

Table 5: Linear regression equations for Table 4 and correlation
factors.

RG Linear Regression R2

Native y � 0.9275x + 1.5808 0.9983
Linearized y � 1.0046x + 1.1181 0.9987
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Te results from Figure 3 show that the per-scan
signal intensity increment scatters around an average of
1650. Based on this, an IG factor of 1650 was defned for
all intensity-based quantifcations shown here. Fur-
thermore, these results were used to carry out a manual
linearization of the RG values, to further improve the
results. Te original and linearized RG values are shown
in Table 3.

In Table 4, the 5 actual sample concentrations are
compared to the back-calculated values (BC) and values
back-calculated using a linearized RG (BC-l). Figure 4 shows
the linear regression graph of the values in Table 4.Te linear
regression equations in Table 5 clearly show that the line-
arization of the RG improves the results, as the slope for the
equation is very close to the optimum value of 1.0.

4. Conclusions

So far, a large-scale application of qNMR has been restricted
by experimental conditions. In the case of internal reference
methods, difculties might arise because of signal overlap or
interaction of the reference with the sample. In the case of
external referencing, the fxed experimental conditions
usually restrict the working range of the method. Te results
presented here show that some experimental parameters,
like RG and NS, can be varied largely without afecting the
quality of the quantifcation result. Te linearization of the
RG values further improves the accuracy of the method. By
lifting these restrictions, FAINT-NMR can facilitate the
quantifcation by NMR in general, including trace amounts
in samples, as long as well-isolated signals are observed. One
possibility to achieve theses isolated signals would be to
combine Bayesian data analysis with FAINT-NMR, which
would provide isolated signals and turn integration limits
unneccessary.

Data Availability
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