

SUPPLEMENTARY FIGURE LEGENDS

Supplemental Fig. 1 Specificity analysis of the DAF-FM DA dye in vivo. Cells pre-treated with (A) hydrogen peroxide or (B) paraquat (superoxide anions) do not show increased NOrelated signals. (C) and (D) Continued treatment of hydrogen peroxide and paraquat also do not increase NO-related signals. Conversely, cells grown under CR show significant increase in NO-related signals. Together these data suggest DAF-FM DA is unlikely to cross-react with hydrogen peroxide or superoxide anions or their oxidation products in vivo at the concentrations we tested. Activation of DAF-FA DA in vivo normally requires non-specific intracellular esterases. Pre-activated DAF-FA DA is therefore used in these experiments (C and D) to measure the background signals resulting from in vitro ROS and DAF-FA interactions. Results show NO signals in cells treated with indicated conditions with the background signals subtracted. It is noteworthy that CR still shows increased NO signals using pre-activated dye (C and D) indicating CR does not increase false-positive NO signals through activating intracellular esterases. DAF-FM (the active form of DAF-FM DA) is obtained by alkali hydrolysis of DAF-FM-DA. In brief, 5 µL of 5 mM DAF-FM DA solution in DMSO was added with 5 μ L of methanol and 10 μ L of 2 M NaOH and incubated at room temperature for 1 h. To the mixture, 20 μ L of 2 M sodium phosphate buffer, pH 7, and 10 μ L of 2 M HCL were added to obtain DAF-FM. DAF-FM was kept on ice and used on the day of preparation. P values were calculated using the Student's t test. One representative set of three independent experiments, each conducted in quadruplicate, is shown. Error bars denote standard deviations.

Deletions	N	O^{a}	Growth ^b	Resistance ^c	CLS ^d	RLS ^e	Biological function of the gene
	Ave	Std	(%)	to GSNO (%)			product
tor1∆	1.60	0.08	93	207	Eĸ	Eĸ	PIK-related protein kinase and rapamycin target
fmp37∆	1 48	0 17	85	175			Biological process unknown
sto1	1.47	0.18	77	175			Nuclear mRNA splicing, via spliceosome
smi1∆	1.47	0.28	83	168			Cell Wall organization and biogenesis Plasma membrane ducose
rat2∆	1 47	0 27	103	155			recentor
ctf8A	1 46	0.24	76	155			Sister chromatid cohesion
rpl13a∆	1.46	0.12	79	173		ER	Protein component of the large (60S) ribosomal subunit
cch1 Δ	1.46	0.22	78	161			Calcium ion transport
fks1∆	1.42	0.06	82	169			Cell wall organization and biogenesis
yml007c- a∆	1.38	0.08	100	154			Biological_process unknown
ylr235c∆	1.38	0.18	77	152			Partially overlaps the verified gene TOP3
vps5 Δ	1.35	0.14	82	154			Protein-Golgi retention
wsc3∆	1.33	0.20	96	152			Cell wall organization and biogenesis
lst4 Δ	1.33	0.17	100	155			Vesicle-mediated transport
cpr7 Δ	1.30	0.10	80	209			Peptidyl-prolyl cis-trans isomerase
rps19b∆	4.60	2.60	53	177			Protein component of the small (40S) ribosomal subunit.
gas1∆	3.90	1.30	55	195			Beta-1,3-glucanosyltransferase, required for cell wall assembly
ykl118w Δ	3.70	0.60	54	168			Overlaps the verified ORF PGD1
arv1 Δ	3.30	0.80	41	176			Intracellular sterol distribution
tpd3∆	2.90	0.50	28	158			Regulatory subunit A of the heterotrimeric protein
spt21 Δ	2.80	0.50	62	168			Regulation of transcription from Pol II promoter
nup 84Δ	2.70	0.30	56	154			mRNA-nucleus export
nsr1∆	2.60	1.00	45	177			Pre-rRNA processing and ribosome biogenesis
rpl13b∆	2.60	0.30	58	141			Protein component of the large (60S) ribosomal subunit
ykl118w∆	2.60	0.60	48	155			Overlaps the verified gene VPH2
hhf2∆	2.60	0.60	64	155	E(0.02)		One of two identical histone H4 proteins; involved in chromatin assembly
erg6∆ vph2∆	2.50 2.40	0.40 0.70	61 48	178 146			Ergosterol biosynthesis Assembly of the V-ATPase:

Supplementary Table 1 List of mutants with increased NO levels

tom5∆ Ism6∆	2.40 2.30	0.40 0.30	62 63	135 165		Import of proteins into mitochondria Nuclear mRNA splicing, via
pgd1 Δ	2.30	0.50	56	163		Subunit of the RNA polymerase
htl1∆ shp1∆	2.20 2.20	0.80 0.90	69 38	162 165		Regulation of cell cycle Interacts with ubiquitylated proteins and is required for degradation of a ubiquitylated model substrate.
yel059w∆ ssn2∆	2.20 2.20	0.30 0.60	66 57	190 163	E ^R	Biological_process unknown Negative regulation of transcription from Pol II promoter
bud22∆ vma6∆	2.20 2.10	0.50 0.40	43 58	187 133		Bud site selection Subunit d of the five-subunit V0 integral membrane domain of vacuolar H+-ATPase. Vacuolar acidification
sec22∆ tsr2∆ ngl1∆ mms22∆	2.10 2.10 2.10 2.00	0.10 0.70 0.50	48 41 108	159 169 141		ER to Golgi transport Processing of pre-rRNA Biological_process unknown
ninis22∆ sec28∆ qcr7∆	2.00 2.00 2.00	0.70 0.50 0.50	59 73	166 129		ER to Golgi transport Aerobic respiration
ccr4∆	2.00	0.30	46	146		Regulation of transcription from Pol II promoter
adh3∆	2.00	0.30	84 57	148		Mitochondrial alcohol dehydrogenase isozyme III.
msn5	2.00	0.20	57 08	138		mRNA export from the nucleus
cup5∆	1.90	0.20	36	149		Proteolipid subunit of the vacuolar H(+)-ATPase V0 sector
vps64∆	1.90	0.40	59	123		Cytoplasmic protein required for cytoplasm to vacuole targeting of proteins.
ctk3∆	1.90	0.50	17	161		Gamma subunit of C-terminal domain kinase I. Affect both transcription and pre-mRNA 3' end processing.
mct1∆	1.90	0.40	78	127		Predicted malonyl-CoA:ACP transferase, putative component of a type-II mitochondrial fatty acid synthase that produces intermediates for phospholipid remodeling.
rpl36b∆	1.90	0.30	45	193		Protein component of the large (60S) ribosomal subunit
ynr068c∆ ygr160w∆	1.80 1.80	0.20 0.10	71 47	147 194		Biological_process unknown Biological_process unknown
yjl046w∆ def1∆	1.80 1.81	0.60 0.50	128 46	106 176		Biological_process unknown Ubiquitin-dependent protein catabolism

sum1∆ rps16b∆	1.80 1.79	0.47 0.02	101 64	144 164	Chromatin silencing at telomere Protein component of the small (40S) ribosomal subunit
efg1 Δ	1.77	0.35	59	181	Essential protein required for maturation of 18S rRNA
lea1∆	1.76	0.69	38	159	Nuclear mRNA splicing, via spliceosome
idh1∆	1.73	0.20	51	203	Subunit of mitochondrial NAD(+)-dependent isocitrate dehydrogenase, which catalyzes the oxidation of isocitrate to alpha-ketoglutarate in the TCA cycle
hfa1∆	1.72	0.66	135	99	Mitochondrial acetyl-coenzyme A carboxylas
gcn20∆	1.72	0.35	45	157	Proposed to stimulate Gcn2p activation by an uncharged tRNA
erg3∆	1.71	0.36	58	166	Ergosterol biosynthesis
hmg1∆	1.70	0.2	84	175	HMG-CoA reductase, catalyzes the rate-limiting step in sterol biosynthesis One-carbon compound
acv3∆	1.70	0.39	83	130	metabolism
ydj1∆	1.70	0.30	72	153	Protein chaperone involved in regulation of the HSP90 and HSP70 functions
rps28b Δ	1.68	0.65	73	157	Protein component of the small (40S) ribosomal subunit
ald4∆	1.68	0.06	129	120	Mitochondrial aldehyde dehydrogenase, required for growth on ethanol and conversion of acetaldehyde to acetate.
rps10a∆	1.67	0.31	63	141	Protein component of the small (40S) ribosomal subunit
med2 Δ	1.67	0.34	53	164	Subunit of the RNA polymerase II mediator complex
rad50 Δ	1.64	0.31	69	145	Double-strand break repair via nonhomologous end-joining
$num1\Delta$	1.62	0.23	45	168	Nuclear migration
sqf73∆	1.62	0.34	71	124	Histone acetylation
swd1∆	1.61	0.41	105	134	Chromatin silencing at telomere
sac1∆	1.61	0.30	66	176	Involved in protein trafficking and processing, secretion, and cell wall maintenance
ldb18∧	1.57	0.33	37	159	biological process unknown
arp1 Δ	1.57	0.12	34	149	Actin-related protein of the dynactin complex
rps16a $∆$	1.56	0.27	53	181	Protein component of the small (40S) ribosomal subunit
sli15∆	1.56	0.07	82	146	Subunit of the IpI1p-Sli15p-Bir1p complex that regulates kinetochore-microtubule attachments

ypl205c∆	1.55	0.10	64	177		Deletion of locus affects
snf6 Δ	1.55	0.23	70	140		Subunit of the SWI/SNF
est3∆	1.53	0.13	62	165		Telomerase-dependent telomere
rps1b Δ	1.52	0.03	58	191		Protein component of the small (40S) ribosomal subunit
rps27b Δ	1.52	0.08	67	131		Protein component of the small (40S) ribosomal subunit
rpl37a∆	1.52	0.12	70	151		Protein component of the large (60S) ribosomal subunit
arc18 Δ	1.51	0.34	91	140		Actin filament organization
scs7∆	1.51	0.13	85	131		Sphingolipid alpha-hydroxylase,
						hydroxylation of sphingolipid-
						associated very long chain fatty acids
ydr149c∆	1.51	0.00	43	175		Overlap with NUM1
erg24∆ asc1∆	1.50 1.49	0.08	65 57	169 169		Ergosterol biosynthesis
	1.10	0.02	01	100		(40S) ribosomal subunit
$rmr1\Delta$	1.49	0.22	50	173		Protein required for meiotic
						conversion
she3 Δ	1.48	0.21	82	113		mRNA localization, intracellular
ynl311c∆	1.48	0.11	56	195		Ubiquitin-dependent protein catabolism
gcn3∆	1.45	0.07	72	113		Translational initiation
bem2∆	1.43	0.23	72	156		Control of cytoskeleton
						organization and cellular morphogenesis
vma9∆	1.43	0.31	38	142		Vacuolar H+ ATPase subunit e
						of the V-ATPase V0 subcomplex
vam10∆ pkh2∆	1.42	0.12	77 125	146	E(0.0035)	Vacuole fusion (non-autophagic)
sac6∆	1.41	0.20	57	154	L(0.0033)	Organization and maintenance
						of the actin cytoskeleton
rlf2∆	1.41	0.22	100	142		Nucleosome assembly
vamr∆	1.40	0.20	43	179		SNARE complex involved in
						vacuolar morphogenesis
bub3∆	1.40	0.22	54	141		Kinetochore checkpoint WD40
cdh1 Δ	1.39	0.16	65	150		Cell-cycle regulated activator of
						the anaphase-promoting
vdr199w∧	1 39	0 10	91	143		complex/cyclosome
lst7∆	1.39	0.06	91	130	Eĸ	Vesicle-mediated transport
dbf2 Δ	1.37	0.27	83	133		Ser/Thr kinase involved in
						transcription and stress
						ER-associated protein
bst1 Δ	1.36	0.09	72	159	ER	catabolism

rfm1∆	1.34	0.10	91	147			DNA-binding protein required for vegetative repression of middle sporulation genes
top3∆	1.34	0.15	72	146			DNA Topoisomerase III, involved in telomere stability and regulation of mitotic recombination.
yhi9∆ ybr196c- a∆	1.34 1.34	0.29 0.15	70 62	170 161			Biological_process unknown Biological_process unknown
vps8 ∆	1.34	0.15	69	154			Membrane-associated protein that interacts with Vps21p to facilitate soluble vacuolar protein localization
isc1∆ plc1∆	1.33 1.33	0.13 0.16	34 38	166 164			Salinity response Phospholipase C, hydrolyzes phosphatidylinositol 4,5- biphosphate (PIP2) to generate the signaling molecules inositol 1.4.5-triphosphate (IP3)
vid21∆	1.32	0.11	59	137			Component of the NuA4 histone acetyltransferase complex
ymr052c- a∆	1.31	0.07	56	163			Biological_process unknown
rrp8∆	1.31	0.10	66	165		ER	Nucleolar protein involved in rRNA processing
ssd1∆	1.30	0.01	99	142			Protein with a role in maintenance of cellular integrity, interacts with components of the TOR pathway
rps24a∆	1.30	0.19	64	184			Protein component of the small (40S) ribosomal subunit
yml013c- a∆	1.29	0.12	82	139			Biological_process unknown
she4∆	1.29	0.05	74	126			Protein containing a UCS (UNC- 45/CRO1/SHE4) domain, binds to myosin motor domains to regulate myosin function
ybr174c∆ vps9∆	1.28 1.27	0.09 0.07	84 124	143 113			Biological_process unknown A guanine nucleotide exchange factor involved in vesicle- mediated vacuolar protein transport
tma23∆	1.26	0.12	67	191			Nucleolar protein of unknown function implicated in ribosome biogenesis
hxt17∆ vps51∆	1.26 1.26	0.10 0.12	125 63	120 167	E(0.0004)		Hexose transporter Required for the recycling of proteins from endosomes to the late Golgi
rps18b∆	1.26	0.03	54	169			Protein component of the small (40S) ribosomal subunit
pkr1∆ ygl088w∆ rpl14a∆	1.25 1.24 1.24	0.15 0.18 0.15	90 62 74	116 167 140			V-ATPase assembly factor Biological_process unknown Protein component of the large

ydl063c∆ fyv12∆ rps19a∆ tna1∆	1.24 1.24 1.23 1.23	0.08 0.13 0.02 0.14	79 34 57 56	169 172 175 159	(60S) ribosomal subunit Biological_process unknown Biological_process unknown Protein component of the small (40S) ribosomal subunit Nicotinic acid transport
	4.00	0.14	00	100	
gigz∆	1.23	0.11	92	122	Glycogen biosynthesis
ckb1∆	1.21	0.07	70	161	Ser/Thr protein kinase with roles in cell growth and proliferation Transcription from Pol II
srb5 Δ	1.21	0.13	63	150	promoter
seh1∆	1.21	0.09	73	163	Nuclear pore protein that is part of the evolutionarily conserved Nup84p complex
rpl20b∆	1.21	0.14	72	138	E ^R Protein component of the large (60S) ribosomal subunit
rpl31a∆	1.20	0.06	79	172	Protein component of the large (60S) ribosomal subunit

This table lists top 16 to 157 hits from our screen (Top 1-15 hits are shown in **Table 1**). Among mutants listed here, the first 16 (top 16-31 hits) were first selected by their "Growth^b" (at least 75% of WT; no severe growth defects) and by "Resistance^c to GSNO" (at least 150% of WT), then were ranked by NO levels. The remaining mutants (31-157) were ranked by NO levels only.

^a Numbers show relative average NO levels (Ave) and standard deviations (Std) from three sets of experiments. Average NO levels are normalized to that of wild type cells, which are set to 1. Mutants with NO levels \geq 1.2 are shown.

^b Numbers show the percentage of cell growth normalized to that of wild type cells which is set to 100%. Cell growth is monitored for 8 hours at staring OD_{600} of 0.1.

^c Numbers show the percentage of cell growth normalized to that of wild type cells which is set to 100% in growth media containing 200 μ M GSNO. Cell growth is monitored for 8 hours at staring OD₆₀₀ of 0.1. Mutant with growth rate \geq 100% are shown.

^d CLS, chronological life span. E: extended; (*P*-values) are calculated using the AUC (area under curve) method; E^R: reported to extend life span (Powers R. W. et al, 2006, *Genes Dev* **20**:174-184; Bonawitz N. D. et al, 2007, *Cell Metab* **5**:265-277; Wang C., et al, 2009, *Genetics* **183**:1373-1384).

^e RLS, replicative life span. E^R: reported to extend life span (Kaeberlein M. et al, 2005, *Science* **310**:1193-1196; Steffen K. K. et al, 2008, *Cell* **133**:292-302).

Figures	Strains	P value
Fig. 2A	WT ^a vs CR ^b	P=0.0004
C	WT vs $hxt17\Delta$	P=0.0004
	$hxt17\Delta$ vs $hxt17\Delta$, CR	$P=0.1496 (NS^{c})$
	CR vs $hxt17\Delta$, CR	P=0.1377 (NS)
	WT vs $pkh2\Delta$	P=0.0035
	$pkh2\Delta$ vs $pkh2\Delta$, CR	$P=0.1599 (NS^{c})$
	$CR vs pkh2\Delta, CR$	P=0.145 (NS)
Fig. 2B	WT vs CR	P=0.0048
C	WT vs $soyl\Delta$	P=0.0024
	$soy l\Delta$ vs $soy l\Delta$, CR	P=0.173 (NS)
	$CR vs soy I\Delta$, CR	P=0.098 (NS)
Fig. 2C	WT vs CR	P=0.0205
C	WT vs $gupl\Delta$	P=0.0261
	$gup l\Delta$ vs $gup l\Delta$, CR	P=0.0352
	$CR vs gup I\Delta$, CR	P=0.0725 (NS)
Fig. 2D	WT vs CR	P=0.0021
F1g. 2D	WT vs $hhfl\Delta$	P=0.00534
	$hhfl\Delta \text{ vs} hhfl\Delta, CR$	P=0.0203
	$CR \text{ vs } hhfl\Delta, CR$	P=0.28 (NS)
Fig. 4B	WT vs CR	P=0.0005
116.12	WT vs $cytl\Delta$	P<0.0001
	$cyt I\Delta$ vs $cyt I\Delta$, CR	P=0.241 (NS)
	$CR vs cyt I\Delta$, CR	P=0.00012
Fig. 5D	WT vs CR	P=0.0145
C	WT vs sfal Δ yhbl Δ	P=0.4273 (NS)
	$sfa1\Delta yhb1\Delta$ vs $sfa1\Delta yhb1\Delta$, CR	P=0.0085
	CR vs $sfal\Delta yhbl\Delta$, CR	P=0.5372 (NS)
Fig. 6A	no treatment vs buffer only	P=0.09586 (NS)
	no treatment vs inactivated GSNO	P=0.5507 (NS)
	buffer only vs GSNO (25 μM)	P=0.0016
	buffer only vs CR +buffer	P=0.0027
	GSNO vs CR+GSNO	P=0.6366 (NS)
	CR vs CR+GSNO	P=0.6111 (NS)
	CR vs CR+inactivated GSNO	P=0.9557 (NS)
Fig. 6B	no treatment vs buffer only	P=0.45 (NS)
	no treatment vs inactivated GSNO	P=0.14 (NS)
	buffer only vs GSNO (5 µM, 6x)	P<0.0001
	buffer only vs CR +buffer	P<0.0001
	GSNO vs CR+GSNO	P=0.01
	CR vs CR+GSNO	P=0.5 (NS)
	CR vs CR+inactivated GSNO	P=0.64 (NS)
Fig. 6C	WT vs GSNO	P=0.0069
	WT vs $pkh2\Delta$	P=0.0057
	WT vs $hxt17\Delta$	P=0.013
	WT vs $hhfl\Delta$	P=0.0085
	$pkh2\Delta$ vs $pkh2\Delta$ +GSNO	P=0.4383 (NS)

Supplemental Table 2 Pair-wise statistical analysis of chronological life span (CLS)

Figure s	Strains	P value	
Fig. 6C	$hxt17\Delta$ vs $hxt17\Delta$ +GSNO	P=0.3922 (NS)	
	$hhfl\Delta$ vs $hhfl\Delta$ +GSNO	P=0.5405 (NS)	

Statistical analyses are carried out using the AUC method (area under the curve) (Pruessner J. C. et al, 2003, Psychoneuroendocrinology 28:916-931; Fekedulegn D. B. et al, 2007, Psychosom Med 69:651-659). *P*-values were calculated for each pair of lifespan. 3-4 independent colonies derived from each strain were analyzed in each experiment. About $2x10^8$ cells were analyzed for each sample in each experiment. WT^a: BY4742; CR^b: calorie restriction; NS^c: not significant.

Figures	Strains	P value		
Fig. 3A	WT ^a vs CR ^b	P=0.0017		
-	WT vs $hxt17\Delta$	P<0.0014		
	$hxt17\Delta$ vs $hxt17\Delta$, CR	$P=0.3962 (NS^{c})$		
	CR vs $hxt17\Delta$, CR	P=0.2536 (NS)		
	WT vs $pkh2\Delta$	P=0.0001		
	$pkh2\Delta$ vs $pkh2\Delta$, CR	P=0.8740 (NS)		
	$CR \text{ vs } pkh2\Delta, CR$	P=0.3376 (NS)		
Fig. 3B	WT vs CR	P=0.003		
1 15. 28	WT vs $soyl\Delta$	P<0.0001		
	$soy l\Delta$ vs $soy l\Delta$, CR	P=0.0083		
	$CR \text{ vs } soyl\Delta, CR$	P=0.4947 (NS)		
Fig. 3C	WT vs CR	P=0.0004		
	WT vs $gup l\Delta$	P=0.0001		
	$gup1\Delta$ vs $gup1\Delta$, CR	P=0.0381		
	CR vs $gup l\Delta$, CR	P=0.0038		
	WT vs $ipkl\Delta$	P=0.0065		
	$ipk1\Delta$ vs $ipk1\Delta$, CR	P=0.3205 (NS)		
	$CR \text{ vs } ipkl\Delta, CR$	P=0.7509 (NS)		
Fig. 3D	WT vs CR	P=0.003		
	WT vs $hhfl\Delta$	P<0.0001		
	$hhfl\Delta$ vs $hhfl\Delta$, CR	P=0.1865 (NS)		
	CR vs $hhfl\Delta$, CR	P=0.0007		
Fig. 4C	WT vs $cytl\Delta$	P<0.0001		
	$cyt l\Delta$ vs $cyt l\Delta hhf l\Delta$	P=0.1618 (NS)		
	$cyt l\Delta$ vs $cyt l\Delta gup l\Delta$	P=0.6809 (NS)		
	$cyt l\Delta$ vs $cyt l\Delta ipk l\Delta$	P=0.2116 (NS)		
	$cyt \Delta$ vs $cyt \Delta soy \Delta$	P=0.7956 (NS)		
Fig. 5A	WT vs CR	P<0.0001		
	WT vs sfa1 Δ	P=0.5067 (NS)		
	WT vs $yhb1\Delta\Delta$	P=0.3862 (NS)		
	WT vs $sfal\Delta yhbl\Delta\Delta$	P=0.1316 (NS)		
	$sfal\Delta$ vs $sfal\Delta$, CR	P=0.0008		
	CR vs <i>sfa1</i> Δ , CR	P=0.1882 (NS)		
	$yhb1\Delta$ vs $yhb1\Delta$, CR	P=0.0504		
	CR vs $yhbl\Delta$, CR	P=0.029		
	$sfa1\Delta yhb1\Delta$ vs $sfa1\Delta yhb1\Delta$, CR	P=0.8528 (NS)		
	CR vs sfa1 Δ yhb1 Δ , CR	P<0.0001		
Fig. 5B	WT vs sfal Δ yhbl $\Delta\Delta$	P=0.6013 (NS)		
	sfal Δ yhbl Δ vs hxtl7 Δ sfal Δ yhbl Δ	P=0.9436 (NS)		
	sfa1 Δ yhb1 Δ vs pkh2 Δ sfa1 Δ yhb1 Δ	P=0.6706 (NS)		
	$sfa1\Delta yhb1\Delta vs hhf1\Delta sfa1\Delta yhb1\Delta$	P=0.4112 (NS)		

Supplemental Table 3 Pair-wise statistical analysis of replicative life span (RLS)

Statistical analyses are carried out using the JMP statistics software (SAS), and Wilcoxon rank-sums tests *P*-values are calculated for each pair of lifespan. WT^a: BY4742; CR^b: calorie restriction; NS^c: not significant.