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The key cytopathologies in the brains of Alzheimer’s disease (AD) patients include mitochondrial dysfunction and energy
hypometabolism, which are likely caused by the accumulation of small aggregates of amyloid-β (Aβ) peptides. Thus, targeting
these two abnormalities of the AD brain may hold promising therapeutic value for delaying the onset of AD. In his paper, we
discuss two potential approaches to delay the onset of AD. The first is the use of low dose of diaminophenothiazins (redox
active agents) to prevent mitochondrial dysfunction and to attenuate energy hypometabolism. Diaminophenothiazines enhance
mitochondrial metabolic activity and heme synthesis, both key factors in intermediary metabolism of the AD brain.The second
is to use the naturally occurring osmolytes to prevent the formation of toxic forms of Aβ and prevent oxidative stress. Scientific
evidence suggests that both approaches may change course of the basic mechanism of neurodegeneration in AD. Osmolytes are
brain metabolites which accumulate in tissues at relatively high concentrations following stress conditions. Osmolytes enhance
thermodynamic stability of proteins by stabilizing natively-folded protein conformation, thus preventing aggregation without
perturbing other cellular processes. Osmolytes may inhibit the formation of Aβ oligomers in vivo, thus preventing the formation
of soluble oligomers. The potential significance of combining diaminophenothiazins and osmolytes to treat AD is discussed.

1. Introduction

1.1. An Overview of Alzheimer’s Disease. Alzheimer’s disease
(AD) is an irreversible brain disorder that slowly destroys
memory and eventually a person’s ability to perform the
daily life tasks and activities. Memory problems are one
of the first signs of AD, and as it progresses, decline in
other cognitive abilities such as poor judgment and mood
changes starts to surface. Eventually people with severe AD
cannot communicate and become completely dependent on
others for their care. Most people with AD have lateonset
of disease, which usually develops after age 60. However, a
silent preclinical phase which precedes the development of
AD clinical symptoms may span 2–8 years.

AD is a disease with a complex etiology and no single
therapeutic approach is likely to prevent or lead to a cure. All
current treatments focus on several different aspects, includ-
ing management of behavioral symptoms or temporarily
slowing the progress of the disease. However, none of these

treatments changes or alter the inevitable course of the
disease. Thus, even after almost three decades of research,
AD is still dementia with a progressive failure to form new
memories, and thereby interfering with the basic mechanism
of the disease.

In recent years, it has been well-accepted that one of the
pathological mechanisms of AD relates to the accumulation
amyloid-β (Aβ) peptide in certain brain regions [1]. Aβ is a
product of Aβ precursor protein (AβPP) via natural prote-
olytic processing. AβPP is processed by three different pro-
teases known as α-, β-, and γ-secretase. Each of these three
proteases cleaves AβPP at different sites resulting in various
Aβ species ranging from 39–43 amino acid residues [2]. It
has been shown that long species of Aβ (Aβ42,43) are strongly
amyloidogenic and form aggregates readily compared to the
short forms (Aβ39,40). Aβ are the building blocks of insoluble
extracellular Aβ deposits or senile plaques formation [3], a
neuropathological hallmark of AD [3]. AD is also marked
by neurofibrillary tangles, an intracellular filaments of highly
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phosphorylated tau protein. Impairment of cellular function
in AD is demonstrated by a set of cytopathologies (reviewed
in [4]) such as decline in cytochrome c oxidase (complex
IV), mitochondrial dysfunction, abnormal iron homeostasis,
oxidative stress, dimerization of AβPP and synaptic dys-
function [5–9], and energy hypometabolism. Several lines
of evidence point towrads strong connection between small
aggregates of Aβ and mitochondrial dysfunction.

1.2. Role of Amyloid-β and Oligomers in Alzheimer’s Disease.
According to the oldest so-called “cholinergic hypothesis”,
AD is caused by reduced levels of the neurotransmitter
acetylcholine, which is important for memory. However,
medications intended to treat acetylcholine deficiency have
not been very effective in modifying the course of the disease.
In the early 90s, the “amyloid hypothesis” was postulated
according to which Aβ deposits arising from AβPP cause AD.
As a result, specific proteases that process AβPP were the
focus of drug development as a possible mean to lower Aβ
production. However, several complications stem from the
significance of these proteases for other biological functions
creating serious obstacles in this front.

It is now well-accepted fact that AD is a neurodegen-
erative disorder associated with protein aggregation and
misfolding of AβPP, which may be triggered by genetic
polymorphism, age-dependent alteration to Aβ metabolism,
or environmental factors that may promote accumulation
and aggregation of Aβ peptide [10–13]. Thus, therapies
directed at reversing Aβ aggregation appeared promising.
However, several limitations reduced the excitement in this
approach as was the case for immunotherapy targeted using
specific anti-Aβ antibodies. Additionally, the lack of chemical
safety of the available drugs to prevent Aβ aggregation was
also a major concern.

There are reports showing a correlation between an early
cognitive impairment in AD and increased oligomerization
of Aβ, which precede the appearance of senile plaques
[14–16]. Oligomers of Aβ correlate with early cognitive
impairment in AD [17, 18]. In recent years, studies using
cells, mouse models, and human brain tissues strongly
suggest that soluble Aβ oligomers could be a toxic forms
of Aβ [19, 20]; however, experimental data for their direct
in vivo toxicity is lacking [21]. Thus, preventive approaches
may include also preventing the formation of Aβ aggregates.
However, it is not entirely clear which cellular compartment
is the primary target of Aβ toxicity. Interestingly, in addition
to other extra- and intracellular compartments, Aβ is
also found in the mitochondria [22, 23], suggesting that
neurotoxic effects of Aβ may be widespread [24], unlike
earlier views that the extracellular senile plaques are the only
main neurotoxic factor in AD. Energy hypometabolism and
synaptic dysfunctions are proposed to be the primary target
of Aβ neurotoxicity [25, 26]. Thus, preventing mitochondrial
dysfunction by identifying the primary metabolic pathway,
specifically targeted by Aβ is a plausible approach to delay
AD [27]. We propose that preventative approaches are
more promising for lowering the prevalence of AD. These
approaches could target the formation of Aβ oligomers and

enhance mitochondrial activity to counter energy deficiency
in AD.

2. Role of Mitochondrial Dysfunction in
Alzheimer’s Disease

Several lines of evidence suggest that impairment of mito-
chondrial function plays important role in the development
of neurodegenerative diseases including AD. Mitochondrial
dysfunction and impaired cellular energy is an early decline
in metabolism seen in AD patients. In addition to the
biochemical physiological changes, the brain mitochondria
of AD patients exhibit substantial structural changes that
included abnormal cristae, accumulation of osmophilic
material, and smaller size compared to normal controls [23,
28]. It has been reported that mitochondrial fragmentation
damages regions of nerve cell synapses. Excessive frag-
mentation of mitochondria causes synaptic injury leading
to eventual nerve cell death. Since synapses are critical
for learning and memory, their impairment leads to the
dementia in AD patients. We have recently proposed that
strong binding of Aβ with heme is a key factor associated
with Aβ-mediated neurotoxicity [29, 30], which could be
the primary metabolic pathway targeted by excess Aβ
production [31–33], and thus interfering with mitochondrial
structures and functions by increasing the production of
nitric oxide (NO) leading to mitochondrial damage and
impaired energy metabolism [34, 35]. One of the key
cytopathologies of AD include decline in cytochrome c
oxidase (complex IV) and αKGDH, which seems to con-
tribute to mitochondrial dysfunction [36–38]. This, abnor-
mal biology of the mitochondria may contribute to energy
deficiency in AD [35, 39]. There are reports showing an
abnormal interaction of Aβ with key brain metabolites such
as zinc, copper, cholesterol, mitochondrial protein import
machinery, HrtA2 protease, ABAD, and heme [22, 31, 40–
43]; however, their relation to cytopathologies of AD is not
clear.

The decline in complex IV, which occurs in heme
deficient cells, leads to similar structural consequences
on mitochondria (unpublished observations). Several lines
of experimental evidence provided support that heme
metabolism may be a specific metabolic pathway that is
targeted by Aβ peptides [43–46]. We showed recently a
specific heme-binding motif in human Aβ peptides [27].
Based on our recent work and other laboratories, we
propose that depletion of regulatory heme and the formation
of Aβ-heme peroxidase are key factors of mitochondrial
dysfunction in the brains of AD patients. Due to phylogenic
variation in the amino acid sequences of Aβ, differential
heme-binding of Aβ could also explain why humans, but
not rodents, develop AD-like neuropathology (Reviewed in
[4]). Heme is responsible for the metabolic integrity of
complex IV, which is a key factor in mitochondrial gene
regulation systems; therefore, pathways that depend on heme
may be properly regulated by lowering Aβ oligomeric forms,
and enhanced heme synthesis may improve neuronal energy
metabolism.
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3. Therapeutic Approaches for Alzheimer’s
Disease and Challenges

AD has a devastating impact on both personal and commu-
nity levels. AD is the most common age-related dementia
manifested by widespread progressive cognitive deteriora-
tion and impaired behavioral skills. With the aging US
populations, and widespread prevalence of AD in these
populations warrants immediate need for the management
of this deleterious disease. In spite of efforts from scientific
community for several decades, the available drug therapies
for AD are only remedial without proper understanding
of the underlying mechanisms involved therein. Unless
new treatments are developed to decrease the likelihood of
developing AD, the number of individuals with this disease
in the United States is expected to be more than 10 million in
next three decades.

There is currently no specific cure for AD patients,
but scientific research is unraveling the mysteries of AD,
including the causes and the mechanisms of the disease
progression, which might one day effectively solve the
Alzheimer’s puzzle. In recent years, some understandings
have already provided critical information about how to
prevent, delay, or slow the nerve cell damage that leads to AD,
which may help maximize quality of life of these patients.
However, drug treatments currently available are used to
only manage the cognitive symptoms of AD by slowing the
progression of symptoms for a while.

Despite the intensive research on AD, a therapeutic or
preventive strategy for AD remains elusive or limited at the
most [47], which has been a key obstacle for the development
of effective therapies for AD. The efficacy of currently
available drugs has further been hampered by the fact that
the effectiveness of these drugs progressively declines with
the progression of disease. Thus, there is an urgent need for a
new generation of drugs to prevent or delay the onset of AD.

Except for imaging techniques, a precise and accurate
diagnostic biomarker for AD is also lacking [48]. However,
images results are excellent in following disease progress,
but limited in revealing preclinical before protein deposits
occur AD. The ultimate biomarker would preferably be a
blood- or CSF-borne metabolite that indicates the risk for
AD in advance of the clinical signs or protein deposits. Aβ-
heme peroxidase could serve a unique biomarker if found in
blood or CSF of AD patients. Aβ-heme has the advantage of
being dependant on Aβ and it is tightly linked to a key brain
metabolite (heme as mitochondrial metabolite), thus could
indicate impairment in brain metabolism that depends on
Aβ accumulation.

4. Mitochondria As Targets for Delaying
the Onset of Alzheimer’s Disease

Mitochondrial dysfunction in AD could serve as a therapeu-
tic target an interest in developing mitochondrial drugs is
emerging. Enhancing mitochondrial function and maintain-
ing structural integrity of mitochondria could delay the onset
of AD. Below, we discuss pharmacological approaches to

Figure 1: The chemical structure of methylene blue; a diaminophe-
nothiazin.

enhance mitochondrial function and prevent the formation
of Aβ toxic oligomers.

Mitochondria are a major energy source, and it has been
known that energy deficiency can result in synaptic dysfunc-
tion and neurodegeneration of the hippocampus and cortical
regions of the brain [49]. The brain is particularly sensitive
to mitochondrial dysfunction, the resulting oxidative stress,
and impaired energy metabolism [50–52]. Thus, improved
energy metabolism through enhanced mitochondrial activity
in the brain might be an effective approach to delay the onset
of AD.

Mitochondrial dysfunction in AD is associated with a
decline in mitochondrial complex IV and energy deficiency.
Due to involvement of mitochondria in cellular senescence
and aging, it may contribute to neural dysfunction with
age. Therefore, targeting mitochondria is an emerging field
of research in finding therapeutic strategies to combat
aging and neurodegenerative disorders. In fact, recent
developments support this idea (reviewed in [53]), and
potency of pharmacological agents to prevent or delay age-
related neurodegeneration is under investigation [54]. Our
recent results with methylene blue (3,7 Bis-dimethylamino-
phenazathionium; MB) in countering some mitochondrial
dysfunctions including mitochondrial complex IV forma-
tion, enhanced cellular oxygen consumption and heme
synthesis, and reversed premature senescence are aimed at
enhancing mitochondrial function, which could contribute
to the antisenescence activity of MB [55–57]. Due to the
ability of MB to cross the Blood Brain Barrier [58], our
studies may provide a potential future therapeutic tool for
AD and other related diseases using MB.

MB is known as a redox indicator with a low redox
potential, which allows it to cycle readily in mitochondria
(Figure 1), and is easily soluble in both water and organic
solvents, thus, MB and its derivative MBH2 can enter the
mitochondria and other intracellular compartments such as
lysosomes [59]. MB is the first chemical to induce mitochon-
drial respiratory complex, and we propose a new medical
use for MB by increasing brain’s reserve of both complex
IV and the capacity to synthesize heme [56]. Increasing the
activity of complex IV is intriguing as a decrease in complex
IV activity causes cytotoxicity leading to increased oxidants
production and decreased energy charge of the mitochondria
[60–62]. MB in turn may elevate the levels of complex IV
and improve mitochondrial function. Complex IV consumes
more than 95% of the O2 that reaches cells, and thus, excess
complex IV may play a key role in lowering the production
of oxidants by decreasing the steady-state concentration of
intracellular O2 in the mitochondria. Complex IV activity
correlates well with the metabolic activity of cells and thus
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could improve cognitive performance. On the other hand,
enhancing heme synthesis should help neural cells in delay-
ing the onset of the consequences of sequestration of heme
by huAβ. Together, these findings suggest that MB may delay
the onset of Alzheimer’s dementia. Further, MB at higher
concentrations (μM range) are neurotoxic, and our findings
show that MB is effective in improving mitochondrial
function at nM range of concentrations, which is consistent
with the intrabrain concentration that can be achieved upon
chronic treatment with MB [56]. MB has a long-standing,
extensive history of medical uses [63] with an extended
medical and safety record in humans, and its FDA approval
for clinical trials in connotation to aging and age-related
disorders may not be difficult to obtain on safety grounds.

5. Mechanisms of Action of Methylene Blue and
Its Clinical Applications

In spite of widespread clinical uses of MB for decades,
the mechanism(s) of its diverse biological actions are not
clear. MB is readily absorbed by various organs including
brain [64], and has a long history of clinical uses includ-
ing chronic treatments of congenital methemoglobine-
mia, methemoglobinemia, psychiatric disorders, and more
recently in the prevention of the side effects of ifosfamide-
induced encepholopathy chemotherapy [65], and hypoten-
sion in septic shock [66–68]. MB has also been shown to
protect against cyclosporine injury to kidney [69], strepto-
zotocin injury to pancreas [70], ischemic-reperfusion injury
[71], radiation [72], and enhances β-oxidation of long chain
fatty acids [73]. Clinical doses of MB ranges between 1-
2 mg/kg/day for up to 6 times over 24 hrs [74]. Higher doses
(>7.5 mg/Kg) of MB cause the formation of Heinz bodies
in erythrocytes [75]. In addition, MB administration has
been reported to improve the cognitive function in rats,
and increase the activity of cytochrome c oxidase (complex
IV) [76, 77] and decrease of monoamine oxidase activity in
the brain, which may result in an increased dopamine con-
centration [78]. Some reports have proposed that MB may
be acting by inhibiting the NO-activating soluble guanylate
cyclase [79], nitric oxide synthase [80], and MAO activity
[78]. There are also reports suggesting that MB may be acting
as an antioxidant precursor [81, 82]. However, in recent
years, it has become quite clear that the biological effects of
MB are not consistent with these mechanisms [55, 56, 83].
This discrepancy may in part be due to different doses of MB
used in these experimental conditions, which have ranged
from >10 μM to <1 μM, suggesting that uses of MB at doses
in the nM concentrations may follow a different mechanism
[55, 56]. For example the effect of MB on complex IV
depends on the dose used [55]. Thus, interpretation of the
experimental findings should take into consideration MB’s
dose especially when high (non-therapeutic) dose is used
[84]. Based on our data and others, for the first time, we
proposed a molecular mechanism explaining how MB might
be affecting mitochondrial function [55–57]. We propose
that diaminophenothiazins cycling between the reduced and
the oxidized forms may explain, in part, their mitochondria-
protecting activity (Figure 1). This mechanism is proposed in

Figure 3 and in [55]. It is now an open secret that adequate
assembly and activity of complex IV depends upon heme-
a [85]; thus, the increased rate of heme synthesis with MB
treatment could provide cells with heme to support the
assembly of complex IV that could result in delaying mito-
chondrial dysfunction, cellular senescence, aging, and AD.

6. Preventing Aggregation and Oligmerization
of Amyloid-β with Osmolytes

Protein misfolding and/or instability leads to aggregate
formation. Many neurodegenerative diseases exhibit deposits
of aggregated proteins such as Aβ oligomers, senile plaques,
phosphorylated tau (p-tau), α-synuclein, and polyglutamine;
and all are key neuropathologies in many CNS disorders. Aβ
oligomers in AD may progress to form large insoluble fibrils
that form the plaques, a key hall mark of AD. Accumulation
of these protein deposits exacerbate neurodegeneration due
to the fact that the human brain has a limited capacity to
prevent the formation or removal of these protein aggregates.
It is known that limited protein degradation may contribute
to the accumulation of these peptide deposits with age [86].
The aging brain also exhibits limited antioxidant activity and
self-repair capacities (e.g., limited neurogenesis).

Our knowledge of the kinetics of the formation of
protein aggregates in vivo in brain disorders as well as the
limited understanding for the mechanism by which these
aggregates interfere with neuronal metabolism function has
impaired our capabilities for the development of preventative
therapeutic strategies. In general, the intermediate species
in the cascade of protein misfolding appear to be highly
toxic and may interfere with basic metabolic activity of the
brain. As for Aβ oligomers it is not clear how toxic they
would be in vivo [21]. However, removal or preventing the
formation of such intermediate species may prove to be of
great clinical value. We demonstrated that the binding of Aβ
monomers and oligomers with heme results in sequestration
of regulatory heme leading to impaired cellular metabolism.
Therefore, preventative approaches to treating AD could
be targeted at blocking the formation of Aβ oligomers,
enhancing the synthesis of heme and complex IV, in addition
to the use of antioxidants.

6.1. Oligmers as Targets for Delaying Alzheimer’s Disease.
Protein functions depends on maintaining and stabilizing
their active conformation(s) under physiological and stress
conditions [87]. Thus, under severe physical and chemical
stress conditions, biological systems created mechanisms
to maintain their functional conformations. These mech-
anisms are directed at preventing structural perturbations
in proteins due to thermodynamic or chemical stressful
conditions [88–91]. Biological systems that fail to provide
proteins structure stabilizing conditions also fail to adapt to
such conditions. As a result, often protein misfolding and
aggregation occurs leading to a partial or complete loss of
function, in addition to the formation of protein aggregates
[92, 93]. Both conditions have serious consequences on cell
function and metabolism.
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Figure 2: Chemical structure of selected osmolytes. Upper panel: structure in 2D; lower panel, structure in 3D configurations, respectively.

In order to adapt to stressful conditions, tissues cre-
ated certain mechanisms such as degradation of misfolded
proteins or accumulation of small organic solutes at high
concentrations. These solutes can serve as antioxidants or
play stabilizing role for intracellular structures of macro-
molecules. Osmolytes [88, 89, 94] are group of endogenous
chemicals produced by cells and accumulate to concentration
as high as millimolars (Figure 2). The exact function of these
metabolites and significance for intermediary metabolism
and organ function is still under investigation. We are
interested in finding scientific reasoning that links to identify
the role of osmolytes and the high tissue connections. Exper-
imental evidence points that osmolytes maintain stability
and folding of proteins without perturbing other cellular
processes, an action that requires relatively high intracellular
concentrations [90, 91, 93, 95–97]. It is well known that
following protein synthesis, a highly disordered unfolded
state of the polypeptide chain passes through well-defined
partially structured transition states before the fully folded
protein forms. Molecular chaperones that deter aggregation
of incompletely folded species also play role in correctly
folding newly synthesized proteins [98]. If under certain
conditions, the cellular environment becomes less than
optimal for proper protein folding, then newly synthesized
proteins become prone to aggregation [99–101]. Similarly,
under these conditions, intermediates in protein processing

pathways may also be subject to accumulation, misfold-
ing, and aggregation (e.g., Aβ). Protein aggregates, if not
quickly removed, may transform to fibrils and other possible
aggregates that accumulate in tissue and interfere with cell
metabolism [102–107]. It is likely that small aggregates, as
well as the highly organized fibrils and plaques, can give rise
to pathological conditions, a common feature among many
neurodegenerative diseases, including AD [97, 108].

The biological significance of naturally occurring os-
molytes has intrigued scientists for many years. There are
a number of well-known naturally occurring osmolytes,
which fall into three chemical classes: methylamines (tri-
methylamine-N-oxide, Choline-O-sulphate, and sarcosine),
polyols (sorbitol, glycerol, sucrose and trehalose), and certain
amino acids and their derivatives (glycine, taurine, proline
and betaine) (Table 1). The role of osmolytes in protein
folding, cell senescence, cell homeostasis, and mitochondrial
structure has been described in various studies. However,
more investigations are still needed to evaluate the role
of osmolytes in health and diseases and their therapeutic
potential.

Osmolytes interact with the peptide backbone and amino
acid side-chains [109]. The potency of an osmolyte to
promote protein folding and solubility is determined by the
balance of these interactions and the solvophobic effects of
the osmolyte. There are several studies to support the view
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Table 1: List of some known naturally occurring osmolytes in each
class with their major presence in protecting the stability of specific
proteins under harsh conditions.

Type Name(s) Used by

Polyols
mannitol, glycerol,
sorbitol, inositol, pinitol

plants, algae,
mammalian kidneys,
insects, reptiles, fish

Amino Acid
glycine, alanine, and
proline

mammalian cells

Amino Acids
Derivatives

taurine, octopine,
alanine

marine invertebrates,
prokaryotes

Methylamines

trimethylamine-N-
oxide, sarcosine,
phosphorylcholine,
glycine betaine

marine invertebrates,
plants, mammalian
kidneys

that the powerful solvophobic effects of osmolytes on the
peptide backbone dominate, such that the relative Gibbs free
energy (ΔG) of the unfolded state is less favorable than that of
the folded state (ΔG of the peptide folding is more negative).

The presence of several osmolytes inside cells raises
questions about their role in protecting intracellular macro-
molecules under stressful conditions. The antioxidative
activity of the osmolytes has been also proposed. Since the
protection provided by an osmolyte does not depend on
specific chemical interactions with the macromolecules, in
principle, any of the osmolytes should be capable of replacing
each other, depending upon either endogenous or exogenous
availability of particular osmolyte(s) [110]. Since the role of
protein backbone is critical in determining thermodynamic
stability and folding of proteins in osmolyte solutions [111–
115], designing these small molecules (osmolytes) appears
to be an excellent strategy and could be a critical step
in preventing various critical proteins from misfolding or
aggregation (6). This may have far-reaching consequences
in understanding and preventing several deleterious diseases
that are caused by protein misfolding/aggregation [116, 117].
Since organic osmolytes are naturally occurring molecules,
they may have potential therapeutic applications without
concerns of major toxic side effects [118].

Because of their capabilities to fold proteins into native-
like functional species, osmolytes have been the focus of
several studies related to neurodegenerative diseases in
which the pathogenesis is associated with the misfolding
of specific proteins [119, 120]. These diseases include
AD, Huntington’s disease (HD), and muscular dystrophy
(MD). Trehalose, an osmoluyte, can significantly inhibit
polyglutamine-mediated protein aggregation when orally
administrated to the transgenic mouse model of Hunt-
ington’s disease (a neurodegenerative disease) [114], and
can increase the life span of Huntington’s disease mouse
model [114], indicating that trehalose is readily bioavailable.
Osmolytes have similar effect of the folding of androgen
receptor containing elongated polyglutamine chain length.
Elongated polyglutamine chain in androgen receptor leads
to formation of its aggregation and thus play role in causing
neurodegeneration in Kennedy’s disease [116].

Experimental finding suggests that AD toxicity could
be linked to the formation of oligomeric forms of Aβ
peptides and AD progression correlates with increasing
aggregate formation of Aβ. At physiological concentration,
Aβ40 peptide incubated in the presence of trehalose inhibits
aggregation of this peptide in a dose-dependent manner
[121], and this osmolyte-mediated inhibition of Aβ40 peptide
aggregation correlates with its toxic effects in neuronal cell
system [121].

In these pathological conditions, specific misfolded
aggregate-prone proteins are resistant to the normal cellular
processes of protein folding and turnover and we propose
that osmolytes may interfere with the production and/or
the removal of these toxic intermediate aggregates. Further,
these osmolytes can be attractive molecules for delaying the
onset of neurodegenerative diseases characterized by protein
misfolding and toxic aggregation. In particular, osmolytes
may have therapeutic potential for treating AD, because
of their effect on Aβ oligomers. Osmolytes may also help
stabilize the senile plaques, preventing the shedding of
Aβ oligomers. Osmolytes are also known to function as
antioxidants [122, 123], and their level seems to decline in
AD patients [124].

The research on naturally occurring osmolytes suggests
that they have a protective role in promoting brain health,
including resistance to neurodegeneration. Thus, there is
potential for both prevention and treatment of neurodegen-
erative diseases using osmolytes [125, 126]. The prospect of
using natural osmolytes as a therapeutic tool for AD appears
to be quite exciting and can have far reaching consequences
in developing therapeutic tools for its prevention and/or
management. However, while these proposals appear to be
quite promising, more studies are needed to validate their
effectiveness as a potential therapeutic target.

7. Summary

The mitochondrial role in health and disease has recently
received immense scientific interest, particularly, because of
the emerging field of mitochondria as a potential therapeutic
target. Mitochondria play intricate role in energy, redox,
and intermediary metabolism positioning them in cross
road for health or disease. Genetic, environmental, and
life style factors can lead to impairments in mitochondrial
function. Impairment to mitochondrial function is found in
numerous age-related degenerative diseases and disorders.
Mitochondrial dysfunction leads to an increase in oxidative
stress, energy hypometabolism, and impairs calcium home-
ostasis, ultimately leading to inadequate cellular function.
Preventing mitochondrial dysfunction is presumed to have
functional benefits, regardless of whether mitochondrial
dysfunction is primary or secondary [57]. Thus, therapeutic
strategies to improve mitochondrial function and delay the
onset of age-related degenerative disorders are currently
under investigation. We have shown that diaminophenoth-
iazins (e.g., methylene blue, thionine, Figure 1) can delay
cellular senescence by enhancing mitochondrial function,
which are impaired in AD brains.
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on the electrons “leaking” from complex I. During this process MB is converted to MBH2. Then MBH2, a reduce MB, carries the electrons
to cytochrome c, which is then oxidized by ETC IV [55].

Mounting evidence suggests a role of small aggregates of
amyloid-β (Aβ) in the etiology of AD. Aβ aggregates impair
mitochondrial function, synaptic function, Ca++ homeosta-
sis and ultimately leading to cellular hypometabolism and
neurdegeneration. Aβ peptide can also be localized within
the mitochondria of AD patients. Experimental evidence
show that osmolytes can stabilize and enhance cellular
proteins to adopt physiologically compatible conformation.
Osmolytes are efficient antioxidants that may also increase
neural resistance to oxidative stress caused by Aβ. Thus,
osmolytes may interfere with the aggregation of Aβ, enhance
their proteolytic clearance, and counter oxidative stress [57].

We propose two different approaches to prevent or
delay the onset of AD. The first is directed at enhancing
mitochondrial activity using MB to enhance mitochon-
drial function (Figure 3). Energy deficiency in AD may
be contributed by impaired insulin (glucose) metabolism
and mitochondrial function. Thus, concentrating on single
impairment at the time would not be enough to resolve
the energy hypometabolism in AD. Glucose metabolism
depends on adequately functioning mitochondria and vice
versa. Since both glucose and mitochondrial metabolism
are interconnected, it might be more beneficial for AD
patients to develop a therapeutic approach that resolves (or
delay) both impairments. Successful merger of treatment
with MB and intranasal delivery of insulin to the brain
may prove valuable for AD patients. MB exerts its effect at

very low (nM) concentration, which in conjunction with its
safety record in humans further minimizes any risk of side
effects of chronic exposure to MB. The second approach
is directed at preventing the aggregation of Aβ by using
osmolytes, natural metabolites synthesized in the brain. Pre-
venting the aggregation of Aβ may enhance their proteolytic
removal and decrease the risk of their interference with
heme and mitochondrial metabolism. MB can also induce
heme synthesis, thus, when combined with osmolytes, may
assist in preventing heme deficiency. We propose MB and
osmolytes could help delay the onset of AD by preventing
Aβ oligomers formation, enhancing mitochondrial function,
and attenuating heme deficiency.

We propose that preventative approaches for AD could
be targeted at blocking the formation of Aβ oligomers,
enhancing the synthesis of heme and complex IV, in addition
to the use of antioxidants.

Conflict of Interests

Dr. Atamna has applied for patent on MB to treat mitochon-
drial dysfunction.

Acknowledgments

The study was supported in part by Ames Foundation, AFAR
(H. Atamna), and NIH (R. Kumar).



8 Journal of Aging Research

References

[1] C. Haass and D. J. Selkoe, “Soluble protein oligomers in
neurodegeneration: lessons from the Alzheimer’s amyloid β-
peptide,” Nature Reviews Molecular Cell Biology, vol. 8, no. 2,
pp. 101–112, 2007.

[2] J. Nunan and D. H. Small, “Regulation of APP cleavage by α-,
β- and γ-secretases,” FEBS Letters, vol. 483, no. 1, pp. 6–10,
2000.

[3] C. S. Atwood, R. N. Martins, M. A. Smith, and G. Perry,
“Senile plaque composition and posttranslational modifica-
tion of amyloid-β peptide and associated proteins,” Peptides,
vol. 23, no. 7, pp. 1343–1350, 2002.

[4] H. Atamna, “Heme binding to Amyloid-β peptide: mech-
anistic role in Alzheimer’s disease,” Journal of Alzheimer’s
Disease, vol. 10, no. 2-3, pp. 255–266, 2006.

[5] W. D. Parker, C. M. Filley, and J. K. Parks, “Cytochrome
oxidase deficiency in Alzheimer’s disease,” Neurology, vol. 40,
no. 8, pp. 1302–1303, 1990.

[6] J. Valla, J. D. Berndt, and F. Gonzalez-Lima, “Energy
hypometabolism in posterior cingulate cortex of Alzheimer’s
patients: superficial laminar cytochrome oxidase associated
with disease duration,” Journal of Neuroscience, vol. 21, no.
13, pp. 4923–4930, 2001.

[7] C. Daly, M. Sugimori, J. E. Moreira, E. B. Ziff, and R. Llinás,
“Synaptophysin regulates clathrin-independent endocytosis
of synaptic vesicles,” Proceedings of the National Academy of
Sciences of the United States of America, vol. 97, no. 11, pp.
6120–6125, 2000.

[8] W. R. Markesbery, “Oxidative stress hypothesis in
Alzheimer’s disease,” Free Radical Biology and Medicine,
vol. 23, no. 1, pp. 134–147, 1997.

[9] J. R. Connor, S. L. Menzies, S. M. Martin, and E. J. Mufson,
“A histochemical study of iron, transferrin, and ferritin
in Alzheimer’s diseased brains,” Journal of Neuroscience
Research, vol. 31, no. 1, pp. 75–83, 1992.

[10] I. Blasko, R. Beer, M. Bigl et al., “Experimental traumatic
brain injury in rats stimulates the expression, production and
activity of Alzheimer’s disease β-secretase (BACE-1),” Journal
of Neural Transmission, vol. 111, no. 4, pp. 523–536, 2004.

[11] L. A. Farrer, L. A. Cupples, J. L. Haines et al., “Effects of age,
sex, and ethnicity on the association between apolipoprotein
E genotype and Alzheimer disease: a meta-analysis,” Journal
of the American Medical Association, vol. 278, no. 16, pp.
1349–1356, 1997.

[12] P. J. Landrigan, B. Sonawane, R. N. Butler, L. Trasande,
R. Callan, and D. Droller, “Early environmental origins of
neurodegenerative disease in later life,” Environmental Health
Perspectives, vol. 113, no. 9, pp. 1230–1233, 2005.

[13] G. S. Prasad, M. Wahlberg, V. Sridhar et al., “Crystal
structures of transhydrogenase domain I with and without
bound NADH,” Biochemistry, vol. 41, no. 42, pp. 12745–
12754, 2002.

[14] T. Hartmann, S. C. Bieger, B. Brühl et al., “Distinct sites
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methylene blue microinjected into the dorsal periaqueductal
gray matter,” Brazilian Journal of Medical and Biological
Research, vol. 32, no. 12, pp. 1529–1532, 1999.

[69] R. Rezzani, L. Rodella, G. Corsetti, and R. Bianchi, “Does
methylene blue protect the kidney tissues from damage
induced by ciclosporin A treatment?” Nephron, vol. 89, no.
3, pp. 329–336, 2001.

[70] M. Haluzik, J. Nedvı́dková, and J. Škrha, “Treatment with
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