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Moringa oleifera Lam. is a functional tree that is known to produce a variety of metabolites with purported pharmacological activities. It
is frequently called the “miracle tree” due to its utilization in numerous nutraceutical and pharmacological contexts. Tis study was
aimed at studying the chemical space ofM. oleifera leaf extracts throughmolecular networking (MN), a tool that identifesmetabolites by
classifying thembased on theirMS-based fragmentation pattern similarities and signals. In this case, a special emphasis was placed on the
favonoid composition. Te MN unraveled diferent molecular families such as favonoids, carboxylic acids and derivatives, lignin
glycosides, fatty acyls, and macrolactams that are found within the plant. In silico annotation tools such as network annotation
propagation (NAP) and DEREPLICATOR, an unsupervised substructure identifcation tool (MS2LDA), and MolNet enhancer were
also explored to further compliment the classic molecular networking output within the Global Natural Product Social (GNPS) site. In
this study, common favonoids found within Moringa oleifera were further annotated using MS2LDA. Utilizing computational tools
allowed for the discovery of a wide range of structurally diverse favonoidmolecules withinM. oleifera leaf extracts.Te expansion of the
favonoid chemical repertoire in this plant arises from intricate glycosylation modifcations, leading to the creation of structural isomers
that manifest as isobaric ions during mass spectrometry (MS) analyses.

1. Introduction

Moringa oleifera Lam. has been reported to have a broad
range of pharmacological activities such as antimicrobial,
anti-infammatory, hypotensive, antidepressant, antioxi-
dant, antidiabetic, hypoglycemic, and immunomodulatory
properties [1–3]. Te chemical constituents of the stems,
leaves, fowers, pods, and seeds of M. oleifera have been
analyzed to determine the presence of bioactive compounds,
and they were found to contain various secondary metab-
olites such as phenolic acids, sterols, terpenoids, favonoids,

alkaloids, and sugars and anticancerous agents such as
glucosinolates, isothiocyanates, glycoside compounds, and
glycerol-1-9-octadecanoate which have nutritional, phar-
maceutical, and antimicrobial properties [4–8]. However,
studies on this plant have shown that the presence of the
bioactive compounds is dependent on various factors such
as the geographical origin, the harvesting season, and cul-
tivation conditions [9].

Metabolomics is a feld of study that gives a systematic view
of the unique chemical fngerprints of metabolites and their
small changes in a specifc cellular process [10]. Ametabolomics
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study includes sample preparation, analytical measurement,
data analyses, and interpretation [11–13]. Mass spectrometry
(MS) and nuclear magnetic resonance (NMR) techniques are
reported to be the analytical workhorses of metabolomics
[14–16]. A molecular family (MF) is constructed by the
grouping of structurally related molecules that generate similar
fragmentation patterns. To do this on a larger scale, compu-
tational tools such as molecular networking (MN) have been
developed [12, 17–19]. MN is a popular tool in the analysis of
tandem MS- (MS/MS-) based metabolomics data. MN is
fundamentally based on the observation that two structurally
relatedmolecules share fragment ion patternswhen subjected to
MS/MS and aid the elucidation of the structure/identity of
many compounds of untargetedMS [20–22]. MN has led to the
development of the Global Natural Product Social (GNPS)
which is a molecular networking and data-sharing web-based
platform [23, 24].

GNPS is widely used by scientists from various platforms
in the felds of chemistry, microbiology, forensics, and many
more to perform sample classifcation with the objective to
give identity of the content thereof. GNPS facilitates data,
stores knowledge, enables sharing, and promotes re-
producible data analysis [21]. GNPS can be used for mo-
lecular networking and is currently the only public
infrastructure that enables molecular networking [23]. Te
related molecules as depicted in MN can be viewed online at
GNPS or on Cytoscape for analysis [13, 25]. Other tools in
GNPS include network annotation propagation (NAP) and
DEREPLICATOR and an unsupervised substructure iden-
tifcation tool called MS2LDA, all of which are meant to
strengthen metabolite identifcation through MN. Tese
tools are used to complement classic MN output and in-
tegration using MolNetEnhancer within GNPS [26].

In this study, the chemical space of M. oleifera was
studied through computational tools within GNPS. Mo-
lecular networking was used to reveal the molecular families
of this plant, and the unsupervised substructure annotation
tool (MS2LDA) was used to annotate the Mass2Motifs of
some of the favonoids that are found within M. oleifera by
depicting similar fragmentations and neutral losses.

2. Materials and Methods

2.1. Chemicals and Reagents. Methanol (99% CP) was pur-
chased from Associated Chemical Enterprises (Johannesburg,
South Africa). Ultrapure water using a Direct-Q 5UV distiller
(Massachusetts, the United States of America) was used for the
preparation of the 80% methanol solution. Te extraction was
performed on a DIAB MX-RL-Pro dragon shaker. Chro-
matographic separation of the metabolites in the extracts was
done using a reverse phase Shim-pack Velox C18,
2.1× 100mm, 2.7μm (Columbia, USA). Te UPLC was con-
nected to a Shimadzu 9030 LC, qTOF-MS detector (Shimadzu,
Kyoto). Te solvents used for the chromatographic runs were
methanol and formic acid, which were purchased from ROMIL
Pure Chemistry (Cambridge, UK).

2.2. Plant Collection and Sampling. Leaves were collected
from cultivated M. oleifera plants in multiple households
across various villages within the Vhembe District of the
Limpopo Province of South Africa. After being harvested,
these leaves were kept in darkness while being transported to
the University of Venda. Subsequently, the leaves were air-
dried in the absence of light at room temperature and then
fnely ground into a powder using a blender. Tis powdered
form was stored in a dark environment until the metabolite
extraction process.

2.3. Preparation of the Extract. A modifed version of
a previously described extraction method [27] was uti-
lized. In summary, 1 gram of ground leaf powder from
each cultivar was mixed with 10mL of 80% aqueous
methanol (MeOH) and shaken overnight using a dragon
shaker. Te resulting mixture was then centrifuged at
a high speed of 5000 × g for 20minutes at a temperature of
25°C. Te supernatant liquid was transferred into an
Eppendorf tube, fltered through 0.22 µm flters into a vial,
and subjected to UPLC-qTOF-MS analysis. Any
remaining supernatant solutions were stored in
a refrigerator.

2.4. Ultrahigh Performance Liquid Chromatography-
Quadruple Time-of-Flight Mass Spectrometry (UHPLC-
qTOF-MS). To analyze the extracts, the LCMS-9030 qTOF
instrument from Shimadzu Corporation in Kyoto, Japan,
was employed, following the method outlined by Ram-
abulana et al. in 2021 [26]. Liquid chromatography sep-
aration took place on a Shim-pack Velox C18 column
(100mm × 2.1 mm, particle size 2.7 µm) housed in a col-
umn oven maintained at 55°C. A binary mobile phase
gradient consisting of solvent A (0.1% formic acid in
Milli-Q water) and solvent B (methanol with 0.1% formic
acid) was used. An injection volume of 3 µL was applied to
all samples. Te gradient conditions were as follows: 10%
B for 3minutes, 10–60% B over 3–40minutes, 60% B from
40 to 43minutes, and 90% B from 43 to 45minutes
(maintained for 3minutes), returning to initial conditions
from 48 to 50minutes, followed by a 3-minute column re-
equilibration time. Te chromatographic efuents were
analyzed using a qTOF high-defnition mass spectrometer
in a negative electrospray ionization mode. Te in-
strument was calibrated with sodium iodide (NaI), and
both MS1 and MS2 data were simultaneously generated
through a data-dependent acquisition (DDA) mode for all
ions within an m/z range of 100–1000 and an intensity
threshold of 5000. Fragmentation experiments were
conducted using argon as a collision gas, with collision
energy of 30 eV and a spread of 5 eV. Te MS settings were
as follows: interface voltage of −4.0 kV, interface tem-
perature of 300°C, nebulization and dry gas fow rate of
3 L/min, heat block temperature of 400°C, DL temperature
of 280°C, and detector voltage of 1.8 kV.
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2.5. Molecular Networking and Metabolite Annotation.
Te creation of a molecular network was performed using the
GNPS website (https://gnps.ucsd.edu) through an online
workfow (https://ccms-ucsd.github.io/GNPSDocumentation/),
accessed on August 17, 2021. Te data underwent fltering by
removingMS/MS fragment ions within±17Da of the precursor
m/z and selecting only the top 6 fragment ions in the ±50Da
window across the spectrum.Te precursor ion mass tolerance
was set at 2.0Da, and aMS/MS fragment ion tolerance of 0.5Da
was applied.Te resulting network was fltered to have a cosine
score above 0.7 and more than 6 matched peaks for the edges,
while nodes were connected if they appeared in each other’s
respective top 10 most similar nodes. Molecular families were
limited to a size of 100, and low-scoring edges were eliminated
until the size was below this threshold. Te network spectra
were then searched against GNPS’ spectral libraries using the
same fltering criteria. Finally, the visualization of the molecular
network was carried out using Cytoscape software. Empirical
formulaewere generated from accuratemass and fragmentation
patterns obtained from the MS2 data to annotate all matched
nodes and some unmatched nodes of metabolites. Tese an-
notations were compared to dereplication databases such as the
KNApSAcK chemical database. Substructure annotation was
achieved using MS2LDA through the ms2lda.org web interface
within GNPS. Structural searches were performed according to
the protocol recently outlined by Moyo et al. [28].

3. Results and Discussion

MS/MS spectra of six methanolic extracts from theM. oleifera
cultivars were compared to fnd similarities in the fragmen-
tation patterns (i.e., same fragment ions or similar neutral
losses) of the metabolites. Metabolites that are structurally
related and have similar gas phase chemistries were grouped
intomolecular families based on a cosine score≥0.7 [26]. Using
molecular networking, the MS/MS spectra were organized into
565 nodes, with 338 clustered into 38 diferent molecular
families (with a minimum of two nodes connected by an edge)
based on GNPS spectral matching. A total of 227 nodes were
not clustered into a molecular family and were represented as
individual nodes at the bottom of the network (Figure 1).

Previous studies have shown the presence of structurally
diverse favonoid molecules in the plant extracts. However,
most of the work conducted in this study was through
classical means of chemical identifcation where obtained
mass spectrometry (MS) signals were compared with what is
already known in the literature. Tis approach, however, has
negative connotation owing to the limitation on information
of some uncharacterized metabolites. A molecular network
is a computational method aimed at metabolite identifca-
tion by classifying metabolites based on their MS-based
fragmentation pattern similarities and signals.

3.1. Exploration of the Chemical Space of Moringa oleifera.
Moringa oleifera is well known for its nutraceutical and
pharmacological metabolic profles which are characterized
by the presence of favonoids, glucosinolates, and chloro-
genic acids. In this study, the metabolic profle ofM. oleifera

was studied with the help of molecular networking from the
GNPS website. MolNetEnhancer (Figure 2) represents the
metabolomes of this plant that were observed in this study.
Te node annotations of MolNetEnhancer were based on
MS2LDA, network annotation propagation (NAP), and
DEREPLICATOR outputs. It was observed that this plant
contains 16 diferent classes of metabolites including car-
boxylic acids and derivatives, fatty acyls, favonoids, glyc-
erophospholipids, lignin glycosides, macrolactams,
macrolides, naphthacenes, organooxygen compounds, pre-
nol lipids, purine nucleotides, and tetrapyrroles and de-
rivatives. A study by the authors in [29] revealed the
presence of hydroxyl fatty acids, phenolic acids, favonoids,
intact glucosinolates, sulfolipids, and phenolic acid de-
rivatives’ metabolite classes.

Flavonoids have been reported to be the predominant
group of metabolites in M. oleifera leaf extracts with
kaempferol and quercetin derivatives being the most pre-
dominant group [30]. Flavonoids are naturally occurring
polyphenols that accumulate in the edible parts of plants,
more particular in fruits and vegetables [31]. Flavonoids can
further be subdivided into favones, favanols, favanones,
favonols, favanonols, isofavones, and anthocyanins. In this
study, much attention was given to favones and favonols.
Flavones and favonols have antioxidant efects and are
essential for protecting plants from UV radiation [32].
Quercetin and kaempferol (Figure 1(a)), among others, are
abundant dietary favonols found in fruits and vegetables.
Flavonols have various health benefts which include car-
diovascular and antioxidant properties. Luteolin and api-
genin (Figure 1(b)) are the main favones that are found in
fruits and vegetables and have a wide range of biological
efects such as anticancer, antioxidant, and anti-
infammation properties [33–35].

In this study, a total of 52 favonoids were detected.
Kaempferol derivatives are known to have a major fragment
ion at m/z 285, and quercetin derivatives are known to have
a major fragment ion at m/z 301, both indicating the
aglycone moiety thereof. Another common favonoid in
M. oleifera leaves is isorhamnetin, and derivatives of this
favonoid have a major fragment ion at m/z 314, again in-
dicating the aglycone moiety. Te detailed mass information
of selected favonoids that were annotated in this study is
shown in Table 1.

Tere are other various tools that are available in GNPS
that compliment molecular networking. Such tools are in
silico metabolite annotation tools such as network annota-
tion propagation (NAP) and dereplication. Tese tools
perform in silico fragmentation of known structures and
then search against chemical databases. Within the GNPS,
there is another valuable resource known as mass
spectrometry-mass spectrometry latent Dirichlet allocation
(MS2LDA). MS2LDA is an unsupervised computational
technique that reveals inherent substructures within com-
pounds by analyzing intricate mass spectrometry (MS) data.
Tis algorithm operates on an unsupervised basis, auto-
matically detecting patterns and substructures within the
complex MS data. Tis capability allows for the identifca-
tion of shared substructures or fragmentation patterns
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among compounds. MS2LDA decomposes each molecule
into one or moreMass2Motifs which allow for more efcient
molecular grouping, searching, and exploration [36].
Mass2Motifs consist of similar fragments and neutral losses
[37, 38]. Te structural annotation of the Mass2Motifs is
straightforward and less complex because Mass2Motifs
represent smaller substructures [39]. Figure 3 represents the
metabolite annotation using MolNetEnhancer and by
MS2LDA of favonoids found in M. oleifera leaves. Te
colored parts are representative of the favonoids that make
up the Mass2Motifs. Quercetin, kaempferol, and iso-
rhamnetin are the major favonols that are represented in
Figure 3. It is observed that some of these favonols share the
same Mass2Motif owing to their similar fragments and
neutral losses. For example, the favonoids with precursor
ion (M-H)− at m/z 533.088 and at m/z 592.785 share the
same Mass2Motif because they share similar fragments due
to the similar aglycone structure.

3.2. Quercetin Flavonoids. Quercetin is a favonoid that is
abundantly found in fruits and vegetables and can be used as
a nutritional supplement. Tis compound has been reported
to prevent diseases such as tumors, lung and cardiovascular
diseases, and some forms of cancer [40–42]. Figure 4 shows
the fragmentation spectra of four quercetin-related favo-
noids as annotated by rhamn_motif_86.m2m andmotif_447
mass2motifs onMS2LDA approach. Rhamn_motif_86.m2m
(a quercetin-related motif ) indicated the presence of
a quercetin aglycone with diagnostic fragments at m/z 301,
300, 255, and 179 and a neutral loss of 106 amu. Motif_447
also indicated the presence of a quercetin aglycone with
fragments at m/z 301, 300, 271, and 255 and neutral loss of
44 amu. Quercetin favonoids are characterized by

a deprotonated quercetin aglycone fragment atm/z 300/301,
and other characteristic product ions of m/z 271, 255, 179,
and 151 further confrm the identity of the quercetin
aglycone [43]. Compound 1 gave a precursor ion (M-H)− at
m/z 609.197 and a fragmentation ion at m/z 300.028 due to
the loss of the rhamnose and glucose sugars was seen as
a base peak. Terefore, this compound was identifed as
quercetin rutinoside [44]. Compound 2 gave a precursor ion
(M-H)− at m/z 505.098 and showed a fragment ion at m/z
445.078 due to the loss of the acetyl moiety (60 amu) and
a further loss of the hexosyl moiety (162 amu) resulting in
the fragment atm/z 300. Tis compound was thus identifed
as quercetin acetyl hexose [45]. Compound 3, which was
identifed as quercetin malonyl hexose, gave a precursor ion
(M-H)− atm/z 549.089 showing a fragment atm/z 505 due to
the loss of an acetyl (44 amu) and another fragment at m/z
463 due to the loss of the malonyl moiety (86 amu). A further
loss of the hexosyl moiety (162 amu) led to the fragment ion
at m/z 300 [46]. Compounds 2 and 3 share the same
Mass2Motif due to the similar neutral losses which are
incurred due to the loss of the hexose moiety. Compound 4
gave a precursor ion (M-H)− at m/z 463.087 and a frag-
mentation ion at m/z 300.028 due to the loss of hexose. Tis
compound was identifed as quercetin hexose [47].

3.3. Kaempferol Flavonoids. Kaempferol is a favonoid that
is found in various plant parts such as seeds, leaves, fruits,
fowers, and even vegetables. It has been referred to as
a nutraceutical, owing to its medicinal and nutritional
benefts [48]. For instance, kaempferol and its glycosides
have been reported to have cardioprotective, neuro-
protective, anti-infammatory, antioxidant, and antican-
cer activities [49, 50]. Figure 5 shows the fragmentation

Apigenin: R1 = H; R2 = OH
Luteolin: R1 = OH; R2 = OH
Chrysin: R1 = H; R2 = H

Quercetin: R1 = H; R2 = OH
Kaempferol: R1 = H; R2 = H
Isorhamnetin: R1 = OCH3; R2 = H

O
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Figure 1: Molecular network ofMoringa oleifera Lam. leaf extracts as analyzed by liquid chromatography-tandemmass spectrometry using
electrospray ionization in negative mode (center), with two diferent kinds of favonoids highlighted: (a) favonols and (b) favones.
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spectra of fve diferent kaempferol-related favonoids as
annotated by rhamn_motif_130.m2m (kaempferol-
related motif ) and motif_622, and motif_551 mass2motifs
on MS2LDA approach. Rhamn_motif_130.m2m is
a characteristic of kaempferol with diagnostic fragments at
m/z 285, 284, 255, and 227. Motif_622 also represents
kaempferol with diagnostic fragments atm/z 285, 284, and
255 and a neutral loss of 68 amu. Motif_551 was char-
acterized by diagnostic fragments at m/z 283 and 110 and
neutral losses of 162, 167, 182, 193, and 194 amu.
Kaempferol favonoids are characterized by a deproto-
nated kaempferol aglycone fragment at m/z 284/285, and

other characteristic product ions at m/z 255 and 227
further confrm the identifcation of the kaempferol
aglycone [43]. Compound 5 gave a (M-H)− ion at m/z
533.093 while its MS/MS fragmentation gave a base peak
at m/z 285.043, due to the loss of the malonyl hexose
moiety, and was thus identifed as kaempferol malonyl
hexose [51]. Compound 6 gave a (M-H)− ion at m/z
592.785, while its MS/MS fragmentation gave a base peak
at m/z 285.043 due to the loss of the rutinoside sugar and
was identifed as kaempferol rutinoside [52]. Compound 7
was identifed as kaempferol diglucoside with a precursor
ion at m/z 609.146 (M-H)− with a fragmentation peak at
m/z 285.043. Tis compound also has fragments at m/z
446.089 and 447.098 due to the loss of the two hexose
moieties (162 + 162 amu) [53]. Compound 8, which was
identifed as kaempferol hexose, has a precursor ion (M-
H)− at m/z 447.093 with a fragmentation ion at m/z
284.033 which is due to the loss of the hexose sugar
(162 amu) [54]. Compound 9 gave a precursor ion (M-H)−

at m/z 489.114 with a fragmentation ion at m/z 284.033
due to the loss of an acetyl hexose moiety. Tis compound
was thus identifed as kaempferol acetyl hexose [30].
Compounds 5 and 6 were annotated by motif_622,
compound 7 was annotated by motif_551, and compounds
8 and 9 were annotated by rhamn_motif_130.m2m, as
shown in Figure 3.

3.4. Isorhamnetin favonoids. Isorhamnetin is commonly
present in the leaves, fowers, and fruits of many plants and
also forms part of a daily diet. Tis favonoid hosts various
pharmacological properties such as cardiovascular pro-
tection, antibacterial, antiviral, antioxidation, anti-
infammation, and antitumor properties [55–57]. Fig-
ure 6 shows the fragmentation spectra of 4 isorhamnetin-
related favonoids as annotated by rhamn_motif_179.m2m
(rhamnetin (�7-methylquercetin) motif ) and motif_639,
and motif_544 mass2motifs on MS2LDA approach.
Rhamn_motif_179.m2m represents 7-methylquercetin
with diagnostic fragments at m/z 315, 314, 300, and 299
and a neutral loss of 32 amu. Motif_639 represents iso-
rhamnetin with diagnostic fragments at m/z 559, 519, 477,
315, and 314 and neutral losses of 62, 102, and 144 amu.
Motif_544 also represents isorhamnetin with diagnostic
fragment ions at m/z 315, 314, 299, 285, 271, 257, and 243
with neutral losses of 162, 163, 178, and 192 amu. Iso-
rhamnetin favonoids are characterized by a deprotonated
isorhamnetin aglycone fragment at m/z 314/315, and other
characteristic product ions at m/z 300, 271, 255, and 227
further confrm the identifcation of the isorhamnetin
aglycone [43]. Compound 10 gave a precursor ion (M-H)−
at m/z 623.161 with a fragmentation ion at m/z 315.053
indicating the loss of a rutinoside sugar. Tis compound
was thus identifed as isorhamnetin rutinoside [58].
Compound 11, which was identifed as isorhamnetin
hydroxymethylglutaroyl hexose, gave a precursor ion (M-
H)− atm/z 621.146 and a fragmentation ion atm/z 315.053.
Tis compound also gave fragments at m/z 559 and m/z
519.118 which were due to the loss of hexosy and

Benzene and
substituted derivatives
Carboxylic acids and
derivatives
Diarylheptanoids 
Diazines
Fatty Acyls
Flavonoids 
Glycerophospholipids 

Lignan glycosides
Organooxygen compounds
Prenol lipids
Purine nucleotides
Steroids and steroid
derivatives
Tetrapyrroles and derivatives
No matches

Figure 2: An enhanced molecular network in which nodes are
highlighted based on their chemical superclass based on MS2LDA,
network annotation propagation (NAP), and DEREPLICATOR
outputs.
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Figure 3: Metabolite annotation using MolNetEnhancer by MS2LDA where the colored parts represent the favonoids that make up the
Mass2Motif.
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hydroxymethylglutaroyl moieties [6]. Another fragment
was observed at m/z 477.103 which was due to the loss of
the hydroxymethylglutaroyl moiety (144 amu). Compound
12 gave a precursor ion (M-H)− at m/z 477.079 with

a fragmentation ion at m/z 314.043 due to the loss of the
hexose sugar (162 amu).Tis compound was thus identifed
as isorhamnetin hexose [59]. Compound 13 gave a pre-
cursor ion (M-H)− at m/z 519.114 and a fragmentation ion
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Figure 5: Fragmentation spectra of some kaempferol-related favonoids in M. oleifera as annotated by MS2LDA.
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at m/z 314.043 due to the loss of the acetyl hexose moiety.
Tis compound was identifed as isorhamnetin acetyl
hexose (204 amu) [60].

3.5. Apigenin, Luteolin, and Chrysin Flavonoids. Apigenin is
a natural favonoid found in a daily diet and has gained
attention due to its low toxicity and various nutritional and
biological properties. Because of the medicinal and nutri-
tional properties, it is thus termed a nutraceutical. Tis
favonoid has antioxidant, antimicrobial, anti-infammatory,
and anticarcinogenic properties [61–63]. Chrysin is also
a natural favonoid that is found in many plants and bee
products. Tis favonoid has been reported to have a variety
of biological properties such as anti-infammation, anti-
oxidation, anticancer, antibacterial, antidiabetic, and neu-
roprotective efects [64–66]. Luteolin is a favonoid that is
found in medicinal plants, fruits, and vegetables. Plants that
are rich in this favonoid are often used for the treatment of
various diseases such as infammatory disorders, hyper-
tension, and cancer [67, 68].

Figure 7 shows the fragmentation spectra of an apigenin-
related favonoid and a chrysin-related favonoid as anno-
tated by motif_535 and motif_538 mass2motifs onMS2LDA
approach. Motif_538 is characterized by fragment ions 503,
473, 413, 395, 383, and 353 and neutral losses of 90, 120, 180,
and 198 amu. Motif_535 is characterized by fragments atm/
z 337, 367, 379, 457, and 497 and neutral losses of 90, 120,
and 198 amu. Compound 14 gave a precursor ion (M-H)− at
m/z 593.083. Te MS/MS spectrum showed product ions at
m/z 473.108 (M-H-120)− and at m/z 353 (M-H-210)−
resulting from sugar fragmentations. Tis compound was
identifed as apigenin-6,8-C-dihexose (vicenin-2) [6].
Compound 15 gave a precursor ion (M-H)− at m/z 577.156.
Te product ions observed in the MS/MS spectrum are due
to the sugar fragmentations. Tis compound was thus
identifed as chrysin-6,8-C-diglucoside [69, 70]. Tis is the
frst time that this favonoid is reported in M. oleifera.

Figure 8 shows the fragmentation spectra of an apigenin-
related favonoid and a luteolin-related favonoid as anno-
tated by motif_570 mass2motifs on MS2LDA approach.
Motif_570 is characterized by fragment ions atm/z 575, 357,
341, 339, 327, 323, 311, 299, 283, 215, and 197 and neutral
losses of 18, 36, 90, 108, 120, 148, and 162 amu. Compound
16 gave a precursor ion (M-H)− atm/z 431.098. It gave a base
peak fragmentation ion at m/z 311.058. Further fragments
were observed atm/z 341.068, atm/z 323.053 due to the loss
of H2O, and at m/z 283.063 due to the loss of a CO moiety.
Tis compound was thus identifed as apigenin-8-C-hexose
(vitexin) [71]. Compound 17 gave a precursor ion (M-H)− at
m/z 447.093. Te fragment ion observed at m/z 285.043 (M-

H-162)− was due to the fragmentation of the hexose sugar.
Tis compound was thus identifed as luteolin-8-C-hexose
(orientin) [72].

3.6. Glycoisomerization of Flavonoids. Moringa oleifera has
been reported to undergo glycosylation patterns in order to
diversify its favonoids. Moringa oleifera attaches diferent
types of sugars to its favonoid aglycones [73]. For example,
quercetin is observed to attach diferent types of sugars to its
aglycone structure, as observed in Figure 3. Furthermore, the
glycosylation of favonoids can undergo further chemical
modifcation such as isomerization, acetylation, malonyla-
tion, and acylation. Tese modifcations, however, bring
about an analytical challenge because of the isomers are
identifed as structural artefacts. Some of the favonoids
undergo glycosylation through disaccharide sugar attach-
ments [74]. Coelution of diferent favonoids is often en-
countered in LC, which makes it difcult to characterize the
favonoid composition. However, MS has a high sensitivity
by making use of multiple reaction monitoring (MRM)
which helps to improve the selectivity of the favonoids [75].

Compounds that have similar molecular formulae but
diferent chemical arrangements are considered to be iso-
meric. For example, compounds kaempferol acetyl hexose
(m/z 489), quercetin malonyl hexose (m/z 549), and iso-
rhamnetin hydroxymethylglutaroyl hexose (m/z 621) with
molecular formulae C23H22O11, C23H22O11, and C28H28O11,
respectively, are considered to be isomeric (Table 2). Tese
isomers have a similar molecular formula and molecular
mass and are also observed to have similar fragmentation
patterns. However, the chemical arrangement of these
compounds difers, which could be due to a slight shift in the
position of the glycosidic bond between the organic acid and
the sugar that is conjugated to the aglycone structure as
suggested by the authors in [26]. It, however, still remains
a challenge to distinguish these molecules. Tere is, there-
fore, a need to develop advanced analytical techniques so as
to be able to distinguish between molecules of such a nature.

Isobaric molecules were also observed in this study.
Isobaric molecules are molecules with the same mass but are
of diferent compound composition. In this study, isobaric
favonoids were observed to have similar precursor ion mass
at m/z 609 and 447 and molecular formula C27H30O16 and
C21H20O11, respectively. However, the compound compo-
sition difers. Tis observation thus makes these compounds
isobaric. Te favonoids with molecular formula C27H30O16
and precursor ion massm/z 609 were identifed as quercetin
rutinoside and kaempferol diglucoside, and those with
molecular formula C21H20O11 and precursor ion mass m/z
447 were identifed as kaempferol hexose and luteolin-8-C-

Table 3: Isobaric favonoids identifed in Moringa oleifera methanolic leaf extracts.

(M-H)− (m/z) Molecular formula MS/MS fragmentation Flavonoid name
609.197 C27H30O16 343.048; 301.038; 300.028; 271.098; 255.028; 178.998; 151.003 Quercetin rutinoside
609.146 C27H30O16 489.103; 447.098; 446.088; 327.048; 285.043; 283.023; 255.028 Kaempferol diglucoside
447.093 C21H20O11 285.043; 284.033; 256.038; 255.028; 227.033 Kaempferol hexose
447.093 C21H20O11 357.063; 339.048; 327.048; 299.053; 297.043; 285.043 Luteolin-8-C-hexose
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hexose (orientin). Tese compounds were difcult to tell
them apart using only an LC-MS spectrum. However, upon
the untargeted LC-MS/MS approach for metabolite pro-
fling, the diference in the fragmentation spectra was useful
in the identifcation of these favonoids and was thus easy to
distinguish them, as can be seen in Table 3 [76].

4. Conclusions

Te use of computational tools such as molecular net-
working highlighted the diferent molecular families that are
found within M. oleifera and thus bringing insight into the
chemical space of the plant. Unsupervised substructure
annotation (MS2LDA) was useful in the annotation of
Mass2Motifs of some of the favonoids found within
M. oleifera. An enhanced molecular network unraveled the
diferent chemical classes found in this plant and thus
revealed the metabolome of M. oleifera. Seventeen favo-
noids (favonols and favones) were successfully annotated
by MS2LDA in this study and confrm what has been
previously reported in the literature. MS2LDA was also
useful in the annotation of chrysin-6,8-C-diglucoside which
is reported inMO leaves for the frst time through this study.

In the existing literature, it has been documented that
favonoids inM. oleifera undergo glycosylation using various
sugars as a mechanism to expand their chemical diversity.
Tis glycosylation process has led to the detection of iso-
meric and isobaric favonoids in our current study. Te
untargeted LC-MS/MS approach in combination with
computational metabolomics tools such as molecular net-
working proved valuable in identifying isobaric molecules
due to their distinct fragmentation patterns, thereby suc-
cessfully accomplishing their identifcation. However,
a challenge persists when it comes to identify isomeric
favonoids, primarily because traditional MS techniques
struggle to diferentiate them efectively. Consequently, the
future application of alternative MS analyzers, such as
orbitraps and ion mobility, will become essential in
addressing this challenge, especially when hyphenated to
other computational metabolomic tools such as a feature-
based molecular networking.
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