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This paper presents an analysis of data collected through the Waterloo WeBike project: a field trial in which over 30 sensor-equipped
electric bicycles (e-bikes) were given to members of the University of Waterloo for personal use. Our dataset includes e-bike trips
and battery charging sessions spanning nearly three years, from summer 2014 until spring 2017. We also conducted three surveys
both before and during the trial. Our main findings were that the primary purpose of the e-bikes in our trial was for commuting,
with most trips lasting less than 20 minutes and most trips taking place in the summer months. Our battery charging analysis
revealed no evidence of range anxiety, and our analysis of survey results showed little correlation between anticipated and actual
use. Furthermore, when asked about their opinions about various modes of transportation, our participants rated regular bicycles
higher than e-bikes even after becoming familiar with e-bikes through the field trial. Based on our analysis, we draw several
conclusions, including the fact that the general population in Canada is still unaware of e-bikes and their potential. Moreover,
e-bike manufacturers should target sales to nonbike users, such as seniors, rather than trying to displace sales of regular bicycles.

1. Introduction

Motivated by the environmental, public health, ecologi-
cal, and carbon-footprint issues associated with gasoline-
powered automobiles, researchers, governments, and soci-
ety as a whole have been engaged in a search for viable
alternatives. Electric bicycles (e-bikes), which are propelled
by a combination of pedaling and battery-powered electric
motors, are a promising alternative to automobile transporta-
tion. Their primary advantages include lower purchase and
operating costs compared to cars, ability to travel longer
distances and with less physical effort compared to traditional
bicycles, and zero emissions during operation.

Given these benefits, e-bike adoption is accelerating
globally, with over 200 million being used in China alone [1].
This hasled to several studies on the social and environmental
impacts of e-bikes in China (e.g., [2-5]). Furthermore, in
2015, 28 percent of all bicycle sales in the Netherlands were
e-bikes [6]. These trends are expected to lead to rapid adop-
tion of e-bikes in these geographies. For example, Navigant
Research estimates that the global e-bike market will reach

USD 24.3 billion by 2025, with nearly 35 million unit sales
estimated for 2016 [7].

In contrast, little is known about North American use
patterns, where barriers to adoption of e-bikes include a lack
of widespread acceptance of cycling as a viable alternative
to conventional transportation and cold winters with poor
road conditions. North American municipalities are keen to
explore low-carbon alternatives for transportation such as e-
bikes, both to create more livable cities and to reduce the
carbon footprint of the transportation sector. However, they
lack data to make evidence-based recommendations.

To address this gap, we are conducting a three-year
field trial at the University of Waterloo, whose purpose is
to collect real e-bike usage data. In this field trial, called
WeBike [8], a fleet of approximately 30 sensor-equipped e-
bikes were distributed to Waterloo faculty/staff members and
students for their own use. Since the summer of 2014 until
now (April 2017), we have collected over 150 gigabytes of
GPS, acceleration, and battery charge and discharge data.
Furthermore, we have conducted three surveys, one per
year, asking each participant about their sentiments towards
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TABLE 1: Summary of previous e-bike field studies.

Reference Purpose Location Participants Duration Data collected

Kiefer and Behrendt [17] Usage Brighton, UK 30 bikes/93 riders 10 months GPS, assistance level, accelerometer

Fyhri and Fearnley [18] Usage Norway 66 2-4 weeks Odometer

Paefgen and Michahelles [19] Usage Switzerland 17 4 months GPS

MacArthur et al. [23] Usage  Portland, OR, USA 30 bikes 1.5 years Participant surveys

Dozza et al. [24] Safety Gothenburg, SE 3 bikes/12 riders 2 weeks Video, GPS, braking force, lateral movement

Langford et al. [25] Safety  Knoxville, TN, USA 12 bikes 2 years GPS

Schleinitz et al. [26] Speed Germany 85 4 weeks Video, speedometer

Fluchter and Wortmann [20] IoT issues Switzerland 32 bikes 4 months GPS

different modes of transportation. Additionally, the first
survey asked the participants about how often they anticipate
to use their e-bike.

This paper presents an analysis of this data. We make the
following three contributions:

(1) We present algorithms to identify trips and charging
sessions from raw collected data; while this may seem
simple, challenges arise due to noisy and incomplete
sensing data.

(2) We analyze trip statistics and battery charging pat-
terns and highlight differences between faculty/staft
members and students’ usage.

(3) We analyze participant survey responses. We show
participants’ sentiments towards various modes of
transportation, and we compare participants’ initial
estimates of how much they would ride their bikes
with actual riding histories.

The remainder of this paper is organized as follows.
Section 2 discusses related work. Section 3 gives an overview
of the WeBike project and the collected data. In Section 4,
we discuss our methodology, including algorithms to detect
trips and battery charging sessions from the collected data.
Section 5 presents our e-bike usage analysis, followed by
participant survey analysis in Section 6. Section 7 concludes
the paper with directions for future work.

An early version of this work was presented at the 2016
workshop on Electric Vehicle Systems, Data and Applications
(EV-Sys) [9]. New content in this paper includes an expanded
and updated related work, algorithmic details of trip and
charge cycle identification (Section 4), updated usage and
survey analysis (Sections 5 and 6.1; the original workshop
paper used data only up to fall 2015), and new survey
sentiment analysis (Section 6.2).

2. Related Work

Electrically powered transportation avoids or reduces a sig-
nificant portion of the environmental impact of transporta-
tion. While much of the emphasis in the past has been on
electric automobiles, attention has recently been increasingly
focused on electric bicycles, which have tremendous potential
as a zero-point-source-emission solution for urban trans-
portation [2, 10, 11]. E-bikes are rapidly gaining acceptance
as a desirable and viable alternative, and there is increasing

municipal and consumer readiness to invest in cycling in
general and in e-bikes specifically [12-14]. Current urban-
infrastructure planning trends also explore e-bike adoption
to improve population health [15] due to increased physical
activity, particularly for aging populations and others with
restricted mobility [16].

The work closest to ours are recent e-bike field studies
summarized in Table 1. Of these, our work is most similar to
Kiefer and Behrendt [17], Fyhri and Fearnley [18], Paefgen
and Michahelles [19], and Fliichter and Wortmann [20] which
also focus on usage patterns. Kiefer and Behrendt collected
GPS and motor assistance level data, but they emphasized
developing a hardware system reusable by other research
groups rather than data analysis. Fyhri and Fearnley collected
odometer data and found that participants who were given
e-bikes made longer and more frequent trips than those
with regular bicycles. The increase in trip frequency and
distance was greater for female cyclists. The study reported
by Paefgen and Michahelles involved e-bikes with GPS data
loggers, with the participant base consisting of employees of
an insurance company. However, the published results only
describe data from two e-bikes, both of which were used
mainly for commuting in the morning and in the afternoon.
Fliichter and Wortmann explored user expectations and
privacy issues, as well as technological shortcomings in GPS
and GSM technologies. Their study did not gather any other
sensor data.

Another project distributed e-bikes to Kaiser employees
in the Portland, Oregon region, and asked participants to
fill out surveys regarding their e-bike usage [21-23]. Their
findings coincided with other studies in that e-bikes lower
mobility barriers and lead to more frequent and longer trips.
However, they did not obtain conclusive results regarding
first/last mile commuting because not enough participants
used their e-bikes in that way.

Two e-bike field trials focused on safety issues. The first of
these, Dozza et al. [24], used three fully instrumented bikes
with front and rear cameras as well as brake pressure sensors.
The data was used to identify potential safety issues related
to sudden movement or braking. The main conclusion from
this study was that e-bikes are faster than regular bikes and
therefore new safety issues may arise when e-bikes interact
with other vehicles on the road. Furthermore, the trips
recorded in this study had an average duration of 14 minutes
and an average speed of 17 km/h. The second safety-related



Journal of Advanced Transportation

(a) An eProdigy Whistler e-bike

(b) A disassembled sensor kit

F1GURE 1: Illustration of the e-bikes and sensor kits used in the WeBike project.

study, Langford et al. [25], collected GPS data from a bike-
share at the University of Tennessee, Knoxville. The bikeshare
had regular bikes and e-bikes. For both types of bikes, this
study found similar safety issues, such as failures to come to
a complete stop at red lights and stop signs and wrong-way
cycling on one-way streets. Additionally, the average e-bike
speed of 13.3km/h was found to be higher than the average
regular bike speed of 10.5km/h. Interestingly, e-bikes were
found to be ridden faster on city streets, but not on other
shared-use paths, suggesting that municipal by-laws should
not necessarily ban e-bike use on shared-use paths.

We also found one study, Schleinitz et al. [26], which
focused on the speed of e-bikes compared to regular bikes. As
in the field trials we mentioned earlier, this study found that
e-bikes are ridden faster, especially by cyclists under 40 years
of age. This study involved 85 participants who used their own
bikes or e-bikes.

In addition to field trials, there have been several surveys
of e-bike owners in various parts of the world, including Aus-
tralia (e.g., [27]), China (e.g., [10, 28]), Europe (see, e.g., [29]),
and the United States (see, e.g., [21-23, 30]). The insights
obtained from owner surveys are similar to those obtained
from field trials: e-bikes are ridden faster than regular bikes
and are often used for commuting and for longer trips.

Compared to existing e-bike field trials, the WeBike
project spans a longer time frame (nearly three years) and
therefore our dataset is less affected by “outliers” such as a
single unusually cold or warm winter. Additionally, none of
the previous field studies collected battery data. The WeBike
dataset includes battery voltage and current measurements,
which allow us to analyze charging patterns, develop a range
prediction model for e-bikes [31], and compare the usage and
charging patterns of e-bikes with those of electric cars [32].
On the other hand, to reduce the cost of the field trial, we
do not have video footage or braking intensity data that were
collected by Dozza et al.

3. The WeBike Project

The WeBike field trial began in the summer of 2014. After
filling out questionnaires regarding their current modes of
transportation and attitudes towards e-bikes, 31 out of over
100 prospective participants were selected for the field trial
and each received their own e-bike to use at their discretion.
Participants were selected to cover a range of current modes
of transportation (automobile, public transport, and regular
bicycle), occupation (16 faculty/staff members and 15 grad-
uate students of the University of Waterloo), and gender (18
males and 13 females). The project will run until the end of
2017 and participants can keep their e-bikes afterwards for
their own continued use.

The eProdigy Whistler mountain bike we chose for the
study is shown in Figure 1(a). The battery provides energy to
the electric motor, which is hidden in the hub between the
pedals and drives the pedal axle when activated. The bike can
be used in fully electric mode by pushing a throttle button
located on the handlebars, or in “hybrid” mode, where the
motor provides assistance whenever the cyclist is pedaling.
The manufacturer’s estimated battery range is 45km, and
it takes 4 to 5 hours to recharge the battery from empty.
If the battery is discharged or manually turned off, the e-
bike can still be pedaled like a regular bike without motor
support, albeit with more effort due to its weight of about
21kg including the 2.5 kg battery.

We mounted the box with our custom-built sensing hard-
ware directly on top of the e-bike battery, which is detachable
from the bike frame for charging. Figure 1(b) shows the
battery and the disassembled sensor kit, and our project
website (http://blizzard.cs.uwaterloo.ca/iss4e/webike-project)
contains full technical details and assembly instructions. An
Android-based Samsung Galaxy S3 smart phone acts as
the central piece. We chose it for its sensors (GPS, clock,
gyroscope, accelerometer, and magnetometer), built-in Wi-Fi
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activity < NULL
function DETECT_ACTIVITY (sample)
if activity = NULL then
if BELONGS_TO_ACTIVITY (sample) then
activity « INITIALIZE_ACTIVITY
activity ACCUMULATE((sample)
activity. SET_START (sample)
end if
else if - activity HAS_.ENDED(sample) then
if BELONGS_TO_ACTIVITY(sample) then
activity ACCUMULATE((sample)
activity. SET_END(sample)
end if
else
if activity. CHECK_IS_VALID then
WRITE_TO_DATABASE(activity)
end if
activity < NULL
end if
end function

> check if an activity has started

> set start timestamp

> activity is ongoing: did current activity stop?
> no, check if sample satisfies activity requirements

> yes, set as preliminary end timestamp

> yes, check validity

ALGORITHM I: Activity detection.

connectivity, relatively low cost, and ease of developing
custom software that is executable on the phone. Additional
sensors for battery voltage, charging and discharging current,
and temperature communicate with the smart phone via a
Phidget board [33].

As a long-running field trial consisting of volunteers,
the WeBike study aims to be as unintrusive for participants
as possible. Data collection is automatic, without any input
from the participants. Initially, the smart phones controlling
the sensing kit were programmed to wake up and collect
data for four seconds every minute. During the four seconds
of activity, the phone records four data samples from each
sensor and then goes back to sleep mode to minimize energy
consumption (the phone battery is charged by the e-bike
battery and therefore excessive energy consumption of the
sensing kit would reduce the bike’s range). The four-second
time frame was chosen because we found it took about two
seconds after wake up to obtain a GPS fix.

In the second version of the data collection platform, we
programmed the smart phones to increase the sampling rate
whenever activities such as movement or battery charging
were detected (details in Section 4). During an activity, the
phone stays awake and collects measurements from each
sensor once per second. When an activity stops, the phone
stays awake for five more minutes before going back to sleep
mode.

For simplicity and to reduce costs, the phones do not
transmit data in real time. Instead, the collected data are
buffered on the phone and uploaded to our database server
whenever the sensing kit comes within range of a known Wi-
Fi network (such as campus Wi-Fi or a participant’s home Wi-
Fi). Each phone is associated with a unique ID so we know
which bike the data are coming from.

4. Data Processing Methodology

In this section, we explain how we identified activities such as
trips and battery charging sessions from the collected sensor
measurements. Algorithm 1 shows our activity detection
framework. The algorithm sequentially processes each data
sample and checks for activity indicators (i.e., one or multiple
sensor values exceeding a predefined threshold). If no activity
is currently ongoing, a new activity is started and its starting
time is recorded. If an activity is ongoing, we add the new
data sample to it and advance the ending time. Finally, when
we detect that an activity has ended, we check whether this
is a valid activity (e.g., that it is sufficiently long) and save
the accumulated data samples (and the starting and ending
times) to the database. This gives us the start and end points
of all trips and charging events, and we can compute further
information such as trip distance or speed by examining the
data samples accumulated during the activity.

In the remainder of this section, we instantiate
Algorithm 1 with specific values for the functions belongs_
to_activity, has_ended, and check_is_valid.

4.1. Trip Identification. It might seem that trip identification
is simple given that we have GPS fixes: a trip is taking place
when there is movement. However, GPS data turned out to be
too imprecise for trip detection: even parked bikes appeared
to be “moving” because consecutive GPS readings could
be several hundred meters apart. Furthermore, it may take
several minutes to obtain an initial GPS satellite fix, leading
to loss of information about the beginning of every trip.
Instead of GPS, we use the accelerometer, gyroscope, and
discharge current to detect trips. The details are as follows.

belongs_to_trip: a sample is said to belong to a trip if
the absolute values of either the accelerometer, gyro-
scope, or discharge current sensor exceed a certain
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threshold. These thresholds were set by examining
sensor readings of 225 trips for which we knew the
true start and end times.

has_ended: it is true if 5 minutes has passed since the
preliminary end of the trip. This means that a trip with
a break of under five minutes will not be divided into
two shorter trips and accounts for stopping at traffic
lights.

check_is_valid: trips shorter than 3 minutes are dis-
carded.

Out of the 225 trips for which we knew the precise start
and end times, the algorithm missed five trips that were under
three minutes long and found two trips that did not actually
take place. We also experimented with lower thresholds for
minimum trip length and were able to capture the five short
trips at the expense of identifying many more spurious trips.
In the end, we kept the minimum trip duration threshold
at 3 minutes. Furthermore, when comparing trip durations
computed by our algorithm with the true durations of the
225 known trips, we found that our results were within five
percent of the true durations.

4.2. Charge Cycle Identification. To detect charging, the
WeBike dataset contains readings from a Hall-effect based
current transducer that measures the current traveling
through the sensor box when it is connected in series between
the AC charger and the battery.

We instantiate the generic algorithm using the following
values:

belongs_to_trip: charging starts when the charge cur-
rent sensor exceeds a certain threshold, which elimi-
nates false positives due to sensor noise.

has_ended: it is true if 5 minutes has passed since the
preliminary end of the charge cycle.

check_is_valid: charge cycles that take less than 5 min-
utes or contain fewer than 5 samples are discarded.
Recall that it takes several hours to fully charge a
battery, so a very short charge cycle is a false positive,
typically due to a loose contact between the charger
and the battery.

Using this algorithm, we found all the true charge cycles
for which we had ground truth information.

5. Usage Data Analysis

This section presents our analysis of e-bike trips, focusing
on trip start time, duration, trips per month, and average
speed. For behaviour comparison, we split the dataset into the
staff/faculty and students subgroups. The data distributions
we analyze are not normally distributed; thus, to identify
significant deviations between groups, we use the nonpara-
metric Wilcoxon rank-sum test with a 95% confidence level.

5.1. Trip Statistics. As Table 2 shows, we detected over 6000
trips. The normalized numbers (per participant in each
group) reveal that students use their e-bikes significantly

5
TABLE 2: WeBike trip statistics.
Total Staft/faculty Students
members

Number of trips 6048 2567 3481
Aver.a.ge number of trips per 2419 1975 2901
participant

Average trip duration per 113 2.0 107

participant (min)

more often than staft/faculty members, possibly because few
Waterloo students own cars, so they are restricted to either
public transit or biking. The average trip duration will be
discussed in more detail below.

Trips per Month. Figure 2(a) shows the distribution of trips
over the course of a year. No significant differences for the
occupational breakdown exist, so we omit those charts for
brevity. The effect of the cold Canadian winter in Waterloo
can clearly be seen by a dwindling trip probability starting in
October, then sharply dropping in December, and staying low
until April. However, some participants still use their e-bikes
all year round. The dip in August is likely due to vacations
during the university’s break between terms.

Start Times. Figure 2(b) plots the distribution of trip start
times over the hour of day. This distribution shows two
prominent peaks, suggesting that participants commute to
the university in the morning between 8 am and 10 am and
return home between 4 pm and 6 pm. During work hours
between those peaks, the distribution is quite even and
it tapers out in the evening after the commute, until the
probability for trips between 11 pm and 7 am becomes almost
negligible. This leads to the conclusion that e-bikes are less
likely to be used for evening activities and they are obvi-
ously not used while people are sleeping. The split between
staff/faculty members and students in Figure 2(c) shows a
slight shift in commuting times, with the student peak about
an hour behind the staft/faculty peak. Furthermore, students
tend to use their bikes more in the evening as well.

Trip Duration. Figure 3(a) shows the frequency of trip dura-
tions (in minutes) for all participants, including a cumulative
plot summing up to the total of 6048 trips. As discussed
in Section 4.1, we count trips if they are longer than three
minutes. Therefore, the first bar only includes trips of length
three to five minutes. However, for readability, we let the bar
chart split by occupation in Figure 3(b) start from 0, although
the same restriction applies. The majority of e-bike trips take
between 7 and 15 minutes with an average of 11.3 minutes,
while only a couple of trips took more than 40 minutes.

As evidenced by the average trip duration in Table 2, staff
and faculty members in our study are more likely to use
their bikes for longer trips than students, while the latter
group is more likely (p value of 3.5 - 10™®) to go on trips of
length between three and 10 minutes. Given that a majority
of trips are for commuting, this could be partially explained
by the students living closer to the university campus. Still,
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FIGURE 2: Probability distribution of a trip start (a) on a month-of-year scale, (b) on an hour-of-day scale, and (c) on an hour-of-day scale

split by occupation.
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FIGURE 3: (a) Trip duration (cumulative) frequency; (b) trip duration probability distribution split by occupation. All plots are shown on a

minute scale.
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FIGURE 4: Probability distribution of the average trip speed in km/h (a) for all participants, (b) split by occupation.

both groups show the highest probability for trips of a length
between five and 10 minutes.

Average Speed per Trip. We calculated the average speed
by computing the distance and time between consecutive
GPS fixes during each single trip. We are interested in the
actual speed while participants ride their bikes, so we exclude
those trip sections where the GPS signal does not change
significantly; that is, the bike rider waits at a traffic light
or an intersection. We found a cut-off of segments below
3km/h to be a good threshold. This corresponds to a slow
strolling speed and can therefore be safely assumed to not
have resulted from regular riding; at most it occurred just
after starting or just before stopping. Therefore the threshold
is low enough to leave most of the trip speed information
intact while removing temporary stops.

As a consequence of measuring location at discrete times,
our results present a lower bound on the actual average speed,
as the true trip route must follow roads and pathways and
can therefore deviate from the direct (shortest) path between
two GPS fixes. Additionally, the GPS signal can be inaccurate.
This is evidenced by the right tail of the distribution in
Figure 4(a) at high speeds. As per the traffic law in the
province of Ontario, Canada, e-bike motor support must stop
above 32km/h. While it is possible to achieve an average
speed above that limit (e.g., if a trip includes a long downbhill
slope), it is more probable that the GPS fix does not reflect
the accurate location at least for some of those high-speed
trips or the e-bike was taken on a bus. Unfortunately, for the
data up to the time of this analysis, we have no measurement
for GPS accuracy in place. However, judging from the low
probability for the right tail of the histogram in Figure 4(a),
this is not a major distribution-skewing concern. As the plot
for all participants shows, most trips have an average speed
of 15-23 km/h (while in motion) with a mean of 18.9 km/h.
The breakdown by occupation in Figure 4(b) amounts to a
2.0km/h higher mean of average trip speed of staff/faculty
members (p value 2.3 - 1071).
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TABLE 3: Battery charging statistics.
Total Staft/faculty Students
members
Charging events 1049 522 527
Avelta.ge charging events per 42.0 402 44.0
participant
Average trips per charge 5.8 4.9 6.6

5.2. Battery Charging Statistics. Observing behavioural pat-
terns of battery charging events helps to understand if
participants feel range anxiety and how they incorporate e-
bikes in their daily schedules. In this section, we analyze the
hour of day and state of charge when a charge cycle begins.
With the algorithm described in Section 4.2, we detected
about 1000 charge cycles as shown in Table 3. Students, on
average, take almost two trips more between charges than
staff/faculty members; this possibly consists of one round trip.

Charging Start Times. Figure 5(a) presents the probability
distribution for the beginning of a charge cycle across all
participants. The most prominent peak between 4 pm and
7 pm coincides with the commuting peak in the trip distri-
bution chart. Thus, participants tend to charge their batteries
directly when they return home. Further comparison of those
distributions in the evening shows that the charge cycle
distribution’s tail declines more slowly but has a sharper
drop around midnight. This indicates that those who did not
charge their batteries right after coming home are likely to
plug them in later in the evening, possibly before going to bed.
As expected, very few charge cycles start between midnight
and 5am.

The morning commuter peak between 8 am and 10 am is
not as prominent as in the evening, but still visible. Since the
charging distribution follows the trip distribution relatively
closely even during work hours, we conclude that many
participants either take their charger with them or have a
charger permanently at work. Interestingly, the rising edge
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state of charge, split by occupation.

in the morning starting between 5 am and 6 am precedes the
commuting peak, meaning some participants charged their
batteries in the time between waking up and going to work. As
Figure 5(b) for the occupational split shows, this rising edge is
especially prevalent in the staft/faculty group. Participants in
this group are also the main contributors to the morning peak
after the commute to work. These findings are statistically
significant, with a p value of 0.01. Figure 5(b) also shows that
students in the study were more likely to start charging after
8 pm until late at night.

State of Charge at the Beginning of a Charge Cycle. It was
impossible to obtain the state of charge of the battery directly
and the installed current sensor proved to be too imprecise
to use a Coulomb counting method. Instead, we measured
the battery’s voltage and temperature and used the reversible
discharge curves in the battery’s spec sheet to convert those
metrics into the state of charge [34]. On a scale from 0,
meaning an empty battery, to 1, meaning a fully charged one,

Figure 6(a) presents the amount of charge cycle starts for a
given state of charge, as well as the cumulative value. At the
beginning of the study, participants were asked to recharge
their batteries as often as possible to slow the degradation of
the health of the batteries. This explains the nonzero value for
charges between 95% and 100%, as well as the high peak in the
90-95% interval, which probably coincides with the state of
the battery after one trip for most participants. Three smaller
peaks at 80-85%, 60-65%, and 45-50%, with increasingly
longer left-handed tails, can be noticed. Judging from their
distances to each other, these could be attributed to the
second, fourth, and sixth trips.

A surprisingly large number of participants charged
their batteries when they were empty, although they were
specifically told not to wait that long. The decline of charging
probability from 20% state of charge to just before the battery
drains completely suggests that the high peak at 0% charge
does not stem from participants who usually let their batteries
run low and occasionally drain them completely. We propose
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FIGURE 7: Actual riding behaviour compared to the estimated behaviour. Both figures show the average duration of a trip. (a) plots trips in
summer (May-October), while (b) shows trips in winter (November to April).

two possible explanations for this contrast between charging
from empty compared to charging from almost empty. First,
some participants might habitually charge their battery only
after they drained it in use. Second, the attached sensor kit
slowly drains the battery completely, especially when stored
for the winter. Despite the highest peaks being at empty or
(almost) full, the relative evenness of the rest of the plot leads
to the conclusion that our participants did not feel range
anxiety. This makes sense because, similar to hybrid cars,
riders can continue pedaling their e-bikes with an empty
battery.

Figure 6(b) shows that students were more likely to let
their batteries drain completely and have a higher probability
to charge in the 15-45% range, while staff and faculty
members are more likely to charge above 70% (p value of
0.049). Interestingly, charging events at above 95% are almost
exclusively from students.

6. Survey Analysis

We now analyze the results of the three participant surveys.
The first survey was taken by 172 prospective participants in
early summer 2014 before the field trial started, the second
by 24 of the 31 selected participants in fall 2015, and the third
again by 24 participants in fall 2016. After eliminating invalid
responses, we have 11 participants who completed all three
surveys and two participants who only completed the first
and third survey.

All three surveys asked the participants to rate various
modes of transportation on several criteria such as comfort
and independence, as detailed below. Additionally, partici-
pants were asked about their expected riding behaviour in
the survey before the trial or to estimate their current riding
behaviour in the yearly surveys thereafter.

We start by comparing anticipated with actual riding
behaviour and then proceed to sentiment analysis.

6.1. Anticipated versus Actual Riding. In the initial survey
before the field trial, participants were asked to estimate
the number of kilometres they would ride their e-bike on

an average day in summer (May to October) and winter
(November to April). We correlate these estimates with the
actual recorded trip data. Since the recorded GPS data is
spotty and often missing for the first couple of minutes
of a trip, we use trip durations instead. There is a strong
correlation between actual covered distance and trip duration
if we reasonably assume that, for a given participant, the
usual trip speed does not vary greatly. Therefore, even if
trip duration is not as suitable as the (unavailable) correct
recorded trip distance, it should still be possible to judge the
correlation between the estimated riding behaviour and the
actual recorded one. For a fair judgment we only consider
work days in this analysis.

Summer Riding. Figure 7(a) shows a scatter plot with the
anticipated distance per day on the x-axis and the average
number of minutes actually ridden per day on the y-axis.
Each data point represents one participant. There is no obvi-
ous trend as evidenced by a Pearson correlation coefficient of
-0.23 with a p value of 0.34. However, participants grossly
overestimated their e-bike usage, assuming an average speed
below 30 km/h.

Winter Riding. If participants with an average trip duration
of less than one minute are excluded from the analysis, then
there is a linear relationship between estimated and actual
winter riding. However, this is a rather arbitrary threshold,
so we offer the same general conclusion as for summer
trips: there is no correlation between anticipated accumulated
trip distance and actual trip duration per week (Pearson
correlation coeflicient of 0.02 with a p value of 0.93). In
comparison to the summer months, the average trip duration
is drastically reduced. Given that the average riding speed
should be lower due to worse road conditions (snow or rain
puddles in the bike lanes), participants overestimated their
riding frequency in the winter months even more.

6.2. Sentiment Analysis. Each survey asked the participants
to rate how important each of the following ten aspects of
transportation modes is to them:
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Independence. How much independence does a given
mode of transportation provide?

Stress-Free Travel. How stress-free is the travel with
that mode?

High Cost. How expensive is it?

Social Status. How well does it fit with the participant’s
perceived social status?

Fun. How much fun does it provide?
Eco-Friendliness. How environmentally friendly is it?
Reliability. How reliable is it?

Comfort. How much comfort does it provide?

Safety. How safe is it?

Healthiness. How healthy is it?

Next, each survey asked the participants to rate five
modes of transportation (car, regular bike, e-bike, public
transit, and walking) in terms of the above ten aspects.

Aspect Importance. We begin by analyzing the importance of
the above ten aspects of transportation to our participants;
the full results are shown in Figure 8. The responses of 13
participants who completed at least the first and last survey
are depicted as bars ranging from very important to very
unimportant; each group of three bars corresponds to the
first, second, and third survey, respectively. Dashed lines
mark the mean over all responses for the survey of the same
color. There are no obvious trends, meaning that the partici-
pants’ opinions about the ten aspects of transportation modes
have not changed significantly throughout the WeBike field
trial. Notably, our participants value independence, stress-
free travel, reliability, and safety of a mode of transportation,
while social status is not important.

Comparison of Modes of Transportation. Figure 9 shows the
mean and standard deviation, across all participants, of how
each aspect of each mode of transportation was rated. Again,

there are no significant changes in the ratings from the first
to the last survey.

In terms of independence, cars were unsurprisingly rated
highest followed by bikes, e-bikes, walking, and public transit.
Walking is the most stress-free mode of transportation,
followed by bikes and e-bikes, and then cars and public
transit. On reliability, participants ranked cars, bikes, and e-
bikes very close behind walking, although e-bikes are slightly
trailing behind. Participants see public transit and walking as
the safest modes of transportation, with the other modes on
par with each other. Looking at environmental friendliness,
cars take last place by far. Walking obviously was ranked first
and then came in regular bikes, followed by e-bikes and public
transit.

Opverall, participants ranked walking best by far. E-bikes
scored worse than regular bikes, which were deemed more
healthy and eco-friendly and less expensive. On the other
hand, e-bikes beat cars in all of those aspects, although cars
are seen as more independent and more comfortable.

7. Discussion and Conclusions

In this paper, we analyzed e-bike usage and battery charging
data from the WeBike field trial. By design, e-bikes were
meant to be used for commuting, potentially replacing the
use of cars or public transit. Our analysis of over 150 gigabytes
of data spanning nearly three years leads to the following
main insights.

(i) Most trips lasted less than 20 minutes and took
place during spring, summer, and fall, although some
participants did ride their bikes all year.

(ii) On average, students made more e-bike trips than
faculty and staff members, were more likely to ride in
the evening, and had lower average speed trips.

(iil) We did not see evidence of range anxiety, in that
a significant fraction of charging events happened
at a low state of charge. Furthermore, participants
appeared to charge their battery shortly after coming
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to work in the morning and returning home in the
afternoon.

(iv) We did not find much correlation between the partic-
ipants’ actual e-bike usage and their anticipated usage
(as estimated by them in the pretrial survey).

(v) Participation in the WeBike field trial did not sig-
nificantly change participants’ sentiments towards
various modes of transportation. Furthermore, e-
bikes were rated lower than regular bikes on indepen-
dence, reliability, stress-free travel, and environmen-
tal friendliness. However, e-bikes were rated higher
than cars on all aspects except independence and
comfort.

Some of our results are similar to those of existing surveys
and field trials: others have also found that e-bikes tend to be
used for commuting. Some surveys reported longer trip times
than ours (e.g., [10]) but this may be due to the relatively small
size of the city of Waterloo.

Our results also reveal new insight into the usage patterns
of e-bikes:

(i) The lack of correlation between anticipated and actual
usage suggests that our participants, and prospective
buyers in general, may not be familiar with the
capabilities of e-bikes. Thus, manufacturers may need
to educate their prospective customers.

(ii) Range anxiety does not appear to be a problem for e-
bikes with a relatively light “regular bike” form factor.
Thus, range anxiety does not appear to be a barrier
to adoption, unlike the situation for electric cars.
However, further research should be done for scooter-
like e-bikes which are much heavier.

(iii) Student participants made more trips per person than
faculty and staff members, suggesting that students
used e-bikes for more than commuting. This also
suggests that e-bikes have not fully displaced car travel
for participants such as faculty/staft members who
(unlike students) own cars.

(iv) Participants who are staff or faculty members were
faster than students, on average. Combined with the
observation that students were more likely to use
their e-bikes for other purposes besides commuting,
this suggests that e-bike commuters appreciate the
speed of e-bikes but also brings up commuter safety
concerns.

(v) We found that e-bike use does not cease in the winter
months. Hence, e-bike manufacturers in countries
with winter weather should consider offering built-in
fenders and lights for safer winter cycling.

(vi) Since our participants continued to rate regular bikes
higher than e-bikes, even after using e-bikes for a
sustained period of time, this suggests that perhaps e-
bikes should not be marketed directly against regular
bikes. Instead, e-bike retailers may want to target
populations such as seniors who could benefit from
the unique aspects of e-bikes such as the ability to be
ridden with less physical effort.

13

Our long-term objective is to use big data to support
public policy development in the area of e-bikes, to under-
stand whether and how e-bikes can become a significant
component of a sustainable urban-transportation mix, and
to understand whether e-bikes can improve public health. To
answer these questions, we plan to run a follow-up field trial
with more e-bikes and more participants from various social
and demographic groups.
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