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A method based on elemental �ngerprint, stable isotopic analysis and combined with chemometrics was proposed to trace the
geographical origins of Licorice (Glycyrrhiza uralensis Fisch) from 37 producing areas. For elemental �ngerprint, the levels of 15
elements, including Ca, Cu, Mg, Pb, Zn, Sr, Mn, Se, Cd, Fe, Na, Al, Cr, Co, and K, were analyzed by inductively coupled plasma
atomic emission spectrometry (ICP-AES).ree stable isotopes, including δ13C, δ15N, and δ18O, were measured using an isotope-
ratio mass spectrometer (IRMS). For �ne classi�cation, three multiclass strategies, including the traditional one-versus-rest
(OVR) and one-versus-one (OVO) strategies and a new ensemble strategy (ES), were combined with two binary classi�ers, partial
least squares discriminant analysis (PLSDA) and least squares support vector machines (LS-SVM). As a result, ES-PLSDA and ES-
LS-SVM achieved 0.929 and 0.921 classi�cation accuracy of GUF samples from the 37 origins. e results show that element
�ngerprint and stable isotope combined with chemometrics is an e�ective method for GUF traceability and provides a new idea
for the geographical traceability of Chinese herbal medicine.

1. Introduction

Licorice, as a widely used herb in traditional Chinese
medicine Gancao, is the dried root and rhizome of Gly-
cyrrhiza uralensis Fisch. (GUF), Glycyrrhiza in�ata Batalin
(GIB), and Glycyrrhiza glabra L. (GGL). It is known as “the
king of traditional Chinese medicine (TCM)” and is one of
the most commonly used herbs in TCM formulas, which has
been registered as one of the four major medicinal plants by
Chinese medical administration department [1–3]. Licorice
contains ¨avonoids, saponins, alkaloids, coumarins, and
other compounds [4–7], with various pharmacological

e�ects such as antioxidant, anti-in¨ammatory, immuno-
modulatory, antiulcer, and antiviral [8–10]. Licorice is
widely distributed in the areas of latitude 37°∼47°N and
longitude 73°∼125°E, mainly distributed in the arid and
semidry early areas of about 40°N latitude [11]. e major
medicinal plant of licorice in China is GUF, which is widely
distributed in the northwest and northeast provinces [12].
e quality of licorice is believed to be largely in¨uenced by
its geographical origin due to the di�erences in climate, soil,
and other ecological environmental factors in di�erent
producing areas [13–15]. However, we all know that the
chemical composition of licorice depends largely on internal
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genetic andmetabolic factors.*ere may be great differences
even among products of the same origin, so it is necessary to
develop some methods to accurately identify the geo-
graphical origins of licorice.

In recent years, many methods have been used to dis-
tinguish the geographical origin of licorice and other herbs
[16, 17], including high performance liquid chromatography
[18], gas chromatography [19], nuclear magnetic resonance
[20], electron nasal tongue [21], and near infrared spec-
troscopy [22], which come with high accuracy, but these
methods are mainly analyzed by chemical composition. In
recent years, stable isotopes have been widely used for origin
tracing because of their excellent stability as well as the
advantages of fast analysis, high precision, and significant
effect. By using the principle of natural fractionation effect of
isotopes, samples of different origins show significant dif-
ferences in the abundance of isotopes of elements (13C/12C,
15N/14N, 18O/16O) in natural substances due to differences in
environment, climate, and soil. *is information carries the
environmental factors, reflects the environmental conditions
of the organism and becomes a kind of “natural fingerprint”,
which can be used to distinguish substances of different
geographical origins [23–25]. *ere have been many reports
on the application of this method to the identification of
licorice origins [26–28], but they are limited to the classi-
fication of a small number of origins by simple pattern
recognition, while licorice origins are widely distributed, so
it is necessary to identify licorice by large class number
classification.

*e so-called fine classification or large-class-number-
classification (LCNC) [29] is more complex than the general
multiclass classification (usually no more than 10 classes are
involved [30] because: (1) a large class number will greatly
increase the possibility of class overlap and reduce the
classification accuracy of the model; (2) the complexity of
data structure and model will increase drastically with the
number of classes, which will increase the risk of over-fitting
and reduce the generalization performance of the model;
and (3) error accumulation becomes an outstanding
problem, as the decision-making of multiclass model is
usually based on the results of a set of binary classifiers.
However, there is a little research devoted to the methods of
LCNC [31]. *erefore, it is necessary to adopt a new che-
mometrics strategy for the fine classification of GUF from a
number of geographical origins. *e main aim of this work
was to investigate the feasibility and performance of using
elemental fingerprints and stable isotopic ratios for the
classification of GUF geographical origins. Fine classification
of GUF from 37 producing areas was performed by com-
paring the traditional one-versus-rest (OVR) and one-ver-
sus-one (OVO) strategies with a new ensemble strategy (ES)
to obtain an accurate and effective classification system for
quality inspection and control of GUF.

2. Materials and Methods

2.1. Reagents and Standard Solutions. Standard materials of
Al, Cr, Mg, Pb, Zn, Ca, Cu, Mn, Se, Cd, Fe, Na, Sr, Co, K, and
Ni were purchased from the National Standard Material

Center of China. Isotope reference materials for δ13C, δ15N,
and δ18O, including L-glutamic Acid USGS40
(δ15N� −4.50‰ relative to atmospheric N2 and
δ13C� −26.389‰ relative to Vienna Pee Dee Belemnite
standard), caffeine USGS61(δ15N� −2.87‰ relative to at-
mospheric N2 and δ13C� −35.05‰ relative to Vienna Pee
Dee Belemnite standard), Vienna Standard Mean Ocean
Water (VSMOW) (δ18O� 0), and Benzoic Acid IAEA-601
(δ18O� 23.3‰ relative to VSMOW1 standard), were pur-
chased from the International Atomic Energy Agency
(Vienna, Austria). Secondary distilled water was used in
preparing standard and sample solutions. Nitric acid
(HNO3, 65%, w/w %) and hydrogen peroxide (H2O2, 30%,
w/w %) for sample digestion were purchased from Sino-
pharm Chemical Reagent Co. Ltd. (Shanghai, China).

2.2. Collection of GUF Samples. Dried GUF samples were
purchased from the local herbalists of 37 producing areas in
China. All the GUF samples were cultivated artificially and
harvested with a growth period of 2 and 3 years. *e geo-
graphical locations of the 37 producing areas are plotted in
Figure 1. From each producing area, 30 objects were col-
lected, making a total of 1110 objects. Classes 1–8, 9–13,
14–19, 20–25, 26–33, and 34–37 belong to Gansu, Ningxia,
Neimenggu, Xinjiang, the three Northeast provinces, and
Shanxi province, respectively.

2.3. Preparation of Sample Powder. Before elemental and
stable isotope ratio analysis, the GUF rhizome was cleaned
and washed using tap water followed by deionized water.
*e cleaned rhizome was cut into thin slices, put into an
electro-thermal blast drying oven, and dried for 24 hours at a
temperature of 50°C to a constant weight. Subsequently, the
fully dried slices were crushed into powder with a grinder
and filtered through a 100-mesh sieve.

2.4. Digestion and Elemental Analysis. For sample digestion,
about 0.5 g dry GUF powder was put into a Teflon digestion
tank with 9mL nitric acid and 3mLH2O2 for 24 hours. *e
solution was heated to 60°C and kept for 5 minutes and then
to 160°C for 10 minutes until no more white smoke rose.*e
colourless and transparent solution was cooled naturally,
and after 2 hours of standing it was transferred to a 50mL
volumetric flask to prepare the test solutions.

Levels of the 15 inorganic elements in GUF were ana-
lyzed using a Shimadzu ICPS-7510 sequential plasma
emission spectrometer (Shimadzu, Kyoto, Japan). *e
working parameters of the spectrometer were as follows:
power: 1300W; plasma flow rate: 15 Lmin−1; carrier gas flow
rate: 0.8 Lmin−1; auxiliary flow rate: 0.2 Lmin−1; atomiza-
tion flow rate: 0.8 Lmin−1; pump flow rate: 1.5mLmin−1;
axial observation distance: 15mm; and the instrumentation
stabilization time of 30 s. Simultaneously considering the
intensity, interference, and signal stability, the selected
analytical line for each element was listed in Table 1. *e
elemental levels were determined by standard curves.
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2.5. Stable IsotopesRatiosAnalysis. Stable isotope ratios were
analyzed on an elemental analyzer-isotope-ratio mass
spectrometer (EA-IRMS) (ermo Fisher Scienti�c, Wal-
tham, MA, USA). For δ13C and δ15N analysis, about 0.3mg
of the dry powder was weighed, wrapped in a tin cup, and
transferred to the fast combustion furnace through the
automatic sample feeder of the element analyzer. e re-
sultant CO2 and N2 were dried, separated, distilled, and
analyzed by IRMS.e analytical conditions were: oxidation
furnace temperature: 960°C; ¨ow rate of carrier gas:
100mLmin−1; sample purging gas ¨ow rate: 225mLmin−1;
oxygen ¨ow speed: 175mLmin−1; the time of oxygen in-
jection: 3 s; and the temperature of the gas chromatography
column was 50°C. For δ18O analysis, about 0.3mg of the dry
licorice powder was weighed, wrapped in a silver cup, and
transferred to the high-temperature cracking furnace. e
resultant CO was dried, separated, distilled, and analyzed by
IRMS. e analytical conditions were: cracking furnace

temperature: 1400°C; ¨ow rate of carrier gas: 100mLmin−1;
sample purging gas ¨ow rate: 150mLmin−1; and the tem-
perature of the gas chromatography column was 90°C.

2.6. Chemometrics Analysis. Outliers are abnormal objects
that deviate from the bulk of the other observations. For
classi�cation models, outliers in the training set will cause
bias in model estimation, while outliers in the test set will
lead to misleading results when evaluating the model’s
performance. erefore, outlier diagnosis is required to
detect and exclude unusual objects before model building.
Robust statistical methods with dimension reduction tech-
niques are required to detect outliers. e robust Stahel-
Donoho estimate (SDE) of outlyingness [32] was computed
for outlier diagnosis. e SDE outlyingness is based on a
large number of random projections of the high-dimen-
sional objects and robust estimates of location as well as scale
by the median and median absolute deviation (MAD),
respectively.

e DUPLEX algorithm [33] was used to divide the
measured data into a training set and a test set. e aim of
this algorithm was to obtain a representative training set in
such a way that the objects are scattered uniformly in the
experimental space. Because the distribution of GUF sam-
ples from each producing area was not the same, the DU-
PLEX method was performed separately for each class. e
training and test samples of each class were combined to
form the �nal training and test sets, respectively.

Usually, multiclass classi�cation can be performed by
combining a multiclass strategy with a two-class classi�er. In
this work, the traditional one-versus-rest (OVR) [34] and
one-versus-one (OVO) [35] strategies and a new ensemble
strategy (ES) were used as multiclass strategies. For two-class
classi�ers, the linear partial least-squares discriminant
analysis (PLSDA) [36] and the nonlinear least-squares
support vector machine (LS-SVM) [37] were used.

emulticlass strategy forms the framework of two-class
classi�ers and combines the results of the latter for the �nal
decision-making. Suppose there are k classes to be classi�ed.
e OVR strategy develops k binary one-versus-(k-1)
models, where each class is discriminated from the rest k-1
classes. For the i th (i� 1, 2, 3, . . ., and k) model, class i is
labeled as +1 and the other (k-1) classes are labeled as -1. A
new object is predicted sequentially by the above k one-
versus-(k-1) classi�ers and assigned to the class that has the
highest predicted response value. For OVO, binary classi�ers
are developed between each pair of the k classes, so there are
k (k-1)/2 binary classi�ers in all. For a new object, it is
predicted by the k (k-1)/2 classi�ers sequentially, and each
classi�er assigns the object to one of the two classes, and
�nally, the decision-making is done by a max-wins voting
strategy. As a combination of OVR and OVO, the principle
of the new ES strategy is shown in Figure 2. In step 1, OVO is
performed for all k classes (classi�er 1, C1) and OVR is
performed for the 3 classes with the most votes in C1
(classi�er 2, C2). At step i (i� 2, 3, 4, ......), the class (α(i))
with the most votes in decreasing order in C1 is selected and
two submodels are developed: (1) a new OVO classi�cation

Table 1: Selected analytical wavelengths for the 15 di�erent
elements.

Elements Wavelength (nm) Elements Wavelength (nm)
Zn 213.8 Sr 407.8
Ca 393.4 Co 236.4
Cu 324.8 K 766.5
Mn 257.6 Se 196.0
Al 396.2 Cd 228.8
Cr 267.7 Fe 238.2
Mg 280.2 Na 589.6
Pb 220.4 —a —
‘a’ represents nondetected.
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Figure 1: e geographical origins of 37 classes of GUF.
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model (classi�er 2i-1, C2i-1) is developed on the chosen class
α(i); (2) a new OVR classi�cation model (classi�er 2i, C2i) is
developed on the 3 classes with the most votes in C2i-1. e
procedure is performed at α(i+ 1) b 10 (i� 2, 3, 4, ...) when it
stops and develops 2i subclassi�ers to classify the new object.
In this paper, α(i) is de�ned as follows:

α(i) � round
k

2i
− 1( ), i � 2, 3, 4 . . . , (1)

where the operator “round” means rounding.
Finally, for a new object, the predictions of the 2i

subclassi�ers will be combined to make the �nal decision via
the max-wins voting strategy. In most cases, the new object
will be uniquely assigned to the class that receives the most
votes. However, when more than one class receives the most
votes, an additional OVR classi�cation model will be de-
veloped to uniquely assign the object to one of these classes.

Regarding the submodels of ES, for all OVO submodels
except C1, the α (i) class with the most votes is selected from
C1, where α (i) is k/2, k/4, k/8, and so on. e trade-o�s are
as in Equation (1). When a new object is predicted by OVO,
the more votes a class receives, the more likely it is to come
from that class. us, with the minimum value of α (i) set to
10, subsequent OVO submodels can include the true class
labels with a very high probability. In this way, even if a very
large number of classes are to be classi�ed, ES can still have a
modest total number of submodels. e serial OVR sub-
model is developed on 3 selected classes because the per-
formance of OVR decreases dramatically when the number
of classes increases.

2.7. Software. All the data analysis and chemometric
modeling were performed in MATLAB 7.0.1 (Mathworks,

Sherborn, MA, USA). e DUPLEX algorithm was per-
formed using the TOMCAT toolbox [38]. e LS-SVM
algorithm was developed using the toolbox LS-SVMlab v1.8.
All the other data analysis algorithms were performed based
on in-house computational coded scripts written by the
authors in MATLAB.

3. Results and Discussion

3.1. Data of Elemental Pro�les and Stable Isotopic Ratios.
e analysis data of the 15 elements as well as the 3 stable
isotopic ratios for GUF samples were summarized in Ta-
ble 2. Two elements, Se and Cd, were not detected in the
current analytical conditions. For the other 13 elements,
except Mg, Cu, and Mn, each of the other 10 elements has a
wide range of content, indicating the soils of di�erent
producing areas have very di�erent elemental pro�les. For
δ13C, previous study [39] indicated that its value tends to
increase with a higher altitude. Changes in altitude cause
changes in other environmental factors, such as precipi-
tation, light, temperature, and atmospheric pressure, which
can in¨uence the morphology, physical properties, and
photosynthetic gas exchange, and ultimately the δ13C value
of plants. With similar ambient humidity, the di�erence in
δ13C samples could be mainly attributed to variations in
altitudes. For δ15N, previous studies [40] found that the
nitrogen in plants depends on the nitrogen pool in the soil
(nitrate and ammonia), whose nitrogen isotopic compo-
sitions depend on its geographical and climatic conditions
and are related to agricultural fertilization. e level of
δ18O was found to decrease with latitude due to
fractionation.

For all the data analysis, each feature was auto-scaled to
have zero center and the unit length to reduce the in¨uence
of data scales. To demonstrate the data distribution, hi-
erarchical clustering analysis (HCA) using the Euclidean
distance (ED) and principal component analysis (PCA)
were performed on the auto-scaled data (Figure 3). Both
HCA and PCA clearly indicate that the total data could be
clustered into three big groups, that is, Xinjiang province
(classes 20–25), Central-north (classes 1–8, 9–13, 14–19,
and 34–37), and Northeast (Classes 26–33). HCA could
discriminate against big groups, but some classes from the
same provinces were not tightly linked; e.g., classes 1–8
come from Gansu province, while class 3 was linked to
classes 9–13 from Ningxia province. It cannot be assumed
that the confusion of classes across provinces by HCA is
wrong, because the soil variations within a province may be
larger than those between two provinces. However, the
HCA results indicate that using the ED of raw features may
be insuµcient for accurate classi�cation of a large number
of classes. e �rst two principal components (PCs)
explained 81.06% of the total data variances, and projection
of the 16 features onto the �rst 2 PCs can provide some
separation of the two classes, but the separation is insuf-
�cient and overlapping still exists. Chemometrics models
were still demanded to achieve a more accurate classi�-
cation of the 37 classes.

Perform OVO on the k
classes

(classifier 1, C1)

i=2

i=i+1

Step i
(i=2, 3, 4, ···)

Step 1
Select the 3 classes
with the most votes
in C1 and perform

OVR on the 3
selected classes
(classifier 2, C2)

If round (k/2i-1) > 10

Select the a (i) classes
with the most votes in C1
and perform OVO on the

a (i) selected classes
(classifier 2i-1, C2i-1)

Select the 3 classes
with the most votes

in C2i-1 and perform
OVR on the 3

selected classes
(classifier 2i, C2i)

If round (k/2i-1)≤ 10, stop.

Figure 2: e principle of the ensemble strategy (ES) for �ne
classi�cation.
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3.2. Chemometrics Classification Results. Outlier diagnosis
and data splitting were shown in Table 3. For outlier diag-
nosis, robust SDE analysis was performed on each of the 37
classes. In this work, the number of random projections of
SDE was 500. According to the 3σ rule, an SDE outliervalue
above 3 can be seen as an indicator of an outlier. As a result,
each of classes 20, 27, and 37 had one outlier detected and
were excluded from further data analysis. *erefore, each of
classes 20, 27, and 37 had 29 objects left and all the other
classes had 30 objects. After the removal of outliers, the
DUPLEX algorithm was performed on each class to divide it
into 20 training and 10 test objects (9 for classes 20, 27, and
37), which were combined to generate the final training and
prediction sets. Finally, a training set of 740 objects and a test
set of 367 objects were obtained for the training and validation
of classification models.

With the 3 multiclass strategies and 2 binary classifiers, 6
multiclass classification systems were developed and com-
pared, including OVR-PLSDA, OVO-PLSDA, ES-LS-SVM,
OVO- LS-SVM, OVR- LS-SVM, and ES-LS-SVM. Monte
Carlo Cross Validation (MCCV) [41] splits the data re-
peatedly and randomly into calibration and test sets,
avoiding unexpected performance results. *e complexity of
the models is optimized by performing internal k-fold cross-
validation on each available calibration set. To take into
account the predictive performance when applying the
models to new samples, each model is validated with a
separate test set. For PLSDA, MCCV was used to determine
the number of latent variables. *e number of random data
splitting in MCCV was 100 and for each splitting, 80% of the
training data were used for training a PLSDA model and the
other 20% were used for validation. *elargest number of
LVs to be screened was set to be 10, and the model with the
lowest misclassification rate of MCCV (MRMCCV) was
selected using the following equation:

MRMCCV �


100
i�1mi


100
i�1vi

. (2)

Where vi is the number of validation objects and mi is the
number of misclassified objects.

For LS-SVM, two parameters, the kernel width pa-
rameter σ and the regularization parameter c need to be
optimized. σ adjusts the data confidence and the nonlinear
nature of the model. A smaller σ corresponds a narrower
kernel, which can obtain a model with a more complex
nonlinear solution. c balances the tradeoff between
training accuracy and structural risk. In this work, σ and c

were optimized using a grid search by 10-fold cross
validation in the toolbox LS-SVMlab v1.8. *e combi-
nation of (σ, c) in LS-SVM was optimized to achieve the
lowest root mean square error of cross validation
(RMSECV).

*e classification results by different multiclass clas-
sification systems are listed in Table 3. With OVR-PLSDA,
the total classification accuracy of the 37 GUF was 0.776
with the raw data. *e poor prediction performance of
OVR-PLSDA can be attributed to the following aspects: by
examining the binary PLSDA models, most of the 1-VS-36
PLSDA classifiers included 10 LVs (the maximum LVs
number screened). A high model complexity generally
leads to a bad generalization performance. Because the sizes
of two groups are severely unequal (1-VS-36), the esti-
mation of binary PLSDA boundaries tends to have a bias,
which could cause extra uncertainty, although it has been
corrected by the weight centering strategy. Moreover,
because OVR selects the largest response among 37 1-VS-
36 classifiers, the final results will be severely affected by
class overlapping and the accumulation of model errors.
*e OVR-LS-SVM obtained slightly better classification
results with a total classification accuracy of 0.784, which

Table 2: Summary of elemental analysis and stable isotopic ratios for GUF samples from 37 different geographical origins.

Itemsa Lowest of averageb Highest of average Sd of average
Se –c – –
Cd – – –
Fe 45 809 211
Na 319 4615 1123
Sr 0.912 8.228 1.9
Co 0.587 4.729 1.1
K 3050 11330 2091
Al 33 415 116
Cr 0.315 20.8 5.5
Mg 1639 4578 819
Pb 0.039 0.408 0.09
Zn 2.965 22.80 5.1
Ca 857 6623 1270
Cu 3.25 10.77 2.1
Mn 8.56 30.75 6.7
δ13C –34.1 –27.1 1.8
δ15N –4.97 –2.15 0.8
δ18O 10.1 15.3 1.4
‘a’ represents the units of elemental levels and stable isotopic ratios, which are μg/g dry weight and %, respectively. ‘b’ represents the average of the 30 objects
from each geographical origin. ‘c’ represents nondetected.
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can be attributed to the extra model ¨exibility of LS-SVM
compared with linear PLSDA.

For the OVO-PLSDA, the total classi�cation accuracy
was 0.866 and the average LVs number of OVO-PLSDA
submodels was 3.15. Compared with OVR-PLSDA, the
performance of OVO-PLSDA was much less in¨uenced by
the increasing class number. is can be attributed to the
model simplicity of OVO subclassi�ers. Moreover, for the
training data set, because the class sizes of the 37 classes are
equal (20 objects for each class), the estimation of the
classi�cation boundaries of subclassi�ers by OVO-PLSDA
would be more reliable than by OVR-PLSDA. e OVR-
LS-SVM obtained a comparable classi�cation performance
with a total classi�cation accuracy of 0.880, indicating the
multiclass strategy had more important in¨uence on the
�nal results than the selection of binary models for PLSDA
or LS-SVM. In addition, cross-validation was used to verify
whether the models were over-�tted, and the results
showed that the cross-validation of the six models were
78.6%, 86.0%, 92.3%, 77.8%, 87.4%, and 92.0%. ES-PLSDA
and ES-LS-SVM have high cross-validation accuracy, in-
dicating that these two models have better classi�cation
performance in the classi�cation of large class numbers of
licorice.

As shown in Figure 2, for a 37-class problem, the ES
strategy would reduce the number of classes in 3 steps
(from 37 classes to 19 classes and �nally to 10 classes) and
needs 6 models. e total classi�cation accuracy of 37 GUF
was 0.929 and 0.921 for ES-PLSDA and ES-LS-SVM, re-
spectively. In the �rst step, the object was wrongly assigned
to class 35 by OVO-LS-SVM and to class 34 by OVR-LS-

SVM, respectively. In the second step, by reducing the
number of classes from 37 to 19, the object was wrongly
assigned to class 10 by OVO-LS-SVM but correctly clas-
si�ed by OVR-LS-SVM. In the third step, by reducing the
number of classes from 19 to 10, both OVO-LS-SVM and
OVR-LS-SVM could correctly classify the test object. e
results indicate that ES could enhance the prediction ac-
curacy by combining OVO and OVR and sequentially
reducing the number of classes.

To demonstrate how ES achieved the improvement in
classi�cation accuracy over OVR and OVO, the classi�-
cation ¨owchart of a test object (from class 37) by ES-LS-
SVM is demonstrated in Figure 4. In classi�er 1 (C1), 37
classes were performed using OVO-LS-SVM. e result
showed that the object was wrongly assigned to class 35.
For classi�er 2 (C2), the 3 selected classes had not in-
cluded the actual class label (class 37) to develop the 3-
class-OVR models, and the result showed that they had
wrongly classi�ed it to class 34. For classi�er 3 (C3), using
the 19 classes with the highest votes in C1 to perform
OVO-LS-SVM and wrongly classi�ed it as class 34. For
classi�er 4 (C4), the 3 selected classes included the actual
class label (class 37) to develop the 3-class-OVR models
and obtain the correct predictions. Especially, using the
�rst 10 classes with the most votes rather than all the 37
classes, the reduced OVO model correctly recognized the
class label. e results indicate that ES could combine the
advantages of both OVR and OVO and the sequential
reduction of class number as shown in Figure 2 is e�ective
to enhance the prediction accuracy of both submodels and
the �nal model.
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Figure 3: (a) HCA of 37 classes of GUF samples (average) and (b) the �rst two PCs for all the GUF samples.

Table 3: Classi�cation of 37 GUF geographical origins by di�erent multiclass classi�cation systems.

Models Training set errors rate (%) Prediction set accuracy (%) Cross validation accuracy (%)
OVR-PLSDA 79.0 77.6 78.6
OVO-PLSDA 87.7 86.6 86.0
ES-PLSDA 91.5 92.9 92.3
OVR-LS-SVM 62.5 78.4 77.8
OVO-LS-SVM 70.9 88.0 87.4
ES-LS-SVM 86.3 92.1 92.0
‘a’ represents MRMCCV for PLSDA and RMSECV for LS-SVM.
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4. Conclusions

e feasibility of combining elemental �ngerprints, stable
isotopic ratios, and chemometrics for �ne classi�cation of
GUF geographical origins was studied. Fifteen mineral
elements (Al, Cr, Mg, Pb, Zn, Ca, Cu,Mn, Se, Cd, Fe, Na, Sr,
Co, and K) were analyzed by ICP-AES and 3 stable isotopes,
including δ13C, δ15N, and δ18O, were analyzed by isotope
mass spectrometry. ree multiclass strategies, including
OVO, OVR, and ES, were combined with two binary
classi�ers, PLSDA and LS-SVM, to develop LCNC systems.
Compared with OVO and OVR, the ES method could
improve the classi�cation capacity and obtain better
classi�cation results. Especially, the accuracy of ES-PLSDA
and ES-LS-SVM was 0.929 and 0.921, respectively. Che-
mometrics analysis of elemental levels and stable isotopes
can be used as an e�ective method for the tracing of herbal
origins.

Abbreviations

ICP-AES: Inductively coupled plasma atomic emission
spectrometry

IRMS: Isotope-ratio mass spectrometer
OVR: One-versus-rest
OVO: One-versus-one
ES: Ensemble strategy
PLSDA: Partial least squares discriminant analysis
LS-SVM: Least squares support vector machines
GUF: Glycyrrhiza uralensis Fisch
GIB: Glycyrrhiza in¨ata Batalin
GGL: Glycyrrhiza glabra L
TCM: Traditional Chinese medicine
LCNC: Large-class-number-classi�cation
SDE: Stahel-Donoho Estimate
MAD: Median absolute deviation
HCA: Hierarchical clustering analysis

An unknown object (from class 37)
in the test set

Perform OVO (CI) on the 37
classes;
Prediction Results by C1: the
object was assigned to class 35.

Perform OVO (C3) on the 19 classes
with most votes in C1: classes 35, 34
10, 12, 37, 8, 36, 14, 9, 13, 18, 5, 20,
19, 4, 1, 17, 16, and 7;
Prediction Results by C3: the object
was assigned to class 10.

Select the 3 classes with the most votes
in C3: classes 10, 37 and 35;
Perform OVR (C4) on the 3 selected
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Prediction Results by C4: the object
was assigned to class 37.

Perform OVO (C3) on the 10
classes with most votes in C1:
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Prediction Results by C3: the
object was assigned to class 37.

Select the 3 classes with the most votes
in C3: classes 37, 34 and 35;
Perform OVR (C4) on the 3 selected
classes;
Prediction Result by C4: the object
was assigned to class 37.

Select the 3 classes with the most votes
in C1: classes 35, 34 and 10;
Perform OVR (C2) on the 3 selected
classes;
Prediction Results by C2: the object
was assigned to class 34.

round(k/2i-1)=10, stop.
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Figure 4: e ¨owchart of ES-LS-SVM to predict a test object (from class 37).
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ED: Euclidean distance
PCA: Principal component analysis
MCCV: Monte Carlo cross validation
MRMCCV: Misclassification rate of MCCV
LVs: Latent variables
RMSECV: Root mean square error of cross validation.
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