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A carbon nanowire-modi�ed surface with interdigitated electrode (IDE) sensing system was introduced to identify abdominal
aortic aneurysm biomarker “papain,” also known as cysteine protease, used as the capture probe to identify Cystatin C. Papain was
immobilized through the covalent integration of amine group on papain and the carboxyl group with carbon nanowire. �is
papain-modi�ed electrode surface was utilized to detect the di�erent concentrations of Cystatin C (100 pg/mL to 3.2 ng/mL). �e
interaction between papain and Cystatin C was monitored using a picoammeter, and the response curves were compared. With
increasing Cystatin C concentrations, the total current levels were gradually increased with a linear range from 200 pg/mL to
3.2 ng/mL, and the current di�erences were plotted and the detection limit of Cystatin C was calculated as 200 pg/mL. �e
averaging of three independent experiments (n� 3) was made with 3δ estimation, and the determination coe�cient was
y� 1.8477× 0.7303 and R2� 0.9878. Furthermore, control experiments with creatinine and gliadin failed to bind the immobilized
papain, indicating the speci�c detection of Cystatin C.

1. Introduction

Abdominal aortic aneurysm (AAA) is a fatal arterial disease,
de�ned by an abnormal bulge in the artery wall. AAA is
generally developed by the weakened artery due to injury,
infection, or congenital defect in the connective tissue of the
artery [1, 2]. Various other reasons also contribute to AAA,
which include genetic susceptibility, atherosclerosis,

smoking, and hypertension [3, 4]. AAA is generally devel-
oped in the abdominal aorta between the renal and iliac
arteries [5], and a diameter of >3 cm causes various health
issues [6]. In particular, if the aneurysm size expands above
5.5 cm, it ruptures and causes bleeding which leads to death
[2]. AAA is a dynamic and complex pathophysiological
process, and the molecular mechanism of AAA is still un-
clear. At present, open surgical repair and invasive
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endovascular aneurysm repair are the possible treatments
for AAA. Diagnosing the condition and size of AAA at its
earlier stage helps to treat the patient before rupturing. *e
rupturing of AAA is asymptomatic, and the present imaging
methods, such as ultrasound computerized tomography and
magnetic resonance imaging, are helpful in identifying AAA,
but these methods are inconvenient and expensive. So, it is
mandatory to develop a sensing strategy to diagnose AAA by
blood-based biomarker analysis [2, 7–9]. Various blood-
based biomarkers help to identify and diagnose the disease at
its earlier stages, which helps to provide the proper treat-
ment at the right time [10–13]. In this research work,
Cystatin C was used as the biomarker to diagnose AAA.

Cystatin C is the endogenous inhibitor of the elastolytic
enzymes cathepsins, which are expressed ubiquitously in
most of the tested cells. Research has found that the ex-
pression of Cystatin C is reduced in patients with athero-
sclerotic lesions and AAA. Furthermore, the Cystatin C level
was significantly lower in AAA patients than in patients with
non-AAA [14, 15], and it was further noticed that there is a
negative correlation of serum Cystatin C with the size of
AAA and its annual expansion rate [16]. So, quantifying
cystatin helps to diagnose AAA with its size changes.
Various diagnosing systems have been developed for cys-
teine identification, but those methods are time consuming,
tedious, and expensive and need sophisticated equipment, as
well as a well-trained manpower. *is research focused to
detect Cystatin C by using the cysteine protease/papain as
the capture probe to diagnose AAA on sensing surface by
interdigitated electrode (IDE). IDE sensing surface has dual
electrodes, which form equally gapped regions that can be
connected to a probe station. Upon attaching/interacting the
molecules on the gap or electrode regions, there will be a
creation of molecular vibrations [17–19]. Ultimately, a di-
pole moment forms among the ions, which change the
output by the transducer.

Biosensors have been categorized by the type of trans-
ducer used, such as colorimetric, electrochemical, piezo-
electric, and fluorescence biosensors [20–23]. Among them,
current-volt biosensors have become popular and attractive
due to its higher sensitivity, easy handling, ability to collect
data rapidly, and higher selectivity [24–27]. Further modi-
fication on electrode surface with nanomaterials increases
the surface area, high-probe immobilization, and higher
electron transfer kinetics [28–32]. Herein, we introduced a
carbon nanowire-modified electrode to immobilize papain,
and it increases the electric flow [33–35]. A carboxyl
functionalized nanowire was attached on the potassium
hydroxide-treated electrode surface, and then, the amine
group on papain was attached covalently on the nanowire.
*e primary advantage of the carbon nano-wired inter-
digitated electrode is to enhance the surface area. Ultimately,
a higher molecular immobilization/assembly will occur with
Cystatin C interaction. With the enhanced surface area,
there is a potential dipole moment between the two elec-
trodes, which will substantiate the changes on the surface
upon molecular attachment or interaction. *is electrode
was used as the working surface to monitor the protein-
protein interaction with papain and Cystatin C, and the

transduction of electrons was monitored by current-volt
measurements. *e response curves were recorded with a
picoammeter to monitor the papain and Cystatin C inter-
action in a dose-dependent manner.

2. Experimental

2.1. Materials. *e electrode surface was obtained from
Metrohm (Switzerland) for interdigitated electrode (IDE)
analysis. Cystatin C, papain, N-hydroxysuccinimide (NHS),
phosphate buffer saline (PBS), and ethyl-3-(3-dimethyl-
aminopropyl) carbodiimide (EDC), potassium hydroxide
(KOH), and serum albumin were ordered from Sigma
Aldrich (Missouri, USA).

2.2. Electrode Surface Functionalization. *e IDE surface
was modified into a carbon nanowire for attaching the
capture probe, papain. Initially, the electrode surface was
cleaned with distilled water and then treated with diluted
(1%) KOH for 7min followed by washing with distilled water
to eliminate the unbound KOH. After that, 1% of diluted
APTES in ethanol was added on the surface and kept
overnight.*e next day, the APTES-coated electrode surface
was cleaned with 30% of ethanol thoroughly to remove the
unbound APTES. And then, 1 g of carbon nanowire was
dispersed and dropped on the APTES-modified electrode
and kept for 1 h and then washed with PBS buffer. Fur-
thermore, the electrode surface was incubated in EDC and
NHS mixture (10mM, 1 :1 v/v in PBS) for 1 h. Excess EDC-
NHS was washed off with PBS, and then, 2mg/mL of diluted
papain was dropped and allowed to rest for 1 h to allow the
papain binding on carbon nanowire. *is papain modified
electrode was utilized to quantify the Cystatin C level by
using current-volt measurements.

2.3. Cystatin C Identification on Papain-Modified Electrode
Surface. Cystatin C was detected on the carbon nanowire-
papain-modified IDE surface. To get the specific interaction
of Cystatin C and papain, the uncovered activated carbon
nanowire was covered with 1% PEG-NH2 of diluted PBS for
30min. And then, different concentrations of 100, 200, 400,
800, 1600, and 3200 pg/mL of Cystatin C were dropped
individually on the papain-immobilized electrode surface
and placed for 30min. After washing the surface with PBS,
the electric signal was measured. *e response curves by
current-volt measurements were recorded to monitor pa-
pain and Cystatin C interaction.

2.4. Specificity and Reproducibility of the Papain-Modified
Electrode. Control experiments with creatinine and gliadin
were conducted to identify the specific detection of Cystatin
C on the papain modified electrode surface. For this ex-
periment, control proteins at 3.2 ng/mL were added on a
papain immobilized electrode and the electric signal was
recorded. Furthermore, a control experiment was also
conducted without papain. For this experiment, Cystatin C
was placed on carbon nanowire (without papain) and then
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the current flow was recorded. *e response cure was
compared with the specific binding of Cystatin C with
papain.

Furthermore, to confirm the reproducibility of the pa-
pain-modified electrode, the same experiments were con-
ducted with five different batches of electrodes and the
current response for each immobilization; APTES, CNW,
papain, PEG-NH2 and Cystatin C were recorded for com-
parison. All experimental conditions were at room tem-
perature and with a wet sensing surface. Washings were
performed between each surface modification or interaction.
*e current was given from 0–2V at an interval of 0.1V
which was used in the whole experiment.

3. Results and Discussion

*e abdominal aortic aneurysm (AAA) biomarker, “Cys-
tatin C,” was detected on the carbon nanowire-modified
electrode surface. Figure 1 displays the schematic illustration
of Cystatin C detection on the papain modified electrode
surface. Carbon nanowire was evidenced by scanning
electronic microscope imaging (Figure 1; inset) and
immobilized on the electrode surface through APTES as a
linker, and then, papain was linked with carbon nanowire
through covalent bonding. And then, PEG-NH2 was utilized
here as the blocking agent to avoid the nonspecific Cystatin
C binding on the electrode surface. *e changes in the
current supplied with the ammeter were recorded to

monitor the biological interaction on the IDE surface. Before
initiating the experiment, the intactness of sensing was
confirmed with a high-power microscope and 3D-nano-
profiler (Figure 2). Figure 3 shows the process of the capture
probe (papain) immobilization on the carbon nanofiber-
modified IDE surface. Figure 3(a) shows the relationship
between voltage and current for the immobilization process.
*e bare electrode shows the current response as 9.0 E-07A.
After modifying the electrode surface by APTES, the re-
sponse was elevated to 1.4 E-06A. *is result confirms the
aminated surface with the IDE surface. Furthermore, upon
adding the carbon nanowire, response was increased to
2.45 E-06A, and when the capture probe of papain was
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Figure 1: Schematic for surface modifications/functionalization. *e different steps involved are shown. A dual probe station is displayed.
*e physical appearance of the aorta is also shown. *e nanowire on the surface was evidenced by scanning electron microscope
observation.

Figure 2: Surface of an interdigitated electrode sensor observed
under both a high-power microscope (blue) and a 3D-nanoprofiler
(grey). *e figure inset shows the original sensing device.
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dropped, the response was drastically increased to 6.1 E-
06A. *is enhancement confirms the attachment of papain
with the immobilized carbon nanowire. Finally, the blocking
molecule, PEG-NH2, was added on the papain modified
electrode surface, and there were no significant changes in
response.*is might be due to the high occupancy of papain
on the carbon nanowire surface (Figure 3(b)).

3.1. Detection of Cystatin C on the Papain-Immobilized
Electrode Surface. Different levels of Cystatin C were
dropped on a constant papain-modified electrode surface.
*e changes in the current output were recorded to monitor
the interaction of papain with Cystatin C (Figure 4(a)).
Figure 4(a) shows the relationship between voltage and
current for the interaction of papain with different
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Figure 3: Process of the capture probe “papain” immobilization on the carbon nanofiber-modified interdigitated electrode surface.
(a) Voltages vs current responses for the immobilization process. Clear increment of current was noted after each immobilization. (b) *e
current level of the capture probe “papain” immobilization process. A higher increment of current was recorded after adding papain on the
electrode.
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Figure 4: Detection of different concentrations of cystatin C by the immobilized papain surface. (a) *e Cystatin C and papain interaction
was analyzed by voltage vs current responses. *e clear increment of current responses confirms the interaction of Cystatin C with the
immobilized papain. (b)*e current level of Cystatin C and papain interaction increases the Cystatin C concentration, and the response also
increases gradually.
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concentrations of Cystatin C. With zero Cystatin C, the
current response was recorded as 6.55 E-06A; when 100 pg/
mL of Cystatin C was dropped, the response was increased to
1.22 E-05A. *is small alteration is due to the interaction of
papain with Cystatin C. Further increment in Cystatin C
concentrations to 200, 400, 800, 1600, and 3200 pg/mL, re-
sponses were gradually increased to 3.93, 5.78, 7.56, 9.26, and
10.6 E-05A, respectively. It was clearly noted that with in-
creasing Cystatin C concentration, the current responses were
also gradually enhanced (Figure 4(b)) and the difference in
response for each Cystatin C interaction with papain was
calculated and plotted in an excel sheet. *e limit of detection
of Cystatin C was calculated at the level of 200 pg/mL with the
R2 value of 0.9878 (Figure 5(a)).

3.2. Reproducibility and Specificity of the Papain-Modified
Electrode Surface. Control experiments with creatinine and
gliadin (instead of Cystatin C) were conducted to identify
the specific detection of Cystatin C on the papain-modified
electrode surface. As in Figure 5(b) (inset), without Cystatin
C and with control protein, no significant changes of current
response were noted. At the same time, with specific in-
teraction of papain and Cystatin C being recorded, it is
confirmed that Cystatin C was specifically recognised by the
immobilized papain.

Furthermore, to confirm the reproducibility of the pa-
pain-modified electrode, the same experiments were con-
ducted with five different batches of electrodes. As shown in
Figure 5(b), there were no significant changes of current
response of bare electrode, APTES, CNW, papain, PEG-
NH2, and the cystatin C with different electrodes. *is result
confirms the reproducibility of the papain-modified

electrode. *is system is quite feasible with the same op-
erating set-up for analysing clinically relevant real samples.
With the similar sensing system on different modifications,
the genuine detections have been demonstrated as the ev-
idence using human serum [22, 36, 37]. According to these
recent studies, the primary optimization step is necessary
with different surface modifications to be suited for the
desired measurement ranges.

4. Conclusion

Abdominal aortic aneurysm (AAA) is defined by an ab-
normal bulge in the artery wall and the burst with AAA
cause excess bleeding, which is fatal. *is research work
designed a sensing system to detect AAA biomarker,
“Cystatin C” with the cysteine protease, papain, by the
current-volt measurements. To immobilize the papain, the
carbon nanowire was attached on the electrode through
amine modification, and then, papain was attached on
through the covalent binding. Different cystatin C ranges
were detected on the papain-modified electrode surface, and
the limit of detection was found at 200 pg/mL. In addition,
control proteins did not show any significant current in-
crement, indicating the specific detection of Cystatin C. *is
study provides information for the identification of Cystatin
C and generates the sensing platform with other clinical
biomarkers.

Data Availability

Data used to support the findings of this study are available
upon request.
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Figure 5: (a) Differences in current response (from blank) for different concentrations of Cystatin C were plotted in an excel sheet, and the
limit of Cystatin C detection was calculated in the range between 100 and 200 pg/mL with the R2 value of 0.9878. (b) Reproducibility analysis
of Cystatin C identification.*ere are no significant changes in the current response of the bare electrode, APTES, CNW, papain, PEG-NH2,
and Cystatin C with five different electrodes, which confirms the reproducibility of the papain-modified electrode. *e figure inset displays
the specificity analysis of Cystatin C control experiments with creatinine and gliadin (instead of Cystatin C) conducted to identify the
specific detection of Cystatin C on the papain-modified electrode surface. Without Cystatin C and with control protein, no significant
changes of current response were noted. Cystatin C was specifically recognised by the immobilized papain.
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