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An urban rail transit (URT) system is operated according to relatively punctual schedule, which is one of the most important
constraints for a URT passenger’s travel. Thus, it is the key to estimate passengers’ train choices based on which passenger route
choices as well as flow distribution on the URT network can be deduced. In this paper we propose a methodology that can estimate
individual passenger’s train choices with real timetable and automatic fare collection (AFC) data. First, we formulate the addressed
problem using Manski’s paradigm on modelling choice. Then, an integrated framework for estimating individual passenger’s train
choices is developed through a data-driven approach. The approach links each passenger trip to the most feasible train itinerary.
Initial case study on Shanghai metro shows that the proposed approach works well and can be further used for deducing other
important operational indicators like route choices, passenger flows on section, load factor of train, and so forth.

1. Introduction

Passenger flow is the foundation of making and coordinating
operation plans for an urban rail transit (URT) system,
while assigning passenger flows on the URT network plays
a paramount role in analyzing (calculating, predicting, and
simulating) passenger flows. A number of transit assignment
models have been developed using both theory and practical
experience, and thorough reviews were presented in some of
the literature [1–3].However, different fromurban road traffic
systems, a URT system is operated according to relatively
punctual schedule, which is an important constraint for a
URT passenger’s travel. Thus, the passenger flow distribution
on the network is subjected to not only passengers’ physical
route choices but also their individual train choices especially
in peak hours (Figure 1), which may be a more important
issue [4]. For analyzing passenger flows on a schedule-based
URT network, it is the key to estimate passengers’ train
choices for threefold reasons:

(1) On a schedule-based URT network, passenger route
choices as well as flow distribution on the network

can be deduced if the train choices of passengers are
obtained, but that is not so either.

(2) It can give more precise estimation results for both
spatial and temporal dimensions, since URT passen-
gers may fail to board on a train in certain conditions
especially in peak hours because of the overcrowding.

(3) These pieces of information would be further useful
for improving the customer relationship manage-
ment of a URT company and for improving train
timetables, if each passenger’s train choice can be
identified over a long period of time. For example,
URT companies can check how passengers select
trains after timetable improvements.

As mentioned, there are a number of transit assignment
models developed for analyzing passengers flows on the
network. In those models, in order to obtain passenger route
choice preference data, a conventional approach is to conduct
field surveys in rail stations, asking passengers about the
exact route they took to reach their destinations. However,
the shortcomings of these methods have been identified
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Figure 1: Relationship among train choice, route choice, and flow assignment.

by more and more researchers. For example, the resulting
data from these manual methods may be subject to bias
and error and is expensive and time consuming both to
collect and to process [5]. In addition, the manual methods
usually focus only on particular location and time [6, 7].
As a result, alternative concepts and methods need to be
developed.

In recent years, automatic fare collection (AFC) data such
as smart card data have been used by transit service providers
to analyze passenger demand and system performance.
These data have been used for O-D matrices estimation [8,
9], demand analysis [10, 11], travel behavior analysis [12],
operational management, and public transit planning [13–
15], and so forth. In particular, there are emerging studies
dealing with AFC data of URT systems. Some impressive
publications include works by Chan in 2007 [16], Kusakabe
et al. in 2010 [17], Xu et al. in 2011 [7], Sun et al. in 2012
and 2016 [18, 19], Zhou and Xu in 2012 [20], Fu et al. in
2014 [21], Zhu et al. in 2014 [22], and Sun et al. in 2015
[23]. However, in spite of the widespread attention on the
use of AFC data, there are fewer studies dealing with the
passenger train choice behavior in a URT system. Kusakabe
et al. [17] developed a methodology for estimating which
train would be boarded by each smart card holder using
long-term transaction data. Their approach was based on the
assumption that smart card data that could not be identified
to the possible train choices would be assigned with equal
probability. Zhou and Xu [20] developed a passenger flow
assignment model based on entry and exit time constraints
from AFC data. The model includes an algorithm for gen-
erating path’s boarding plan which is similar to passenger
train choice. However, the matching degree employed in
this algorithm is more intuitive than rigorously defined. Sun
and Schonfeld [19] proposed a schedule-based passenger’s
path-choice estimation model using AFC data. The model
uses the train schedule connection network (TSCN) which
considers passengers’ behaviors of boarding on and alighting
from the train. However, a weighted assignment used by the

model may be not appropriate for a factual travel choice
process which uses only one route at the same time rather
than multiroutes. And the problem will further become
more obvious for those O-D pairs with fewer passenger
trips.

For better understanding of passenger flows on network,
the objective of this paper is to propose a methodology that
can estimate passenger train choices with real timetable and
AFC data. The contributions of this paper are presented as
follows:

(1) We formulate the addressed problem using Manski’s
[24] paradigm on modelling choice, which consists
of generating consideration choice set and calculating
corresponding choice probability.

(2) An integrated framework for estimating passenger
train choices is developed. The approach links each
AFC transaction (a passenger trip) to the most feasi-
ble train itinerary (a boarding plan).

(3) Real timetable and AFC data are investigated as
the inputs to the proposed methodology, instead of
relying on manual methods.

The remainder of this paper is organized as follows.
In Section 2, the estimation problem of passenger train
choices is described and formulated. Section 3 presents the
integrated estimation framework. In particular, methods of
deducing passenger boarding plan, choice probability, and
travel behavior parameters are developed with real timetable
and AFC data. Section 4 demonstrates a case study of
the proposed approach. Finally, Section 5 concludes the
paper.

2. Formulating the Problem

The topic discussed in this paper falls in the scope of choice
modelling. From a variety of studies [24, 25] it is well known
that the size and composition of choice sets domatter in cases
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Figure 2: Formulating the estimation problem of URT passenger train choices.

of choice model estimation. Incorrect choice sets can lead to
misspecification of choicemodels [26, 27]. And, furthermore,
for a variety of reasons the specification of train choice sets for
train choice modelling is different from and more complex
than mode choice and route choice, which is why this topic
deserves our special attention.

To clearly formulate the estimation problem, Manski’s
[28] paradigm on predicting choice is used. The essential
conceptual contribution of this paradigm lies in its explicit
treatment of the processes making perfect predictions of
choice behavior unattainable. Up to date, most of the existing
literature on random utility models still generally imposes
distributional assumptions directly and consequently this
practice has often caused researchers to remain unaware of
the restrictiveness of their models because it leaves so much
implicit information.

Manski’s paradigm states that the probability of passenger𝑖 to choose alternative 𝑟 from the choice set CS𝑖, which is
also called his/her consideration set, is given by the following
expression:

𝑃𝑖 (𝑟 | US𝑖) = ∑
CS𝑖∈US𝑖

𝑝𝑖 (𝑟 | CS𝑖) 𝑝 (CS𝑖 | US𝑖) , (1)

where 𝑃𝑖(𝑟 | US𝑖) is the probability that passenger 𝑖
will choose alternative 𝑟 from the universal set US𝑖 of all
alternatives available to 𝑖, 𝑝𝑖(𝑟 | CS𝑖) is the conditional
probability that passenger 𝑖 will choose alternative 𝑟 given
that CS𝑖 is his/her consideration set where CS𝑖 is a subset
of US𝑖, and 𝑝(CS𝑖 | US𝑖) is the probability that CS𝑖 is the
consideration set of passenger 𝑖 given his/her universal set
US𝑖.

Thus, the corresponding solution for estimating an indi-
vidual passenger’s train choices with schedule and AFC data
can consist of two works: one is generating the consideration
set (CS𝑖) of his/her train choices. And the other is calculating
the probability 𝑝𝑖(𝑟 | CS𝑖) that he/she will choose alternative𝑟 from CS𝑖.

The above addressed solution also can be depicted as
in Figure 2. The horizontal axis indicates the travel cost for
alternative 𝑟, and the vertical axis indicates the probability
that passenger 𝑖 chooses alternative 𝑟. As we use travel
time as cost measure in this study, “cost” and “time” are
treated the same (interchangeable) throughout the paper.
The red vertical line indicates the observed travel time of
passenger 𝑖 extracted from his/her AFC transaction record.
Each alternative in his/her consideration set (CS𝑖) can be
plotted as a dot in the figure. Then, how to estimate which
train itinerary the passenger chose in reality? It seems natural
that the alternative, which is close to the red vertical line
with higher probability, is most likely to be used by the
passenger.

3. Methodology

3.1. Overview of Estimation Procedure. For an individual
passenger, his/her train choice solution during the travel can
be depicted as a boarding plan which is the order of trains
that he/she can take to complete his/her travel. The overall
framework of our estimation procedure for this kind of
boarding plan is shown in Figure 3. At the beginning of
the algorithm, denoted by “a,” the AFC data are extracted
from the original transaction data and sorted with fields of
origin station, entry time, destination station, and exit time,
which will be used later. After these data are sorted, several
travel behavior parameters of passengers are extracted from
abundant timetable and AFC data, which is denoted by “b.”
Then, one of the records of theAFC transaction data (which is
also a passenger trip) is extracted for estimation. To generate
the consideration set, boarding plan generation algorithm is
applied at “c.” And at “d,” calculating choice probability of
boarding plan is executed. At “e,” the train choice solution
(which equals a boarding plan), the passenger choice is
determined based on the probability of each alternative in the
consideration set.These processes are repeated until all of the
records are estimated.
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3.2. Generating Boarding Plan Set

3.2.1. Universal Set Generation. This is a two-step part as
shown in Figure 4. Due to the URT system’s networked
operation, there may be several alternative routes for a given
O-D pair, and passengers in practice will choose not only the
shortest route but also the second, third, . . ., kth shortest route
for their imperfect knowledge of the network, individual
differences, factor of congestion, and so forth. First, an
improved Deletion Algorithm (DA) [29] based on Depth-
First Traversal (DFT) is introduced to find the kth shortest
route, and the initial route choice set of the O-D pair is
obtained. Second, for each route in the initial route choice set,

all the boarding choices of a given passenger at each boarding
station (origin, destination, or transfer station) on the route
are deduced with the corresponding schedule data. And then
the universal set of the passenger’s boarding plans can be
obtained.

The improved DA based on DFT is provided as follows.
Different from other 𝑘-shortest path algorithm, it will not
miss any possible route including ring routes.

Step 1. Determine the shortest tree of directed graph (𝑁,𝐴)
rooted at origin 𝑠 based on the Dijkstra Algorithm. Let 𝑃𝑘 be
the shortest path fromorigin 𝑠 to destination 𝑡 in (𝑁,𝐴). Note
that 𝑘 = 1.
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Figure 4: Illustration of two-step universal set generation.

Step 2. If 𝑘 does not exceed 𝐾, which is the maximum
number of the 𝑘th shortest paths, and there is still an
alternative path in (𝑁,𝐴), let 𝑃 = 𝑃𝑘 and proceed to Step3; otherwise, the algorithm stops.

Step 3. Let 𝐼(𝑥) denote the set of incoming arcs to node 𝑥. Let𝑛ℎ denote the first node of current path 𝑝 for which 𝐼(𝑛ℎ) > 1.
If the primed node 𝑛󸀠ℎ of node 𝑛ℎ is not in𝑁, proceed to Step4; otherwise, let 𝑛𝑗 denote the first node of current path 𝑃
without 𝑛ℎ if the node’s primed node is in {𝑁} and proceed to
Step 5.

Step 4. Add 𝑛󸀠ℎ to𝑁 and {(𝑥, 𝑛󸀠ℎ) | (𝑥, 𝑛ℎ) ∈ 𝐴 and 𝑥 ̸= 𝑛ℎ −1}
to 𝐴. Let 𝑑𝑥 denote the value of the shortest distance from 𝑠
to 𝑥. Compute 𝑑𝑛󸀠ℎ and find the shortest path from 𝑠 to 𝑛󸀠ℎ. Let𝑛𝑖 = 𝑛ℎ+1.
Step 5. Let 𝑛𝑗 denote any note following 𝑛𝑗 ∈ 𝑃.Then execute
as follows.

Step 5.1. Add the primed node 𝑛󸀠𝑗 of node 𝑛𝑗 to𝑁.

Step 5.2. Add {(𝑥, 𝑛󸀠𝑗) | (𝑥, 𝑛𝑗) ∈ 𝐴 and 𝑥 ̸= 𝑛𝑗−1}∪{(𝑛󸀠𝑗−1, 𝑛󸀠𝑗)}.
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Figure 5: Comparisons of the calculated departure time of the possible boarding plan versus the passenger’s arrival time on the platform.
Note. 𝑡𝑂 is the entry time of the given passenger at the origin station; 𝑡𝑂,𝑓 is the walking time of passenger with the fastest speed from the
entry gate to the platform at the origin station.

Step 5.3. Compute 𝑑𝑛󸀠𝑗 and find the shortest path from 𝑠 to 𝑛󸀠𝑗.
Step 6. Let 𝑃 be the shortest path from 𝑠 to the primed node𝑡󸀠(𝑘) of node 𝑡 in (𝑁,𝐴), so that 𝑃 is the best alternative path
of 𝑃𝑘−1. Set 𝑘 = 𝑘 + 1 and proceed to Step 2.

Moreover, considering the influence from congestion, a
passenger may fail to board and has to wait for the next
train. The maximum “fail to board” (FtB) number is set to
3 based on investigations in China, which means a passenger
can board on a train within four runs even if the congestion
during peak hours makes the passenger be unable to board
on the first train.

3.2.2. Consideration Set Generation. A boarding plan for a
given passenger is the order of trains that the passenger
can take to complete his/her travel. Obviously, it is difficult
to determine which train the passenger board in reality.
However, usually the passenger is rarely delayed in the
process of walking out of the destination station, and conse-
quently the train he or she alighted from can be determined
accurately.Thus, we can calculate from the destination station
to the origin station backward. For a given trip data (AFC
transaction data) obtained from the URT system, a boarding
plan is considered unreasonable and should be removed from
the universal set if its boarding time at origin station is
impossible for the passenger given the constraint of his/her
entry time (Figure 5).

Therefore, a filtering algorithm can be developed to
further narrow the universal set and get the consideration set.
The algorithm is described as follows.

Step 1. Obtain possible boarding plans (universal set). For an
actual passenger trip, with the corresponding train diagram,
the passenger’s exit time, and walking time at the destination
station, possible boarding plans for each route can be easily
deduced.

Step 2. Calculate the departure time of a possible boarding
plan. Based on the passenger’s travel chain combined with
train diagrams, the departure time 𝑡departure of the possible
boarding plan of each route can be calculated from the
destination station to the origin station backward.

Step 3. Compare and remove. As shown in Figure 5, the
calculated departure time 𝑡departure of the possible boarding
plan at the origin station is compared with the passenger’s
arrival time (𝑡𝑂+𝑡𝑂,𝑓) on the platform. If (𝑡𝑂+𝑡𝑂,𝑓) < 𝑡departure,
the boarding plan is reasonable for the passenger to choose;
otherwise, the boarding plan is unreasonable and removed
from the universal set.

3.3. Calculating Choice Probability of Boarding Plan

3.3.1. Point Probability Calculation. For a given boarding plan
in the obtained consideration set, we name a boarding station
(origin, destination, or transfer station) in the boarding plan
as a boarding point. So, the point probabilities of a boarding
plan need to be calculated firstly.

It should be noted that passengers may fail to board the
train in certain conditions especially in peak hours because
of the overcrowding, though they are usually inclined to
board on the first train as we know. Therefore, without
loss of generality, we use “point probability” to present the
probability for a passenger to board on the train within a
given boarding plan. For a boarding point 𝑤 in plan i, the
probability of leaving with the train for a passenger is 𝑝𝑤𝑗 that
can be obtained directly from the StB (success to board) rates
as shown in Figure 6.

3.3.2. Plan Probability Calculation. The plan probability is
the function of the point probabilities. Considering that the
boarding point with minimum probability is the bottleneck
for the boarding plan to be chosen, instead of the product
of those probabilities at all boarding points, we adopt the
following function:

𝑝𝑤 = min {𝑝𝑤𝑗} , (2)

where 𝑝𝑤 is the probability of plan 𝑤.
For example (as shown in Figure 6), suppose there are two

boarding plans in the consideration set. For plan 1, the point
probability is 0.66 for the train within the given boarding
plan at origin station and 0.27 at transfer station. For plan
2, the point probability is 0.34 for origin station and 0.73 for
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transfer station. Then, the probabilities for the two plans can
be calculated easily as follows:

𝑝1 = min {𝑝1𝑗}
∑𝑖min {𝑝𝑖𝑗}

= min {0.66, 0.27}
min {0.66, 0.27} +min {0.34, 0.73}

= 0.270.27 + 0.34 = 0.443,
𝑝2 = min {𝑝2𝑗}

∑𝑖min {𝑝𝑖𝑗}
= min {0.34, 0.73}
min {0.66, 0.27} +min {0.34, 0.73}

= 0.340.27 + 0.34 = 0.557.

(3)

3.4. Extracting Travel Behavior Parameters. As mentioned,
we also need to extract in advance several travel behavior
parameters of passengers using abundant AFC data resource,
for both of boarding plan set generation and choice proba-
bility calculation. These parameters include, for each station
on the network, minimum access walking time (𝑡accessmin ),
maximum access walking time (𝑡accessmax ), minimum egress
walking time (𝑡egressmin ), maximum egress walking time (𝑡egressmax ),
minimum transfer walking time (𝑡transfermin ), maximum transfer

walking time (𝑡transfermax ), and “success to board” (StB) rate
(𝑟StB). Walking time parameters are used for generating the
consideration sets, while StB rate parameter is used for
calculating the choice probabilities of boarding plans.

3.4.1. Access/Egress Walking Time Extraction. First, we
deduce parameters of 𝑡egressmin and 𝑡egressmax at every station on
the network based on AFC data. It should be noticed that
passengers may be delayed at the origin station and transfer
stations by passenger flow, the capacity utilization rate of
the train, and other factors but are rarely delayed in the
process of walking out of the destination station. Thus, it
is easier to deduce the parameters of 𝑡egressmin and 𝑡egressmax . By
matching the train’s arrival time derived from schedule data
and passengers’ exit time derived fromAFC data, passengers’
egress walking times can be obtained and its distribution can
be extracted too:

𝑓 (𝑥) = 1√2𝜋𝜎 × exp[−(𝑥 − 𝜇)22𝜎2 ] . (4)

It is a kind of normal distribution and can be calibrated
with the AFC data. Then, we set the minimum egress
walking time (𝑡egressmin ) using the 5th percentile of the calibrated
distribution and the maximum egress walking time (𝑡egressmax )
using the 95th percentile of the calibrated distribution.

Second, we try to get parameters of 𝑡accessmin and 𝑡accessmax at
every station on the network. It is noticed that passengersmay
be delayed during their walking process of access to platform,
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Table 1: Distribution of passengers boarding on different trains during 8:00 AM∼9:00 AM at Yanchang Rd.

O-D First train Second train Third train Fourth train Sum
Yanchang Rd.→ Zhongshan Bei Rd. 100 80 50 20 250
Yanchang Rd.→ Shanghai Railway Station 200 100 50 30 380
Yanchang Rd.→Hanzhong Rd. 250 200 40 25 515
Yanchang Rd.→ Xinzha Rd. 150 100 30 10 290
Yanchang Rd.→ People’s Square 200 160 35 25 420
Sum 900 640 205 110 1855

Table 2: The parameter of StB of down direction during 8:00 AM∼9:00 AM at the station of Yanchang Rd.

StB
First train Second train Third train Fourth train Sum

Trips 𝑝1 Trips 𝑝2 Trips 𝑝3 Trips 𝑝4 Trips 𝑃
900 0.485 640 0.345 205 0.111 110 0.059 1855 1.000

which makes distribution of access walking times different
from egress walking times, and passengers’ exact arrival times
on platform also cannot be obtained directly. However, we
can still suppose 𝑡accessmin = 𝑡egressmin and 𝑡accessmax = 𝑡egressmax , since there
is some symmetrical characteristic between the processes of
a passenger’s access and egress, and we just want to obtain the
threshold rather than the exact distribution.

3.4.2. Transfer Walking Time Extraction. In order to extract
parameters of 𝑡transfermin and 𝑡transfermax , two assumptions are
adopted in advance as follows:

(1) The walking speed of the same passenger should be
on the same level in his or her trip train. In other
words, for a given passenger, the walking speeds at
stations (origin station, destination station, or transfer
station) should not be different from each other to a
great extent.

(2) The delay caused by crowding, high-capacity utiliza-
tion of the train, and similar factors for an individual
passenger happens in the origin station as well as
transfer stations with equal probability.

(3) Last but not least, we just try to extract the threshold
rather than the exact distribution.

Then, the minimum transfer walking time (𝑡transfermin ) and
maximum transfer walking time (𝑡transfermax ) at a transfer station
can be calculated as follows.

Step 1. Aggregate the AFC data whose O-D flows use the
given transfer station as their unique transfer point.

Step 2. Calculate the egress walking speeds with egress
walking times and distances (𝑑egress) and set the transfer
walking speeds using the egress walking speeds; that is,

Vtransfermax = Vegressmax = 𝑑egress
𝑡egressmin

,
Vtransfermin = V

egess
min = 𝑑egress

𝑡egressmax
.

(5)

Step 3. Calculate the transfer walking times at the transfer
station with the calculated transfer walking speeds and
distances (𝑑transfer); that is,

𝑡transfermax = 𝑑transfer
Vtransfermin

,

𝑡transfermin = 𝑑transfer
Vtransfermax

.
(6)

3.4.3. StB Rate Parameter Extraction. At last, we deduce the
parameter of StB (success to board) rate. Assuming StB is a
direct outcome of overcrowding which is mostly true in peak
periods, we can conclude that as long as passengers depart
from the same station in the same direction and period, the
StB parameter is the same. In that case we can use those O-D
flows without any transfers (and hence no alternative route)
to estimate the StB parameter. And then, we can consequently
apply those parameters to O-D flows with transfers.

The parameter of StB can be defined as a vector as follows:

𝑅 = (𝑝0, 𝑝1, 𝑝2, 𝑝3) , (7)

where 𝑝0, 𝑝1, 𝑝2, and 𝑝3 are the probabilities that passengers
succeed to board on the first, second, third, and fourth train,
and obviously all items in the vector sum up to 1.

Taking a case from the Shanghai metro network, for
example, if we want to calculate the StB of down direction
during 8:00 AM∼9:00 AM at Yanchang Rd. Station of
Line number 5, we can use the data of those O-D flows
without any transfers, including Yanchang Rd. → Zhong-
shan Bei Rd., Yanchang Rd. → Shanghai Railway Station,
Yanchang Rd. → Hanzhong Rd., Yanchang Rd. → Xinzha
Rd., and Yanchang Rd. → People’s Square. Table 1 shows
the distribution of passengers boarding on different trains
during 8:00 AM∼9:00 AM at Yanchang Rd. And based
on Table 1, the StB of down direction during 8:00 AM∼
9:00 AM at the station of Yanchang Rd. can be deduced
(Table 2).
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Table 3: Samples of passenger trip records.

Number Origin station Destination station Entry time Exit time
1 Xingzhi Rd. Xinzhuang 07:00:06 07:50:47
2 Xingzhi Rd. Xinzhuang 07:00:05 07:51:00
3 Xingzhi Rd. Xinzhuang 07:21:07 08:12:45
4 Xingzhi Rd. Xinzhuang 07:25:51 08:19:05
5 Xingzhi Rd. Xinzhuang 07:26:05 08:18:45... ... ... ... ...

Table 4: The real timetable of trains on Route 1.

Xingzhi Rd. of Line 7 Changshu Rd. of Line 7 Changshu Rd. of Line 1 Xinzhuang of Line 1
Arrival Departure Arrival Departure Arrival Departure Arrival Departure
07:01:30 07:01:45 07:19:42 07:20:06 07:24:43 07:25:01 07:46:47 —
07:07:30 07:07:45 07:25:42 07:26:06 07:29:00 07:29:18 07:51:04 —
07:13:30 07:13:45 07:31:42 07:32:06 07:31:26 07:31:44 07:53:30 —
07:19:30 07:19:45 07:37:42 07:38:06 07:33:52 07:34:10 07:55:56 —
07:22:45 07:23:00 07:40:57 07:41:21 07:36:18 07:36:36 07:58:22 —... ... ... ... ... ... ... ...

Table 5: The real timetable of trains on Route 2.

Xingzhi Rd. of Line
7

Dongan Rd. of
Line 7

Dongan Rd. of
Line 4

Shanghai Indoor
Stadium of Line 4

Shanghai Indoor
Stadium of Line 1 Xinzhuang of Line 1

Arrival Departure Arrival Departure Arrival Departure Arrival Departure Arrival Departure Arrival Departure
07:01:30 07:01:45 07:24:27 07:24:42 07:28:41 07:28:56 07:32:32 07:33:00 07:36:00 07:36:27 07:51:04 —
07:07:30 07:07:45 07:30:27 07:30:42 07:33:41 07:33:56 07:37:32 07:38:00 07:38:26 07:38:53 07:53:30 —
07:13:30 07:13:45 07:36:27 07:36:42 07:38:41 07:38:56 07:42:32 07:43:00 07:40:52 07:41:19 07:55:56 —
07:19:30 07:19:45 07:42:27 07:42:42 07:43:41 07:43:56 07:47:32 07:48:00 07:43:18 07:43:45 07:58:22 —
07:22:45 07:23:00 07:45:42 07:45:57 07:48:41 07:48:56 07:52:32 07:53:00 07:45:44 07:46:11 08:00:48 —... ... ... ... ... ... ... ... ... ... ... ...

4. Case Study

4.1. Test O-D Pair. For the purpose of approach test, a case
study is conducted on a specific O-D pair (from Xingzhi Rd.
to Xinzhuang) on the Shanghai metro network. As shown in
Figure 7, there are three routes connecting the original station
(Xingzhi Rd.) and the destination station (Xinzhuang), which
can be obtained by improved DA based on DFT. The first
route moves through Line 7 and Line 1, with the transfer
station: Changshu Rd. The second route moves through Line
7, Line 4, and Line 1, with the transfer stations: Dongan
Rd. and Shanghai Indoor Stadium. The third route travels
through Line 7, Line 9, and Line 1, with the transfer stations:
Zhaojiabang Rd. and Xujiahui. The theoretic travel times of
the three routes are 2970 seconds, 3485 seconds, and 3488
seconds, respectively.

4.2. Data Used in the Test. In the test, 57 passenger trips
records between 07:00 AM and 08:00 AM and obtained from
the AFC system are used to verify the proposed approach.
Table 3 gives a sample record from these 57 passenger trips.

Moreover, as another important input of the proposed
approach in this paper, the corresponding real timetables of
the relevant URT lines (e.g., Line 1, Line 4, Line 7, and Line
9) were obtained from automatic train supervision (ATS)
system and used too. Tables 4–6 show the samples of this data.

4.3. Results and Discussions. Using the above input data,
the boarding plan estimation for these 57 passenger trips
is performed with the proposed approach. Table 7 gives a
sample of the estimation results. As can be seen in the table,
each passenger trip (which equals anAFC transaction record)
derived from the AFC system can be assigned to the unique
boarding plan by the proposed approach.

As mentioned, for a schedule-based URT system, the
result in Table 7 is the key for passenger flow analysis, based
on which other important indicators (e.g., route choices,
passenger flows on section, and load factor of train, as shown
in Table 8 and Figure 8) can be deduced furthermore.

Companying with the above case study, some extended
discussions can be further made. Previous studies use dis-
crete choice analysis extensively to predict passenger choice
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Table 6: The real timetable of trains on Route 3.

Xingzhi Rd. of Line
7

Zhaojiabang Rd. of
Line 7

Zhaojiabang Rd. of
Line 9 Xujiahui of Line 9 Xujiahui of Line 1 Xinzhuang of Line 1

Arrival Departure Arrival Departure Arrival Departure Arrival Departure Arrival Departure Arrival Departure
07:01:30 07:01:45 07:22:25 07:22:43 07:27:43 07:28:07 07:30:48 07:31:06 07:33:03 07:33:30 07:51:04 —
07:07:30 07:07:45 07:28:25 07:28:43 07:31:43 07:32:07 07:34:48 07:35:06 07:35:29 07:35:56 07:53:30 —
07:13:30 07:13:45 07:34:25 07:34:43 07:35:43 07:36:07 07:38:48 07:39:06 07:37:55 07:38:22 07:55:56 —
07:19:30 07:19:45 07:40:25 07:40:43 07:39:43 07:40:07 07:42:48 07:43:06 07:40:21 07:40:48 07:58:22 —
07:22:45 07:23:00 07:43:40 07:43:58 07:43:43 07:44:07 07:46:48 07:47:06 07:42:47 07:43:14 08:00:48 —... ... ... ... ... ... ... ... ... ... ... ...

Table 7: Samples of estimated boarding plans for passenger trips.

Number Passenger entry time Passenger exit time Boarding plan Route
Train ID Boarding time Route number Route description

1 07:00:06 07:50:47 031-411 07:01:30–07:24:43 1 Line 7→ Line 1
2 07:00:05 07:51:00 031-411 07:01:30–07:24:43 1 Line 7→ Line 1
3 07:21:07 08:12:45 321-211-197 07:22:45–07:48:41–07:55:28 2 Line 7→ Line 4→ Line 1
4 07:25:51 08:19:05 067-503 07:29:15–07:53:20 1 Line 7→ Line 1
5 07:26:05 08:18:45 067-503 07:29:15–07:53:20 1 Line 7→ Line 1
6 07:02:06 07:52:48 042-432 07:07:30–07:29:00 1 Line 7→ Line 1
7 07:00:58 07:53:18 042-432 07:07:30–07:29:00 1 Line 7→ Line 1
8 07:07:02 07:55:34 042-476 07:07:30–07:31:26 1 Line 7→ Line 1
9 07:20:11 08:09:58 321-533 07:22:45–07:43:36 1 Line 7→ Line 1
10 07:33:15 08:24:40 164-236-097 07:35:45–07:59:43–08:04:41 3 Line 7→ Line 9→ Line 1
11 07:39:33 08:31:33 344-047-113 07:42:15–08:08:41–08:14:56 2 Line 7→ Line 4→ Line 1
12 07:41:07 08:30:58 403-136 07:45:30–08:05:30 1 Line 7→ Line 1
13 07:38:41 08:36:32 403-047-075 07:45:30–08:08:41–08:17:22 2 Line 7→ Line 4→ Line 1
14 07:40:34 08:36:52 344-369 07:42:15–08:07:43–08:14:25 3 Line 7→ Line 9→ Line 1
15 07:58:09 08:53:26 401-059-119 08:01:45–08:27:43–08:33:53 3 Line 7→ Line 9→ Line 1... ... ... ... ... ... ...

Figure 7: Rail network connecting the test O-D pair (Xingzhi Rd.→ Xinzhuang).



Journal of Advanced Transportation 11

Table 8: Route choices deduced from estimated boarding plans.

Route number Route description Passengers Proportion (%)
1 Line 7→ Line 1 34 59.6
2 Line 7→ Line 4→ Line 1 12 21.1
3 Line 7→ Line 9→ Line 1 11 19.3

Figure 8: Example of factual train diagrams with passenger flows
on sections and load factors of trains.

behavior. Such a model requires preference data and still
displays great variability in real-world estimation. Recently,
in this context, some researchers try to reveal route choice
from observed passenger travel time derived from smart
card system (Kusakabe et al., 2010; Sun and Xu, 2012; Zhou
and Xu, 2012; Zhu et al., 2014; Fu et al., 2014; Sun et al.,
2015). As demonstrated in the case study, we figure out the
key issue of estimating passenger boarding plans, based on
which all the route choice, section flow, load factor, and so
forth can be deduced, furthermore, and no longer depend
on the assumption that smart card data that could not be
identified to the possible train choices would be assigned
with equal probability (Kusakabe et al., 2010). Furthermore,
the proposed approach improves the methodologies of Sun
and Schonfeld [19] and Zhou and Xu [20] on calculating
passenger boarding plans. On the other hand, compared
to the study efforts presented in [21, 23], our approach
models the problem of interest considering the temporal
dynamics induced by demand profiles, service timetables,
and crowdedness.

5. Conclusions

A URT system is operated based on its schedules. Different
from those urban road traffic systems, it is more important to
estimate passengers’ train choices based on which passenger
route choices as well as flow distribution on network can be
deduced. Developments in the application of AFC systems
have made the collection of detailed passenger trip data in
a URT network possible and can be used to obtain more
in-depth understanding to passenger travel behaviors. In
this paper, we aim to formulate the problem of estimating
passenger train choices and subsequently propose an inte-
grated approach for the addressed estimation combining real
timetable and AFC data.

Advantages of the proposed approach include the follow-
ing:

(1) A posteriori estimation framework, which uses
revealed information combining real timetable and

AFC data of URT systems rather than the a priori
knowledge, was proposed.

(2) The approach links each AFC transaction (a pas-
senger trip) to the most feasible train itinerary (a
boarding plan). It is more appropriate for a factual
travel choice process which uses only one route at the
same time rather than multiroutes.

(3) The travel behavior parameters used in the approach
are exacted from abundant timetable and AFC data
rather than the manual surveys. Meanwhile, those
exact pieces of information, which are difficult to be
measured such as distributions of passengers’ walking
speeds and times, are also avoided to be obtained.

Furthermore, the proposed approach in this paper can
be used for other challenges in the field of URT operation
and management such as validation of rail transit assign-
ment models, time-dependent train load estimation, and
integrated simulation of passenger flows on network.
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