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In this paper, we propose a sparse optimization approach to maximize the utilization of regenerative energy produced by braking
trains for energy-efficient timetabling in metro railway systems. By introducing the cardinality function and the square of the
Euclidean norm function as the objective function, the resulting sparse optimization model can characterize the utilization of the
regenerative energy appropriately. A two-stage alternating directionmethod ofmultipliers is designed to efficiently solve the convex
relaxation counterpart of the original NP-hard problem and then to produce an energy-efficient timetable of trains. The resulting
approach is applied to Beijing Metro Yizhuang Line with different instances of service for case study. Comparison with the existing
two-step linear program approach is also conducted which illustrates the effectiveness of our proposed sparse optimization model
in terms of the energy saving rate and the efficiency of our numerical optimization algorithm in terms of computational time.

1. Introduction

With the rapid increase in industry and population in cities,
the metro railway system has been playing a more and more
important role in urban economic and social development for
metropolis due to its high loading capacity and low pollution.
Despite the inherent efficiency, the energy consumption of
metro railway systems is of a huge magnitude and the
efficient energy management for such systems is then of
global importance. It is known that the energy consumption
of trains is largely influenced by the driving strategy and
the arrivals and departures in the timetable, which inspires
the extensive study on energy-efficient train control and
energy-efficient train timetabling. A careful treatment on
such topics can be found in the nice survey paper by
Scheepmaker et al. in [1], with focuses on reviewing the
mathematical problem formulations and solution approaches
in the literature. Related work on energy optimization for rail
traffic systems such as tramway systems has also been well
studied; see, e.g., [2, 3].

Among all the involved energy saving strategies in metro
railway systems, an energy-efficient timetable with regen-
erative braking which schedules the arrival time and the

departure time of each train to and from the platforms it
visits for the minimization of energy consumption and the
maximization of produced regenerative energy utilization,
has gained considerable academical attention in recent years.
In 2012, Peña-Alcaraz et al. [4] proposed a large-scale mixed
integer programming model to maximize the utilization of
regenerative braking energy by means of maximizing the
total duration of all possible synchronization processes of
acceleration and regenerative braking between all possible
train pairs. The simulation model is applied to line three
of the Madrid metro system and the energy savings of
the optimized timetable are reported to be about 7% on
average. By merely choosing those train pairs suitable for
regenerating energy transfer other than all possible train
pairs in [4], Das Gupta et al. developed a more tractable
mixed integer programming model in [5]. In 2013, Yang et al.
[6] presented a cooperative integer programming model to
maximize the time overlaps of nearby accelerating and brak-
ing trains and applied a genetic algorithm to approximately
solve the resulting optimization model. For the case study
on Beijing Metro Yizhuang Line, they reported 22.1% and
15.2% increase of effective time overlaps during peak hours
and off-peak hours, respectively. A two-objective timetable
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optimization model for maximizing the regenerative braking
energy with consideration of the passenger waiting time was
developed by Yang et al. in [7] where the genetic algorithm
was again adopted to solve the optimization model. An
integrated energy-efficient operation model was proposed
by Li & Lo in [8] with the speed profile part to minimize
the net energy consumption and the timetabling part with
headway constraints to synchronize the accelerating and
regenerative braking for the reuse of regenerative energy.
About 25% energy savings were reported for Beijing Metro
Yizhuang Line with the headway between trains being 90
seconds. Li & Lo further developed an integrated energy-
efficient timetable and speed profile optimization model
to determine the cycle time, the headway time, and the
speed profiles for a metro line to minimize the energy
consumption [9]. The resulting mathematical model is a
strictly convex quadratic programming problem with simple
bound constraints and an analytical approach based on the
first-order optimality condition (i.e., the KKT condition). An
integrated timetable and speed profile optimization model
with Taylor approximation were also considered by Yang et
al. in [10] where the active set method was employed to
handle the resulting strictly convex quadratic programming
with linear constraints. Under the assumption that trains
are operating in the optimal speed profiles, Yang et al. [11]
proposed a mixed integer programming model aiming at
synchronizing the arrivals and departures of the trains such
that regenerative braking energy can be used as much as
possible during the whole day service. A two-step linear
programming model with the first step to minimize the
total energy consumed by all trains and the second step to
maximize the utilization of regenerative energy produced
by braking trains for a whole day service in metro railway
networks was proposed by Das Gupta et al. in [12]. To ensure
the transfer of maximum possible regenerative energy from
braking trains to accelerating trains, a time overlap vector was
introduced which requires to be as close as possible to the
zero vector. To effectively quantify such a requirement, the ℓ0 -
norm and the ℓ1-norm were employed in [12]. By adopting
the ℓ1-norm heuristic for the original ℓ0-norm (i.e., the
number of nonzero components in a vector), together with
epigraph approach that equivalently transforms the convexℓ1-normminimization to a linear programming, the resulting
relaxation problem in the second step was efficiently solved
by Gurobi Optimizer. Numerical experiments on different
instances of service PES2-SFM2 of line 8 of Shanghai Metro
network spanning a full service period of one day were
conducted and a significant reduction in effective energy
consumption with the worst case being 19.27% was reported
by applying the proposed approach.

The original ℓ0-norm minimization problem proposed
in [12] is well-known to be NP-hard due to the discon-
tinuity and nonconvexity of the ℓ0-norm. Such a type of
optimization problems is coined by sparse optimization in
the optimization community and has a wide range of appli-
cations in compressed sensing, signal processing, statistical
regression, financial portfolio, and so on. Various tractable
relaxation strategies are proposed to replace the ℓ0-norm,
such as the popular convex surrogate ℓ1-norm [13], and some

weighted ℓ1-norm variants [14]. Numerical algorithms are
also developed for the resulting relaxation models, such as
the greedy-type methods [15], the first-order optimization
methods [16], and second-order methods for some special
structured models [17].

Inspired by the development of sparse optimization
methods, in this paper, a sparse optimization model with theℓ0-norm and the squared Euclidean norm as the objective
function is built to maximize the utilization of the regen-
erative braking energy. Motivated by the adaptive LASSO
model in the high-dimensional statistical regression [14], we
propose a weighted ℓ1-norm relaxation scheme. A two-stage
alternating direction method of multipliers (TSADMM) is
then proposed with the first stage for calculating an appro-
priate weight vector and an initial point for the iterative
algorithm in the second stage. To illustrate the effectiveness
of our new mathematical model, the linear programming
model in [12], a quadratic model merely considering the
squared Euclidean norm, and our weighted-ℓ1 companied
with the squared Euclidean norm are applied toBeijingMetro
Yizhuang Line for comparison. The numerical results on
energy savings show that our model is the best among them.
To demonstrate the efficiency of our proposed TSADMM,
the academical version of CVX (http://cvxr.com/cvx/) is
called to solve our model as well. The numerical results in
computation time show that our algorithm outperforms that
used in CVX.

The rest of this paper is organized as follows. In Sec-
tion 2, the sparse optimization model for energy-efficient
timetabling in metro railway systems is built. In Section 3,
the weighted ℓ1 norm relaxation model is proposed and
a two-stage alternating direction method of multipliers
(TSADMM) is designed to get an approximate optimal solu-
tion. Theoretical global convergence is established as well. By
applying our proposed approach to Beijing Metro Yizhuang
Line, we demonstrate the effectiveness of our proposed
model and the efficiency of our proposed TSADMM by
the numerical results in Section 4. Conclusions and future
research are given in Section 5. For reference, the appendix
provides the proof of the global convergence theorem for our
algorithm.

2. Model Formulation

2.1. Notation. The notation that will be used throughout the
paper is listed in Table 1 for the convenience of the subsequent
model formulation.

2.2. Constraints. The set of constraints in the metro train
networks including constraints of the trip time, the dwell
time, the headway time, the total travel time, and the domain
of event times will be described in this subsection, following
from [12].

(i) Trip time constraint: it includes the trip time con-
straints with tracks and with crossing-overs. For the
former one, when a train 𝑡 ∈ T has a trip from
platform 𝑖 ∈ N𝑡 to platform 𝑗 ∈ N𝑡 along the track(𝑖, 𝑗) ∈ K𝑡, the departure time 𝑑𝑡𝑖 and the arrival
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Table 1: A list of notations.𝑎𝑡𝑖 The arrival time of train t at platform i𝑑𝑡𝑖 The departure time of train t from platform i
T The set of all trains|⋅| The cardinality of a set, i.e., the number of elements in a set[𝑡𝑟𝑡𝑖𝑗, 𝑡𝑟𝑡𝑖𝑗] The trip time window for train 𝑡 from platform 𝑖 to 𝑗𝜙 The set of all the crossing-overs
O𝑖𝑗 The set of all train pairs associated with the crossing-over (𝑖, 𝑗)[𝜅𝑡𝑡󸀠𝑖𝑗 , 𝜅𝑡𝑡󸀠𝑖𝑗 ] The trip window for train 𝑡 on the crossing-over (𝑖, 𝑗)[𝑑𝑤𝑡

𝑖 , 𝑑𝑤𝑡

𝑖 ] The dwell time window for train 𝑡 at platform 𝑖
S The set of all platform pairs at the same interchange station
C𝑖𝑗 The set of all connection train pairs for a platform pair (𝑖, 𝑗)[𝑐𝑡𝑡󸀠𝑖𝑗 , 𝑐𝑡𝑡󸀠𝑖𝑗 ] The connection window between the train 𝑡 at the platform 𝑖 and the train 𝑡󸀠 at platform 𝑗
H𝑖,𝑗 The set of train-pairs that move along the track (𝑖, 𝑗)[ℎ𝑡𝑡󸀠𝑖 , ℎ𝑡𝑡󸀠𝑖 ] The headway window between train 𝑡 and 𝑡󸀠 arrival at or departure from platform 𝑖[𝑡𝑡𝑡, 𝑡𝑡𝑡] The window of total travel time constraint for train 𝑡𝑓𝑖𝑗 Energy consumption associated with the trip (𝑖, 𝑗) ∈ A𝑡𝑟

P The set of all platform pairs powered by a same electrical substation󳨀→𝑡 Temporally closest train to the right of train t←󳨀𝑡 Temporally closest train to the left of train t∇𝑡
𝑖 The relative distance from 𝑎𝑡𝑖 to regenerative alignment pointΔ𝑡
𝑖 The relative distance from 𝑑𝑡𝑖 to the consumption alignment point󳨀→𝜀 A set of 𝜀 containing elements of the form (𝑖, 𝑗, 𝑡, 󳨀→𝑡 )←󳨀𝜀 A set of 𝜀 containing elements of the form (𝑖, 𝑗, 𝑡,←󳨀𝑡 )

N The set of all platforms
K The set of all tracks
K𝑡 The set of tracks visited by a train 𝑡
N𝑡 The set of platforms visited by a train t
K𝑡𝑟 The set of all arcs associated with trip time constraints𝛿𝑆(⋅) The indicator function with respect to the set SΠ𝑆(⋅) The projection operator onto the set S
sign(⋅) The sign function∘ The componentwise product, also known as the Hadamard product𝐴𝑇 The transpose of the matrix 𝐴
V𝑒𝑐(𝑋) The column vector generated by stacking all columns of the matrix𝑋

time 𝑎𝑡𝑗 are bounded by 𝑡𝑟𝑡𝑖𝑗 and 𝑡𝑟t𝑖𝑗, respectively. The
corresponding constraints are𝑡𝑟𝑡𝑖𝑗 ≤ 𝑎𝑡𝑗 − 𝑑𝑡𝑖 ≤ 𝑡𝑟𝑡𝑖𝑗, ∀𝑡 ∈ T, ∀ (𝑖, 𝑗) ∈ K

𝑡. (1)

For the latter one, one knows that a crossing-over
connecting two train-lines is a special track, where a
train-line is a path with some nonopposite platforms
and tracks. The crossing-over is to connect the ter-
minal platform of a train-line with the first platform
of another. A train 𝑡 turns around by a crossing-over
and departs from the first platform to travel through
the train-line after it arrives at the final platform at
another train-line, and then the same train is labelled
as 𝑡󸀠 in order to treat it as two different trains [20].
Let 𝜙 represent the set of all crossing-overs. Consider
a crossing-over (𝑖, 𝑗) ∈ 𝜙, we denote the set of

all train pairs associated with a same physical train
through the crossing-over (𝑖, 𝑗) by O𝑖𝑗. The trip time
to travelling through the crossing-over (𝑖, 𝑗) ∈ 𝜙 is
the time from the departure from the platform 𝑖 (train
is labelled as 𝑡) to the arrival at the platform 𝑗 (train
is labelled as 𝑡󸀠), which has to stay within a window[𝜅𝑡𝑡󸀠𝑖𝑗 , 𝜅𝑡𝑡󸀠𝑖𝑗 ]. And the corresponding constraints can be
described as below:𝜅𝑡𝑡󸀠𝑖𝑗 ≤ 𝑎𝑡󸀠𝑗 − 𝑑𝑡𝑖 ≤ 𝜅𝑡𝑡󸀠𝑖𝑗 , ∀ (𝑖, 𝑗) ∈ 𝜙, ∀ (𝑡, 𝑡󸀠) ∈ O𝑖,𝑗. (2)

(ii) Dwell time constraint: when a train 𝑡 ∈ T arrives
at a platform 𝑖 ∈ N𝑡, it should dwell there in a
time interval denoted by [𝑑𝑤𝑡

𝑖 , 𝑑𝑤𝑡

𝑖] to make sure that
passengers can get off and get on the train before
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it departures from the platform 𝑖. The dwell time
constraint can be written as follows:𝑑𝑤𝑡

𝑖 ≤ 𝑑𝑡𝑖 − 𝑎𝑡𝑖 ≤ 𝑑𝑤𝑡

𝑖 , ∀𝑡 ∈ T, ∀𝑖 ∈ N
𝑡. (3)

(iii) Connection constraint: an interchange station used
by connecting trains is to make passengers transfer
between trains on different lines. Any platform pair(𝑖, 𝑗) ∈ S consists of two platforms at a same inter-
change station. For a connection train pair (𝑡, 𝑡󸀠) ∈
C𝑖𝑗, we assume that the train 𝑡 arrives at platform𝑖 and another train 𝑡󸀠 departs from platform 𝑗. The
difference of both times can be in a window [𝑐𝑡𝑡󸀠𝑖𝑗 , 𝑐𝑡𝑡󸀠𝑖𝑗 ]
to maintain that passengers can get off from the
former train and get on the latter. The constraint of
connection can be described as follows:𝑐𝑡𝑡󸀠𝑖𝑗 ≤ 𝑑𝑡󸀠𝑗 − 𝑎𝑡𝑖 ≤ 𝑐𝑡𝑡󸀠𝑖𝑗 , ∀ (𝑖, 𝑗) ∈ S, ∀ (𝑡, 𝑡󸀠) ∈ C𝑖𝑗. (4)

(iv) Headway time constraint: similar to the trip time
constraints, the headway time constraints includes
those with tracks and with crossing-overs. In any
subway system, a minimum interval between the
departures and arrivals of sequenced trains on the
same track is maintained, called headway time. To
meet the needs of the passengers, railway networks
in many cities designate an upper bound between the
departures and arrivals of consecutive trains, in order
to ensure passengers donotwait for a long time before
the arrival of next train. DefineH𝑖𝑗 as the set of pairs
of successive trains that pass by track (𝑖, 𝑗) ∈ K.

Consider (𝑡, 𝑡󸀠) ∈ H𝑖𝑗, and let [ℎ𝑡𝑡󸀠𝑖 , ℎ𝑡𝑡󸀠𝑖 ] and [ℎ𝑡𝑡󸀠𝑗 , ℎ𝑡𝑡󸀠𝑗 ]
be the time intervals that maintained the departures
and arrivals of consecutive trains 𝑡 and 𝑡󸀠 from and to
platform 𝑖 and platform 𝑗, respectively. For any (𝑖, 𝑗) ∈
K between platform 𝑖 and platform 𝑗, headway time
constraint with tracks can be described as follows:ℎ𝑡𝑡󸀠𝑖 ≤ 𝑑𝑡𝑖 − 𝑑𝑡󸀠𝑖 ≤ ℎ𝑡𝑡󸀠𝑖 ,ℎ𝑡𝑡󸀠𝑗 ≤ 𝑎𝑡𝑗 − 𝑎𝑡󸀠𝑗 ≤ ℎ𝑡𝑡󸀠𝑗 ,∀ (𝑖, 𝑗) ∈ K, (𝑡, 𝑡󸀠) ∈ H𝑖𝑗. (5)

In the other case, consider two consecutive trains 𝑡1
and 𝑡2 that go through a crossing-over (𝑖, 𝑗) ∈ 𝜙 after
departing from the final platform 𝑖 of a train-line.
They will be labelled as 𝑡󸀠1 and 𝑡󸀠2 when they arrive at
the first platform 𝑗 of some other train-line. Let Õ𝑖𝑗

be the set of all such two-train pairs ((𝑡1, 𝑡󸀠1), (𝑡2, 𝑡󸀠2)).
There is an interval time window [ℎ𝑡1𝑡2𝑖 , ℎ𝑡1𝑡2𝑖 ] between
the departures of trains 𝑡1 and 𝑡2 from platform 𝑖 and
a window [ℎ𝑡󸀠1𝑡󸀠2𝑗 , ℎ𝑡󸀠1𝑡󸀠2𝑗 ] between the arrivals of trains 𝑡󸀠1

and 𝑡󸀠2 at platform 𝑗. We can then write the headway
constraints with crossing-overs as follows:ℎ𝑡1𝑡2𝑖 ≤ 𝑑𝑡1𝑖 − 𝑑𝑡2𝑖 ≤ ℎ𝑡1𝑡2𝑖 ,ℎ𝑡󸀠1𝑡󸀠2𝑗 ≤ 𝑎𝑡󸀠1𝑗 − 𝑎𝑡󸀠2𝑗 ≤ ℎ𝑡󸀠1𝑡󸀠2𝑗 ,∀ (𝑖, 𝑗) ∈ 𝜙, ∀ ((𝑡1, 𝑡󸀠1) , (𝑡2, 𝑡󸀠2)) ∈ Õ𝑖𝑗. (6)

Besides, the headway time is related to the passenger
demand and the number of trains. Let 𝑚󸀠 be the
number of trains that are in service per hour, 𝑐𝑡 be the
train capacity, 𝑢 be the train utility rate, and 𝐷 be the
passenger demand.Then,𝐷 = 𝑐𝑡 ×𝑢×𝑚󸀠 [8]. Let ℎ be
the headway time. Since ℎ = 3600/𝑚󸀠, we haveℎ = 3600 × 𝑐𝑡 × 𝑢𝐷 . (7)

Here we assume that 𝑢 and 𝑐 are constant while
the passenger demand varies. In other words, the
headway time of trains changes at different periods in
a day.

(v) Total travel time constraint: when a train 𝑡 ∈ T

has a trip, traversing all platforms and tracks in
chronological order, it can have the total travel time
between 𝑡𝑡𝑡 and 𝑡𝑡𝑡, to meet the needs of passengers
in subway systems. Total travel time constraints can
be written as follows:𝑡𝑡𝑡 ≤ 𝑑𝑡N𝑡(|N𝑡|) − 𝑎𝑡N𝑡(1) ≤ 𝑡𝑡𝑡, ∀𝑡 ∈ T, (8)

(vi) Domain of event times: we set zero second as the time
of the departure of the first train from a platform in
a day when the railway is in service. By adding the
maximum possible values of all trip times and dwell
times, we can set an upper bound for arrival of the last
train at the final platform. And we denote the upper
bound by 𝑚𝑇 ∈ 𝑍++. So, we can write the domain of
the event time constraints as follows:0 ≤ 𝑎𝑡𝑖 ≤ 𝑚𝑇,0 ≤ 𝑑𝑡𝑖 ≤ 𝑚𝑇,∀𝑡 ∈ T, ∀𝑖 ∈ N

𝑡. (9)

2.3. Minimizing the Energy Consumption. The major energy
consumption of a train is from the acceleration phase. To
efficiently minimize the total energy consumption of trains
in a metro railway network, Das Gupta [12] proposed an
optimization model with linear inequality constraints to get a
feasible timetable. The involved optimization model takes the
form of

min ∑
(𝑖,𝑗)∈K𝑡𝑟,𝑡∈T

𝑓𝑖𝑗 (𝑎𝑡𝑗 − 𝑑𝑡𝑖)𝑠.𝑡. (1)–(9)
(10)
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Figure 2: The speed limit of a train with a multiphase section.

where 𝑓𝑖𝑗 : R++ 󳨀→ R++ with argument (𝑎𝑡𝑗 − 𝑑𝑡𝑖) being the
energy consumption function that is unknown in advance
and some best possible affine approximate function in the
sense of least-squares by using the measured energy in
practice is then utilized. By denoting 𝑥 fl vec(𝑋𝑇) with

𝑋 = (((((((((((
(

𝑎11 𝑎21 ⋅ ⋅ ⋅ 𝑎|T|−1
1 𝑎|T|

1𝑑11 𝑑21 ⋅ ⋅ ⋅ 𝑑|T|−1
1 𝑑|T|

1𝑎12 𝑎22 ⋅ ⋅ ⋅ 𝑎|T|−1
2 𝑎|T|

2𝑑12 𝑑22 ⋅ ⋅ ⋅ 𝑑|T|−1
2 𝑑|T|

2... ... d
... ...𝑎1|N| 𝑎2|N| ⋅ ⋅ ⋅ 𝑎|T|−1

|N|
𝑎|T|
|N|𝑑1|N| 𝑑2|N| ⋅ ⋅ ⋅ 𝑑|T|−1

|N|
𝑑|T|
|N|

)))))))))))
)

(11)

the approximate counterpart of (10) can be formulated by the
following linear programming:

min ∑
(𝑖,𝑗)∈K𝑡𝑟

𝑐𝑖𝑗 (𝑥𝑗 − 𝑥𝑖)𝑠.𝑡. 𝑙𝑖𝑗 ≤ 𝑥𝑗 − 𝑥𝑖 ≤ 𝑢𝑖𝑗, (𝑖, 𝑗) ∈ K0 ≤ 𝑥𝑖 ≤ 𝑚𝑇, 𝑖 = 1, 2, . . . , 𝑛, (12)

where 𝑛 = 2|T||N|,K is a subset of {(𝑖, 𝑗) | 𝑖, 𝑗 = 1, 2, . . . , 𝑛}
that collects all those indices according to constraints (1)-
(8), and K𝑡𝑟 is a subset of K that collects all those indices
according to constraints (1)-(2). By utilizing its optimal
solution 𝑥, we can get 𝑎𝑡𝑗’s and 𝑑𝑡𝑗’s such that

𝑎𝑡𝑗 − 𝑑𝑡𝑖 = 𝑎𝑡𝑗 − 𝑑𝑡𝑖 , ∀𝑡 ∈ T, ∀ (𝑖, 𝑗) ∈ K
𝑡. (13)𝑎𝑡󸀠𝑗 − 𝑑𝑡𝑖 = 𝑎𝑡󸀠𝑗 − 𝑑𝑡𝑖 , ∀ (𝑖, 𝑗) ∈ 𝜙, ∀ (𝑡, 𝑡󸀠) ∈ O𝑖,𝑗. (14)

For all other constraints, lower and upper bounds are allowed
to vary as described in (3)-(9).

2.4. Maximizing the Energy Regeneration: A Sparse Opti-
mization Model. We adopt the speed profile by maximum
accelerating, speed holding, maximum braking strategy from
[18] with a multi-phase-speed-limit section, as described in
Figures 1 and 2.

Let 𝑡1, 𝑡2, and 𝑡3 be the time of maximum accelerating,
speed hold, and maximum braking phases, and 𝑎𝑎𝑐𝑐 and 𝑎𝑏𝑟𝑎
are the accelerating rate of the accelerating and braking phase.
It is known that, with regenerative braking, kinetic energy
can be converted into electricity which can be fed back to the
power supply system to be used by other nearby trains in the
same electric substation. Denote the conversion factor from
electricity to kinetic energy as 𝜃𝑎𝑐𝑐 and the conversion factor
from kinetic energy to regenerative electricity as 𝜃𝑏𝑟𝑎 and the
resistance rate at the speed holding phase as 𝛾. For any two
adjacent stations, we adopt the formula from [18] to calculate
the energy consumption for accelerating and the regenerative
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Figure 3: Use rectangles instead of energy consumption and
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energy produced during braking, denoted by 𝐸𝑐𝑜𝑛 and 𝐸𝑟𝑒𝑔,
respectively, in the way as below:𝐸𝑐𝑜𝑛 = 𝑎2𝑎𝑐𝑐𝑡212𝜃𝑎𝑐𝑐 + ∫𝑡1+𝑡2

𝑡1

𝛾2 (𝑡 − 𝑡1)𝜃𝑎𝑐𝑐 𝑑𝑡
= 𝑎2𝑎𝑐𝑐𝑡212𝜃𝑎𝑐𝑐 + 𝛾2𝑡222𝜃𝑎𝑐𝑐

and 𝐸𝑟𝑒𝑔 = 𝜃𝑏𝑟𝑎𝑎2𝑏𝑟𝑎𝑡232 .
(15)

Here 𝐸𝑐𝑜𝑛 and 𝐸𝑟𝑒𝑔 are both for the unit mass. A simple
heuristic method is applied to approximate the power graph
as shown in Figure 3, where 𝑐 and 𝑐 are the width of the
rectangles for accelerating and braking and ℎ and ℎ̃ are
heights of the rectangles. Similar to those in [12], themidpoint
of the width in the rectangle is called the regenerative
or consumptive alignment point, where Δ𝑡

𝑖 represents the
distance between𝑑𝑡𝑖 and the regenerative alignment point and∇𝑡
𝑖 represents the distance between 𝑎𝑡𝑖 and the consumption

alignment point.
Here, we align the distance between regenerative and

consumption alignment points to maximum the utilization.
Before introducing such a distance, we recall the suitable train
pairs as introduced in [12]. Assume that platform pairs are
opposite to each other at the same electrical substation. LetP
be the set of all platform pairs. For any pair (𝑖, 𝑗) ∈ P and the
setT𝑖 ⊆ T contains all trains that arrives at, dwells, departs
from platform 𝑖. When the train 𝑡 ∈ T𝑖 departs from the
platform 𝑖, it is a best choice to find a train 󳨀→𝑡 at the platform𝑗 which are producing the regenerative braking energy using
the following definition.

Definition 1 (see [12]). Consider any (𝑖, 𝑗) ∈ P. For every
train 𝑡 ∈ T𝑖, the train

󳨀→𝑡 ∈ T𝑗 is called the temporally closest

train to the right of 𝑡 if
󳨀→𝑡 = arg min

𝑡󸀠∈{𝑥∈T𝑗:0≤(𝑎
𝑥
𝑗+𝑑
𝑥

𝑗 )/2−(𝑎
𝑡
𝑖+𝑑
𝑡

𝑖 )/2≤𝛽}

{{{{{
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝑎𝑡𝑖 + 𝑑𝑡𝑖2

− 𝑎𝑡󸀠𝑗 + 𝑑𝑡󸀠𝑗2 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨}}}}}
(16)

where 𝛽 is an empirical parameter determined by the
timetable designer and ismuch smaller than the time horizon
of the entire timetable [12]. Similarly, when a train 𝑡 ∈ T𝑖

arrives at platform 𝑖, it produces the regenerative energy.
To find a suitable train ←󳨀𝑡 departing from platform 𝑗 for
transferring the regenerative braking energy, we recall the
following definition from [12].

Definition 2 (see [12]). Consider any (𝑖, 𝑗) ∈ P. For every
train 𝑡 ∈ T𝑖, the train

←󳨀𝑡 ∈ T𝑗 is called the temporally closest
train to the left of 𝑡 if

←󳨀𝑡 = arg min
𝑡󸀠∈{𝑥∈T𝑗:0≤(𝑎

𝑡
𝑖+𝑑
𝑡

𝑖 )/2−(𝑎
𝑥
𝑗+𝑑
𝑥

𝑗 )/2≤𝛽}

{{{{{
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝑎𝑡𝑖 + 𝑑𝑡𝑖2

− 𝑎𝑡󸀠𝑗 + 𝑑𝑡󸀠𝑗2 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨}}}}} . (17)

Denote the sets←󳨀𝜀 and󳨀→𝜀 whose components are (𝑖, 𝑗, 𝑡,←󳨀𝑡 )
and (𝑖, 𝑗, 𝑡, 󳨀→𝑡 ), respectively. Consider any (𝑖, 𝑗, 𝑡,←󳨀𝑡 ) ∈ ←󳨀𝜀 . To
maximize the transfer of the regenerative energy from the
braking train←󳨀𝑡 by the accelerating train 𝑡, we attempt tomake
the term (𝑑𝑡𝑖 + Δ𝑡

𝑖 − 𝑎󳨀→𝑡𝑗 + ∇󳨀→
𝑡
𝑗 ) to be zero or as close to zero

as possible. Similarly, for (𝑖, 𝑗, 𝑡, 󳨀→𝑡 ) ∈ 󳨀→𝜀 , our goal is to make
the term (𝑑←󳨀𝑡𝑗 + Δ←󳨀

𝑡
𝑗 − 𝑎𝑡𝑖 + ∇𝑡

𝑖 ) to be zero or as close to zero as
possible. Following from [12], we define an auxiliary variable𝑦 ∈ R𝑛 with 𝑛 = 2𝑛𝑚, 𝑛 = |N| and 𝑚 = |T| by

𝑦 = ((𝑑𝑡𝑖 + Δ𝑡
𝑖 − 𝑎󳨀→𝑡𝑗 + ∇󳨀→

𝑡
𝑗 )

(𝑖,𝑗,𝑡,
󳨀→
𝑡 )∈󳨀→𝜀

,
(𝑑←󳨀𝑡𝑗 + Δ←󳨀

𝑡
𝑗 − 𝑎𝑡𝑖 + ∇𝑡

𝑖 )
(𝑖,𝑗,𝑡,

←󳨀
𝑡 )∈←󳨀𝜀

) . (18)

The components of𝑦 represent difference of the time between
the alignment points of accelerating and braking. Once the
running time is fixed, Δ𝑡

𝑖 and ∇𝑡
𝑖 are two constants.

The ultimate energy consumption can be approximately
calculated as follows (see Figure 4):
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Figure 4: Three cases for net energy consumption function.

𝐸(𝑖,𝑗,𝑡,̃𝑡) =
{{{{{{{{{{{{{{{{{{{{{{{

𝐸𝑡,𝑐𝑜𝑛
𝑘

, if 󵄨󵄨󵄨󵄨𝑦𝑘󵄨󵄨󵄨󵄨 ≥ (𝑐𝑡̃𝑗 + 𝑐𝑡𝑖 )2 ,𝐸𝑡,𝑐𝑜𝑛
𝑘 −min {𝑐𝑡̃𝑗 , 𝑐𝑡𝑖 } ∗min {ℎ𝑡𝑖 , ℎ̃𝑡̃𝑗} , if 󵄨󵄨󵄨󵄨𝑦𝑘󵄨󵄨󵄨󵄨 ≤ 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 (𝑐𝑡𝑖 − 𝑐𝑡̃𝑗)2 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ,𝐸𝑡,𝑐𝑜𝑛
𝑘 − ((𝑐𝑡̃𝑗 + 𝑐𝑡𝑖 )2 − 𝑦𝑘) ∗ min {ℎ𝑡𝑖 , ℎ𝑡̃𝑗} , otherwise. (19)

where train 𝑡 is accelerating and train 𝑡̃ is braking.
By sorting all possible consecutive platforms for braking

energy absorbing, a 0-1 vector 𝛼 ∈ R𝑛 is introduced to
indicate all those locations in 𝑦 with regeneration energy
usage when the components of 𝛼 take the value 1. In order
to make the utilization of the regenerative energy as much as
possible, we then turn to minimizing the number of nonzero
elements of 𝛼 ∘ 𝑦 which corresponds to minimizing ‖𝛼 ∘ 𝑦‖0
and making nonzero elements in 𝛼 ∘ 𝑦 as close to zero as
possible which corresponds to minimizing ‖𝛼 ∘ 𝑦‖22. The
resulting sparse optimization model turns out to be

min
𝑥,𝑦

𝜆1
󵄩󵄩󵄩󵄩𝛼 ∘ 𝑦󵄩󵄩󵄩󵄩0 + 𝜆22 󵄩󵄩󵄩󵄩𝛼 ∘ 𝑦󵄩󵄩󵄩󵄩22𝑠.𝑡. (3)–(9), (13) , (14) , (18) . (20)

where 𝑥, 𝑦 ∈ R𝑛 are decision variables. Similar to (12), (20)
can be rewritten as

min
𝑥,𝑦

{𝜆1
󵄩󵄩󵄩󵄩𝛼 ∘ 𝑦󵄩󵄩󵄩󵄩0 + 𝜆22 󵄩󵄩󵄩󵄩𝛼 ∘ 𝑦󵄩󵄩󵄩󵄩22 : 𝑦 − 𝐴𝑥 − 𝑏 = 0, 𝐹𝑥

− 𝑔 = 0, 𝑓 − 𝐸𝑥 ≥ 0.} (21)

where 𝐴 ∈ R𝑛×𝑛, 𝐸 ∈ R𝑚×𝑛, 𝐹 ∈ R𝑙×𝑛 are

𝐸 = (((((((((((
(

𝐸1−𝐸1𝐸2−𝐸2𝐸3−𝐸3𝐸4−𝐸4

)))))))))))
)

,
𝐹
= (

(
𝑂𝑚×𝑚 𝐸1 𝑂𝑚×2𝑚 ⋅ ⋅ ⋅ 𝑂𝑚×2𝑚 𝑂𝑚×𝑚𝑂𝑚×𝑚 𝑂𝑚×2𝑚 𝐸2 ⋅ ⋅ ⋅ 𝑂𝑚×2𝑚 𝑂𝑚×𝑚... ... ... d

... ...𝑂𝑚×𝑚 𝑂𝑚×2𝑚 ⋅ ⋅ ⋅ 𝑂𝑚×2𝑚 𝐸𝑛−1 𝑂𝑚×𝑚

)
)

(22)

with

𝐸1 = ( 𝐸1 𝑂𝑚×2𝑚 ⋅ ⋅ ⋅ 𝑂𝑚×2𝑚𝑂𝑚×2𝑚 𝐸2 ⋅ ⋅ ⋅ 𝑂𝑚×2𝑚... ... d
...𝑂𝑚×2𝑚 𝑂𝑚×2𝑚 ⋅ ⋅ ⋅ 𝐸𝑛

),
𝐸𝑖 = (−𝐼𝑚×𝑚 𝐼𝑚×𝑚) ,𝐸2 = (−𝐼𝑚×𝑚 𝑂𝑚×(2𝑛𝑚−2𝑚) 𝐼𝑚×𝑚) ,𝐸3 = 𝐼2𝑛𝑚×2𝑛𝑚,



8 Journal of Advanced Transportation

𝐸4 = (
(

𝐸1 𝑂(𝑚−1)×𝑚 ⋅ ⋅ ⋅ 𝑂(𝑚−1)×𝑚𝑂(𝑚−1)×𝑚 𝐸2 ⋅ ⋅ ⋅ 𝑂(𝑚−1)×𝑚... ... d
...𝑂(𝑚−1)×𝑚 𝑂(𝑚−1)×𝑚 ⋅ ⋅ ⋅ 𝐸2𝑛

)
)

,
𝐸𝑖 = (−1 1 0 ⋅ ⋅ ⋅ 00 −1 1 ⋅ ⋅ ⋅ 0... ... d d

...0 0 ⋅ ⋅ ⋅ −1 1),
(23)𝑚 = 2(2𝑛(𝑚 − 1) + 𝑛𝑚 + 𝑚 + 𝑛) and 𝑙 = (𝑛 − 1)𝑚, 𝑏, 𝑔,

and𝑓 are the corresponding column vectors from constraints
(18), (13), (14), and (3)-(9). Apparently, 𝑦 − 𝐴𝑥 − 𝑏 = 0 is
the reformulation of the constraint (18), 𝐹𝑥 − 𝑔 = 0 is the
condensed form of constraints (13) and (14), and 𝑓−𝐸𝑥 ≥ 0 is
the representation of all the inequality constraints distributed
in (3)-(9).

3. Model Relaxation and Solution Algorithm

3.1. Relaxation Model. Problem (21) is generally NP-hard
due to the combinatorial property of the involved ℓ0-norm
[21]. By adopting the well-known convex surrogate ℓ1-norm
initiated in compressed sensing [13, 22], we get the followingℓ1 + ℓ22 relaxation model:

min
𝑥,𝑦

{𝜆1
󵄩󵄩󵄩󵄩𝛼 ∘ 𝑦󵄩󵄩󵄩󵄩1 + 𝜆22 󵄩󵄩󵄩󵄩𝛼 ∘ 𝑦󵄩󵄩󵄩󵄩22 : 𝑦 − 𝐴𝑥 − 𝑏 = 0, 𝐹𝑥− 𝑔 = 0, 𝑓 − 𝐸𝑥 ≥ 0.} (24)

Inspired byOracle property beneficial from the adaptive lasso
strategy proposed by Zou et al. [14], we will further utilize a
reweighted ℓ1-norm term instead of the ℓ1-norm in (24) and
get the following relaxation counterpart:

min
𝑥,𝑦

{𝜆1
󵄩󵄩󵄩󵄩𝛼 ∘ 𝑤 ∘ 𝑦󵄩󵄩󵄩󵄩1 + 𝜆22 󵄩󵄩󵄩󵄩𝛼 ∘ 𝑦󵄩󵄩󵄩󵄩22 : 𝑦 − 𝐴𝑥 − 𝑏= 0, 𝐹𝑥 − 𝑔 = 0, 𝑓 − 𝐸𝑥 ≥ 0.} (25)

where 𝑤 is some appropriate positive column vector to
encourage a low sparsity of 𝑦.
3.2. A Two-Stage Alternating Direction Method of Multipliers.
By introducing an auxiliary vector 𝑧 ∈ R𝑚, (25) can be
rewritten as the following equality constrained optimization
problem:

min
𝑥,𝑦,𝑧

{𝜆1
󵄩󵄩󵄩󵄩𝛼 ∘ 𝑤 ∘ 𝑦󵄩󵄩󵄩󵄩1 + 𝜆22 󵄩󵄩󵄩󵄩𝛼 ∘ 𝑦󵄩󵄩󵄩󵄩22 + 𝛿R𝑚+ (𝑧) : 𝑦− 𝐴𝑥 − 𝑏 = 0, 𝐹𝑥 − 𝑔 = 0, 𝑧 − 𝑓 + 𝐸𝑥 = 0, } (26)

where 𝛿R𝑚+ (ℎ) is the indicator function with respect to R𝑚
+

which takes the value 0 if ℎ ∈ R𝑚
+ , and +∞ otherwise. The

augmented Lagrangian function of (26) takes the form of𝐿𝐴𝜎 (𝑥, 𝑦, 𝑧; 𝑢, V, 𝑠) = 𝜆1

𝑛∑
𝑖=1

𝑤𝑖
󵄨󵄨󵄨󵄨𝛼𝑖𝑦𝑖󵄨󵄨󵄨󵄨 + 𝜆22 󵄩󵄩󵄩󵄩𝛼 ∘ 𝑦󵄩󵄩󵄩󵄩22+ 𝛿R𝑚+ (𝑧) − ⟨𝑢, 𝑦 − 𝐴𝑥 − 𝑏⟩ − ⟨V, 𝐹𝑥 − 𝑔⟩ − ⟨𝑠, 𝑧− 𝑓 + 𝐸𝑥⟩ + 𝜎2 (󵄩󵄩󵄩󵄩𝑦 − 𝐴𝑥 − 𝑏󵄩󵄩󵄩󵄩22 + 󵄩󵄩󵄩󵄩𝐹𝑥 − 𝑔󵄩󵄩󵄩󵄩22+ 󵄩󵄩󵄩󵄩𝑧 − 𝑓 + 𝐸𝑥󵄩󵄩󵄩󵄩22) ,

(27)

where 𝜎 > 0 is the penalty parameter, and 𝑢 ∈ R𝑛, V ∈
R𝑙, 𝑠 ∈ R𝑚 are Lagrangian multipliers corresponding to
those three equality constraint systems in (26). The well-
known alternating direction method of multipliers (ADMM)
proposed by Glowinski and Marroco [23] and Gabay and
Mercier [24] is then adopted for handling (26) with the
iterative scheme for 𝑘 = 0, 1, . . .,(𝑦𝑘+1, 𝑧𝑘+1) = argmin {𝐿𝐴𝜎 (𝑥𝑘, 𝑦, 𝑧; 𝑢𝑘, V𝑘, 𝑠𝑘) | 𝑦∈ R𝑛, 𝑧 ∈ R𝑚} ;𝑥𝑘+1 = argmin {𝐿𝐴𝜎 (𝑥, 𝑦𝑘+1, 𝑧𝑘+1; 𝑢𝑘, V𝑘, 𝑠𝑘) | 𝑥∈ R𝑛} ;(𝑢𝑘+1, V𝑘+1, 𝑠𝑘+1) = (𝑢𝑘, V𝑘, 𝑠𝑘) − 𝜏𝜎 (𝑦𝑘+1 − 𝐴𝑥𝑘+1− 𝑏, 𝐹𝑥𝑘+1 − 𝑔, 𝑧𝑘+1 − 𝑓 + 𝐸𝑥𝑘+1) ;

(28)

where 𝜏 ∈ (0, (1 + √5)/2) is the dual stepsize. Note that𝐿𝐴𝜎(𝑥, 𝑦, 𝑧; 𝑢, V, 𝑠) is separable of 𝑦 and 𝑧. Thus the first
subproblem in (28) can be easily solved by the corresponding
first-order optimality condition which leads to the following
closed-form solution:𝑦𝑘+1𝑖

= {{{{{{{
(𝐴𝑥𝑘 + 𝑏 + 𝑢𝑘𝜎 )

𝑖

if 𝛼𝑖 = 0,
sign (𝑞𝑖)max{󵄨󵄨󵄨󵄨𝑞𝑖󵄨󵄨󵄨󵄨 − 𝜆1𝑤𝑖𝜆2 + 𝜎 , 0} otherwise, (29)

with 𝑞𝑖 = (1/(𝜆2 + 𝜎))(𝑢𝑘 + 𝜎𝐴𝑥𝑘 + 𝜎𝑏)𝑖 for all 𝑖 = 1, . . . , 𝑛,
and 𝑧𝑘+1 = ΠR𝑚+ (𝑓 − 𝐸𝑥𝑘 + 1𝜎𝑠𝑘) . (30)

Theupdate for 𝑥𝑘+1 from the second subproblem can be easily
obtained by solving the following linear system:𝐻𝑥 = 𝑟ℎ𝑠, (31)

where 𝑟ℎ𝑠 = 𝐴𝑇(𝑦𝑘+1−𝑏−(1/𝜎)𝑢𝑘)+𝐹𝑇(𝑔+(1/𝜎)V𝑘)+𝐸𝑇(𝑓−𝑧𝑘+1 +(1/𝜎)𝑠𝑘) and𝐻 = 𝐴𝑇𝐴+𝐹𝑇𝐹+𝐸𝑇𝐸. Note that 𝐸 is full
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Require: Choose an initial point (𝑥00, 𝑦00 , 𝑧00 , 𝑢00, V00, 𝑠00), accuracy parameters 𝜀1, 𝜀2 > 0, the parame-
ters 𝜆01, 𝜆02, 𝜎, 𝑟, 𝜖.

Ensure: (𝑥∗, 𝑦∗, 𝑧∗);
Stage I Compute (𝑥, 𝑦, 𝑧̂, 𝑢̂, V̂, 𝑠).

Step 1.1 Set 𝜆1 = 𝜆01, 𝜆2 = 0, (𝑥0, 𝑦0, 𝑧0, 𝑢0, V0, 𝑠0) = (𝑥00, 𝑦00 , 𝑧00 , 𝑢00, V00, 𝑠00), 𝑤 = 𝑒 and 𝑘 = 0;
Step 1.2 Compute (𝑥𝑘+1, 𝑦𝑘+1 , 𝑧𝑘+1 , 𝑢𝑘+1 , V𝑘+1 , 𝑠𝑘+1) by (31), (29), (30) and (28);
Step 1.3 Set 𝑘 = 𝑘 + 1. If some criterion is satisfied to the accuracy 𝜀1, then stop. Otherwise, go

to Step 1.2.
Set (𝑥, 𝑦, 𝑧̂, 𝑢̂, V̂, 𝑠) = (𝑥𝑘, 𝑦𝑘, 𝑧𝑘, 𝑢𝑘, V𝑘, 𝑠𝑘) and update 𝑤 = (1/(|𝑦|𝑟 + 𝜖));

Stage II Solve Problem (26) and output (𝑥∗, 𝑦∗, 𝑧∗).
Step 2.1 Set 𝜆1 = 𝜆01, 𝜆2 = 𝜆02, (𝑥0, 𝑦0, 𝑧0) = (𝑥, 𝑦, 𝑧̂), (𝑢0, V0 , 𝑠0) = 0 and 𝑘 = 0;
Step 2.2 Compute (𝑥𝑘+1, 𝑦𝑘+1, 𝑧𝑘+1, 𝑢𝑘+1, V𝑘+1 , 𝑠𝑘+1) by (31), (29), (30) and (28);
Step 2.3 Set 𝑘 = 𝑘 + 1. If some criterion is satisfied to the accuracy 𝜀2, then set (𝑥∗, 𝑦∗, 𝑧∗) =(𝑥𝑘, 𝑦𝑘, 𝑧𝑘) and stop. Otherwise, go to Step 2.2.

Algorithm 1: A two-stage alternating direction methods of multipliers (TSADMM).

column rank. Thus, 𝐸𝑇𝐸 is positive definition and also is 𝐻.
This indicates that (31) admits a unique solution:𝑥𝑘+1 = 𝐻−1𝑟ℎ𝑠. (32)

To effectively reduce the computation cost resulting from the
large size of the involved matrices in 𝐻, the preconditioned
conjugate gradient (PCG) method is employed to numeri-
cally solve the linear system (31) instead of the direct way as
in (32).

It is worth mentioning that we can utilize the above
ADMMmethod to solve an ℓ1 problem which is exactly (26)
by taking 𝑤 = 𝑒 and 𝜆2 = 0 to a relatively low accuracy. The
resulting numerical solution (𝑥, 𝑦, 𝑧̂) can not only be served
as the initial point, but also produce the weight vector 𝑤 in
the way that 𝑤 = (1/(|𝑦𝑖|𝑟 + 𝜖)) with 𝑟 ∈ (0, +∞) and 𝜖 > 0
sufficiently small for a low sparsity promotion when solving
(26).The two-stage ADMM algorithmic framework then can
be summarized in Algorithm 1.

3.3. Global Convergence. Algorithm 1 admits a global con-
vergence property as stated in the following theorem whose
proof will be established in the appendix.

Theorem 3. Let {(𝑥𝑘, 𝑦𝑘, 𝑧𝑘, 𝑤)} be generated from Algo-
rithm 1. If 𝜏 ∈ (0, (1 + √5)/2), then the sequence {(𝑥𝑘, 𝑦𝑘, 𝑧𝑘)}
converges to an optimal solution to (26).

4. Numerical Experiments

Numerical experiments on Beijing Metro Yizhuang Line will
be conducted in this section to evaluate our proposed model
and to illustrate the performance our designed TSADMM
algorithm. The procedure of the numerical study is shown
in Figure 6. All the computational results are obtained
by running Matlab (version 2016b) on a windows desktop
(Intel(R) Core(TM) i7-6700 CPU@ 3.40GHz 3.40GHz RAM
16.0 G).

Beijing Metro Yizhuang Line, opened on December in
2010, is one of the 20 lines in Beijing Metro Networks. It has

two train lines with 14 stations as shown in Figure 5. The
total length of Yizhuang Line is 23.23 km, with the average
distance of two station being 1.8 km, the minimum distance
being 1 km, and the maximum being 2.6 km. In the section,
we calculate the energy conversion when a train has a trip
under unit mass.

4.1. Inputs and Algorithm Initialization. For (26), 𝛼 ∈ R𝑛 in
the objective function is a 0-1 vector defined in Section 2.4.
And the weight vector is denoted by 𝑤 = (1/(|𝑦|𝑟 + 𝜖)),
where 𝑦 is an approximate solution generated by Stage I in
Algorithm 1. Here we set 𝑟 = 0.5 and 𝜖 = 10−20. In the
equality constraint 𝑦 − 𝐴𝑥 − 𝑏 = 0, 𝐴 ∈ R𝑛×𝑛 with 𝑛 =2𝑛𝑚, 𝑛 = |N| = 28, 𝑚 the number of trains in one day
service, 𝑏 ∈ R𝑛 with components (Δ𝑡

𝑖 +∇𝑡̃
𝑗)(𝑖,𝑗,𝑡,̃𝑡) sorting in the

appropriate way, where train 𝑡 is accelerating and 𝑡̃ is braking,
and platforms 𝑖 and 𝑗 are opposite to each other, satisfying
the equation 𝑖 + 𝑗 = 29. 𝐹𝑥 − 𝑔 = 0 in (26) is an equality
constraint about trip times. 𝐹 ∈ R𝑙×𝑚 is the coefficient matrix
in (26), 𝑙 = (𝑛 − 1)𝑚. The components of 𝑔 ∈ R𝑙 are the trip
times. 𝐸 ∈ R𝑚×𝑛 in 𝑧 − 𝑓 + 𝐸𝑥 = 0 is the coefficient matrix of
inequality constraints, and𝑚 = 2(2𝑛(𝑚−1)+𝑛𝑚+𝑚+𝑛).The
elements in the vector 𝑓 ∈ R𝑚 are upper and lower bounds of
dwell time constraints, headway time constraints, total travel
time constraints, and domain of event times constraints. For
testing purpose, elements of 𝑓 are given in the following way.
The bounds of dwell time constraints are given in Table 2. Let𝐷 be the passenger demand for one-day service (16 hours)
and 𝑢𝐷 ∈ R16 be the distribution of 𝐷 for each hour which is
presented in Table 3. Let 𝑐𝑡 be the capacity of a train, which
takes the value 1440, and 𝑢 ∈ R16 be the train utility rate
for different hours as stated in Table 3 as well. By utilizing
formula (7), we can get the headway time for each different
period of time (per hour). Specifically, denote the headway
time vector by ℎ ∈ R16.Then ℎ𝑘 = (3600×1440×𝑢𝑘)/(𝐷×𝑢𝐷𝑘 )
for all 𝑘 = 1, 2, . . . , 16. Set the windows for the headway
time constraints to be ℎ𝑖 ± 8 for all possible train pairs in
the 𝑖th hour. The total travel time constraints are related
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Train-line2

Train-line1
SJZ1 XC1 XHM1 JG1 YZQ1 YZWHY1 WYJ1 RJDJ1 RCDJ1 TJNL1 JHL1 CQN1 CQ1

SJZ2 XC2 XHM2 JG2 YZQ2 YZWHY2 WYJ2 RJDJ2 RCDJ2 TJNL2 JHL2 CQN2 CQ2

YZHCZ1

YZHCZ2

Figure 5: Railway network considered for numerical experiment.

Stage II: Solve an optimization model (20)

An energy-efficient 
timetable

Inputs

Solution 
procedure:
TSADMM

Outputs

Calculate 
model (11)

Get from 
references

Calculate  Trip times = g Matrices and 
vectors:

A, E, F,
b and f

Set 1, 2, , r, 1, 2 and  Set initial point (x0, y0, z0, u0, 0, s0)

Stage I: Calculate w, (x, y, z)

x∗

Figure 6: The procedure of the numerical experiments.

to the dwell time and trip time. The bounds of trip times
are calculated by Table 4 as reference. For each train 𝑡, the
bounds of trip time are more than ∑5

𝑞=1(𝑠𝑞/V𝑞) for all sections(𝑖𝑗), 𝑖 = 1, 2, . . . , 27, 𝑗 = 𝑖 + 1. The bounds of trip time
constraints are presented in Table 5. The following formulae
are adopted for calculating the windows of total travel time
constraints,

𝑡𝑡 = 𝑟1 × ( 28∑
𝑖=1

𝑑𝑤𝑖 + 27∑
𝑖=1
𝑖 ̸=14

𝑡𝑟𝑖𝑗 + ∑
𝑖=14

𝜅𝑖𝑗)
𝑡𝑡 = 𝑟2 × ( 28∑

𝑖=1

𝑑𝑤𝑖 + 27∑
𝑖=1
𝑖 ̸=14

𝑡𝑟𝑖𝑗 + ∑
𝑖=14

𝜅𝑖𝑗) (33)

where 𝑟1 = 1.1 and 𝑟2 = 0.85. For the domain of event times
constraints, we set 𝑚𝑇 = 16 × 3600.

The initial point (𝑢0, V0, 𝑠0) in Algorithm 1 is chosen to
be 0. To calculate the energy consumption and regenerative
energy, we set the maximum acceleration 𝑎𝑎𝑐𝑐 = 0.5𝑚/𝑠2
in accelerating, 𝑎𝑏𝑟𝑎 = −0.8𝑚/𝑠2 for braking, the resistance
acceleration 𝛾 = −0.05𝑚/𝑠2 during the speed holding phase,
the conversion factor from electricity to kinetic energy 𝜃𝑎𝑐𝑐 =0.7, and the ratio of kinetic energy converting to regenerative
energy 𝜃𝑏𝑟𝑎 = 0.5 as used in [18]. For testing purpose, we
approximately calculate the energy consumption for acceler-
ating and the regenerative energy produced during braking in
the following way. As presented in Section 2.4, the maximum
accelerating, speed holding, maximum braking strategy from
[18] is adopted and the parameters 𝑡1, 𝑡2, and 𝑡3 are set in
Table 6. The parameters 𝑐 and 𝑐 in Figure 3 which represent
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Table 6: Parameters for calculating 𝐸𝑐𝑜𝑛 and 𝐸𝑏𝑟𝑎.𝑡1 𝑡2 𝑡3 𝑐 𝑐
20% 45% 35% 14% 21%

Table 7: Results of numerical experiments on Beijing Metro
Yizhuang Line: A1 stands for the linear programming model (36)
solved by Gurobi; A2 stands for the quadratic programming (37)
solved by CVX; A3 stands for our proposed model (26) solved by
Algorithm 1. 𝜂(%)𝑚 𝐴1 𝐴2 𝐴3
357 25.54 24.52 29.92
368 23.67 23.44 28.36
380 25.56 23.01 28.54
391 24.50 23.80 28.49
403 24.78 24.17 27.47
414 27.02 26.57 30.05
426 27.73 27.07 30.52
437 27.59 26.94 30.46
449 28.26 27.54 30.84

the width of the rectangles for 𝐸𝑐𝑜𝑛 and 𝐸𝑏𝑟𝑎 (in percentage
of the trip time) are also given in Table 6 for approximately
calculating the energy consumption for accelerating 𝐸𝑐𝑜𝑛 and
the regenerative energy produced during braking 𝐸𝑏𝑟𝑎.

4.2. Stopping Criteria. To measure the accuracy of an
approximate optimal solution (𝑥, 𝑦, 𝑧) of Problem (26) from(𝑥, 𝑦, 𝑧, 𝑢, V, 𝑠) generated by Stage II in Algorithm 1, the
relative primal and dual infeasibilities will be adopted. Specif-
ically, denote𝜂𝑝= max{󵄩󵄩󵄩󵄩𝑦 − 𝐴𝑥 − 𝑏󵄩󵄩󵄩󵄩1 + 󵄩󵄩󵄩󵄩𝑦󵄩󵄩󵄩󵄩 , 󵄩󵄩󵄩󵄩𝐹𝑥 − 𝑔󵄩󵄩󵄩󵄩1 + 󵄩󵄩󵄩󵄩𝑔󵄩󵄩󵄩󵄩 , 󵄩󵄩󵄩󵄩𝑧 − 𝑓 + 𝐸𝑥󵄩󵄩󵄩󵄩1 + ‖𝑧‖ } ,
𝜂𝑑 = 󵄩󵄩󵄩󵄩󵄩𝐴𝑇𝑢 − 𝐹𝑇𝑤 − 𝐸𝑇𝑠󵄩󵄩󵄩󵄩󵄩1 + 󵄩󵄩󵄩󵄩𝐴𝑇𝑢󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩𝐹𝑇𝑤󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩𝐸𝑇𝑠󵄩󵄩󵄩󵄩 .

(34)

For a given tolerance 𝜀2 > 0, wewill stop the tested algorithms
when both 𝜂𝑝 and 𝜂𝑑 are less than 𝜀2. The algorithms will also
be terminated when they reach a given maximum number of
iterations 𝑀𝑎𝑥𝐼𝑡𝑒𝑟2 . Here we set 𝜀2 = 10−3 and 𝑀𝑎𝑥𝐼𝑡𝑒𝑟2 =104. For Stage I in Algorithm 1, it will be stopped when both𝜂𝑝 and 𝜂𝑑 are less than 𝜀1 or the maximum iteration reaches𝑀𝑎𝑥𝐼𝑡𝑒𝑟1. Here we set 𝜀1 = 10−1 and 𝑀𝑎𝑥𝐼𝑡𝑒𝑟1 = 103.
4.3. Experiment Results. To evaluate ourmodel with ℓ0-norm
plus ℓ22-norm as the object, the other two possible models are
computed for comparison.Thefirstmodel is the ℓ0-normplus

Table 8: Energy saving rates for 𝑚 = 368: A1, A2, and A3 are the
same as in Table 7. 𝜂(%)𝑅𝑒𝑓. 𝐴1 𝐴2 𝐴3
[19] 19.82 21.34 24.94
[9] 18.85 18.83 23.11
[10] 18.99 18.88 23.11
[11] 19.02 18.85 23.12
[6] 18.97 18.78 23.29

ℓ1-norm proposed by Das Gupta et al. in [12] which takes the
form of

min
𝑥

{󵄩󵄩󵄩󵄩𝑦󵄩󵄩󵄩󵄩0 + 𝜆 󵄩󵄩󵄩󵄩𝑦󵄩󵄩󵄩󵄩1 : 𝑦 − 𝐴𝑥 − 𝑏 = 0, 𝐹𝑥 − 𝑔= 0, 𝐸𝑥 ≤ 𝑓} (35)

which is handled by approximately solving its linear pro-
gramming relaxation problem

min
𝑥

{𝑒𝑇𝑠 : 𝑦 ≤ 𝑠, 𝑦 ≥ −𝑠, 𝑦 − 𝐴𝑥 − 𝑏 = 0, 𝐹𝑥 − 𝑔= 0, 𝐸𝑥 ≤ 𝑓} . (36)

The second possible model is the squared ℓ2-norm related
quadratic programming,

min
𝑥

{12 󵄩󵄩󵄩󵄩𝑦󵄩󵄩󵄩󵄩22 : 𝑦 − 𝐴𝑥 − 𝑏 = 0, 𝐹𝑥 − 𝑔 = 0, 𝐸𝑥 ≤ 𝑓} , (37)

where only the squared Euclidean norm is employed to
measure the vanishing of 𝑦. Since we focus on the reduction
of the effective energy consumption, we define the energy
saving rate 𝜂 as follows:

𝜂 = ∑|T||N|
𝑡=1 𝐸(𝑖,𝑗,𝑡,̃𝑡)Σ|T||N|
𝑡=1 𝐸𝑐𝑜𝑛

𝑡

. (38)

Energy savings by using these three differentmodels are listed
in Table 7 with different choices of 𝑚.

As shown in Table 7, the energy savings by using our
model are better than those by the other two in all the testing
instances with at least 2.58 percentage higher in the energy
saving rate 𝜂.

Other choices for the initial trip times from [6, 9–11, 19]
with 𝑚 = 368 are also considered as inputs. The comparison
results in terms of the energy saving rate 𝜂 are stated in
Table 8.

As one can see in Table 8, the utilization of regenerative
energy of our approach is the best among these three models
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Figure 7: The numerical convergence behavior of TSADMMwith different choices of 𝑚.

as well with the energy saving rate at least 3.60 percent higher
than the other two. These evidently show the effectiveness of
our proposed model.

In order to demonstrate the efficiency of our proposed
TSADMM algorithm, we call the academical CVX to solve
ours model for comparison. The time comparisons for all the
aforementioned instances are presented in Tables 9 and 10,
respectively.

As can be seen in Tables 9 and 10, our proposed
TSADMM outperforms the CVX solver for the model (26)
in terms of computation time. Particularly, for the cases of 𝑚
equaling 368 and 449 in Table 9, the computation time for
TSADMM is less than one-third of those for CVX. Besides
the theoretical global convergence of our TSADMM, the
numerical convergence behaviors in terms of the infeasibility
measure for all the above 14 instances are presented in Figures
7 and 8. One can see that for each instance, the infeasibility
decreases rapidly as the number of iterations increases and
it meets the required accuracy 10−3 within less than 4000
iterations.

5. Conclusion

In this paper we have proposed a sparse optimization model
using ℓ0-norm and squared ℓ2-norm as objective function so
as tomaximize the utilization of regenerative energy inmetro
railway system. To overcome the NP-hardness resulting from
the ℓ0-norm, the weighted ℓ1-norm by invoking the adaptive
lasso strategy in statistical regression has been introduced to
make the relaxation counterpart computationally tractable
and numerically effective. A two-stage alternating direction
method of multipliers (TSADMM) has been designed to
efficiently solve the proposed mathematical model and the
global convergence of the algorithm has been established
as well. Numerical experiments have been conducted on
Beijing Metro Yizhuang Line for case study. The comparison
results with the linear programming proposed by Das Gupta
et al. and a quadratic programming with least-squares loss
function have illustrated the effectiveness of our proposed
model in terms of the energy saving rate, and the timing
comparison results with the CVX toolbox have demonstrated
the efficiency of our proposed TSADMM algorithm.
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Table 10: Time comparison between CVX and TSADMMwith different trip times from [6, 9–11, 19].

Alg. Ref.
[19] [9] [10] [11] [6]

time(s)
CVX 55.61 57.86 55.45 51.25 47.81
TSADMM 20.36 29.22 28.21 27.64 31.84
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Figure 8: The numerical convergence behavior of TSADMM for different trip times: tr1,. . .,tr5 stand for the cases for different trip times
proposed in [6, 9–11, 19].

Since the weighted ℓ1-norm is a convex approximation of
the ℓ0-norm, the optimal solution to the (26) is a proximal
optimal solution to the original sparse optimization model.
How to design some more effective nonconvex relaxation
scheme to get a better proximal optimal solution so as to
get a better energy saving rate will be one of our future
work. Meanwhile, the delay perturbations of the metro trains
and the randomness of passenger demands have not been
considered in our static timetabling. How to use advanced
optimization techniques for handling such cases will also be
our future research issue.

Appendix

The Proof of Theorem 3

Proof. Let 𝑥 = ([𝑥(1)]𝑇, . . . , [𝑥(2𝑛)]𝑇)𝑇 ∈ R𝑛 be an optimal
solution of Problem (12). Then, the optimality and the
feasibility of 𝑥 imply that 𝐹𝑥−𝑔 = 0 and 𝑓−𝐸𝑥 ≥ 0. By virtue
of the expressions of 𝐸 and 𝐹 in Section 2.4, together with the
time window constraints as stated in𝑓, we can find some 𝑥 in
a neighborhood𝑁(𝑥, 𝛿)with𝛿 < min𝑖:𝑓𝑖−(𝐸𝑥)𝑖>0𝑓𝑖−(𝐸𝑥), such

that 𝐹𝑥−𝑔 = 0 and 𝑓−𝐸𝑥 > 0. Set 𝑦 = 𝐴𝑥+𝑏 and 𝑧̃ = 𝑓−𝐸𝑥.
It is easy to verify that (𝑥, 𝑦, 𝑧̃) ∈ (R𝑛 × R𝑛 × R𝑚

++) ∩ 𝑃 with𝑃 being the feasible region of Problem (26). By employing
[25, Theorem B.1], we can get the desired global convergence
result inTheorem 3.
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