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Route planning for military ground vehicles in the uncertain battlefield is a special kind of route planning problem, as the military
vehicles face a great of uncertain and unpredicted attacks. This paper models these uncertainties in the road network by a set
of discrete scenarios. A 𝑘th shortest-path method is introduced to find intact routes from the origin to the destination for each
vehicle. A binary integer programming is presented to formulate the problem. As the combination of the uncertainties results in
a huge number of scenarios, we employed the sample average approximation method to obtain a robust solution for the problem.
The solution approach is illustrated and tested through three road networks with different scales. The computational results show
that, for networks of small scale, our method can provide a good solution with a sample of small size, while, for the large network,
with sample of small size, this method usually leads to a suboptimal solution, but a good solution can still be obtained as the sample
size grows bigger. In addition, variation trend of the deviation with different sample size indicates that a sample of larger size can
bring more stability to the results.

1. Introduction

During wartime, Military Ground Vehicles (MGVs) usually
have to maneuver out of their rear bases or concealed places
(origins), pass through a complex road network, and arrive
at the predetermined areas (destinations) to complete their
operational missions, as in Figure 1. For example, mobile
missile launchers depart from the military bases and move
to the missile launch sites to complete the launch mission.
Generally, origins are well fortified and disguised, which
can ensure the safety of the MGVs. However, when the
MGVs depart from the origins and move on the road
network, theymay be detected by the enemy’s reconnaissance
sensors. Because of the lack of fortification and camouflage
resources, MGVs are exposed to man-made attacks during
their movement in the road network. Such attacks, mainly
arising from ground assault and air raid, are likely to occur
frequently in battlefield. In fact, according to South Asia
Terrorism Portal (SATP) [1], there were 309 attacks to the
NorthAtlantic TreatyOrganization (NATO) supply transport

in Pakistan from 2008 to 2014. The number of deaths due
to such attacks attains to 143. The problem of maneuvering
in networks prone to attacks is prominently important due
to the numerous zones that are currently at war around the
world. According to the data given by the Global Security
Organization (GSO) [2] there were 35 major ongoing wars
and more than 25 minor conflicts around the world by the
end of 2015. All these regions are highly prone to attacks
where enemies perform attacks to military staff and vehicles
travelling in the road networks. Thus, properly planning
routes for MGVs in uncertain battlefield road networks, so
as to reduce the risk of being attacked, is an important issue
worth studying in the military field.

A classical problem related to MGVs’ route planning is
the Convoy Movement Problem (CMP) [3–5]. In the CMP,
there is a set of convoys with a specific origin-and-destination
(OD) pair. The objective is to find the routes for every
convoy that minimize the total overall travel time while
adhering to some strategic constraints [6]. Time is the most
important factor in this problem since present-day military
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Figure 1: An illustration of MGVs’ maneuvering.

engagements emphasize the need formobilitymore than ever
[3]. However, if we consider route planning associated with a
mission, MGVs need not accomplish the maneuver mission
as early as possible but must reach destinations before the
mission deadline. Thus, in this paper we will consider the
routing time of each MGV as a strong constraint rather than
the objective for costs. Given the deadline of the mission, all
MGVs involved in the maneuvering are requested to arrive at
their destinations in a time no longer then this timeline.

Another important feature of the studied MGV routing
problem is that the destination for each MGV is not deter-
ministic and there are a number of candidate destinations for
the MGVs to choose, which is quite different from the one-
to-one OD pairs in CMP. Destination location is a critical
decision for MGVs, which can be coordinately optimized
with the routes. This is a practical requirement in military
operations; for example, there usually are a set of potential
launch areas for the mobile missile launchers to complete
their mission and the final launch destination has to be
determined according to the situation of the battlefield and
the road network. Thus, the MGV routing problem includes
two main parts: for each vehicle, select a destination among
the candidate locations and a route among the 𝑘th-shortest
paths between its origin and destination.

The emergency evacuation problem is concerned with
shelter selection and route planning for evacuates, which
displaces people from evacuation sources (areas suffered
natural or human-made disasters) and transports them to
evacuation destinations (safe shelters) [7]. The evacuation
problem is related to our research in the location and routing
decisions, but most of the work in this field needs not to
consider the uncertain attacks during the movement in the
road network. A comprehensive review of this topic can be
seen in the work of Altay and Green III [8] and Galindo and
Batta [9].

In the evacuation problem, there are usually a couple of
candidate shelters and a given road network with determin-
istic delivery capacity in each road arc. The decision maker
has to determine the suitable shelters and choose paths for
all evacuees to optimize the evacuation cost and efficiency.
Yamada [10] modeled the city road network as an undirected
graph, and by solving a shortest-path problem on this graph,
they obtained the optimal evacuation plan for assigning

each resident in the city to one of the places for refuge.
Cova and Johnson [11] focused on traffic delays occurring
at intersections. To reduce these delays, they presented
a network flow model for identifying optimal lane-based
evacuation routing plans in a complex road network. Besides
network-flow-based approach, the 𝑘th-shortest-pathmethod
is another method widely employed in the evacuation prob-
lem. Campos et al. [12] first presented this method for vehicle
flow allocation in emergency transportation planning. Their
goal is to send a greater number of vehicles in a minimum
time outside a region under menace of some catastrophic
event. Stepanov and Smith [13] applied the 𝑀/𝐺/𝑐/𝑐 state
dependent queuing models to cope with congestion and
time delays on arcs. In their model, the set of feasible and
potential egress routes is defined with the 𝑘th-shortest-path
algorithm. He et al. [7] presented a 𝑘-shortest-path-based
evacuation routing method with consideration of police
resource allocated in transportation network. They proposed
a nonlinear mixed integer programming to minimize overall
evacuation clearance time. In general, the main purpose of
the evacuation is to minimize the overall travelling time, and
the uncertainty in the evacuation problem usually arises from
the congestions and time delay occurring at intersections or
arcs, which is different from the uncertain attacks considered
in this paper.

To the best of our knowledge, existing studies rarely
considered the arcs’ uncertainty that arcs may be disrupted
or travelling vehicles may be attacked during moving on the
arc. In wartime, it is important for MGVs, such as missile
launchers and movable radars, to quickly and safely arrive
at their destination for completing the mission. In this work,
we model the road uncertainty by a set of discrete scenarios.
Each scenario, occurring with a specific probability, specifies
a subset of arcs that become potentially insecure, on which
MGVs travellingmay be destroyed by intentional attacks.The
optimization objective is to maximize the expectation that all
MGVs accomplish the maneuver mission securely.

The main contributions of this paper are as follows.
We employ the 𝑘-shortest-path method to describe the

scenario-based route planning problem. A binary integer
programming (BIP) model is developed for the MGVs’
route planning in battlefield road network, considering arcs’
insecurity and the uncertainty in travelling time.

In each scenario, the instance of the problem is determin-
istic and can be solved by CPLEX solver [14]. To cope with
the huge number of scenarios caused by uncertainties in the
road network, we adapt the sample average approximation
(SAA) method to address the computational complexity and
propose a solution approach based on SAA.

Three road networks with different scales are presented to
test the performance of the SAA-based algorithm. Sensitivity
analysis on the sample size is conducted to search for a
balance between efficiency and accuracy.

The rest of this paper is organized as follows. First we
present the formulation of the problem in Section 2; next
we introduce the SAA background and describe the solving
process based on SAA in Section 3; then the computational
experiments are presented and results are discussed in Sec-
tion 4; the conclusion is given in the final section.
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2. Model Formulation

In this section, we present the problem description in detail,
the underlying assumptions, and the model formulation.

We define the problem on an undirected road network
graph 𝐺 = (𝑉,𝐴), where 𝑉 is the node set and 𝐴 is the
set of arcs. There are a number of 𝐼 origins for the MGVs,
and a set of 𝐽 potential destinations. The total number of
MGVs in all origins is 𝑊, which satisfies 𝐼 ⩽ 𝑊 ⩽ 𝐽. The
security of arcs is assumed to be independent. Considering a
route 𝐿, containing arcs 𝑙1, 𝑙2, . . . , 𝑙𝑛, with secure probability
(i.e., the probability a vehicle travels through the arc safely)𝑝1, 𝑝2, . . . , 𝑝𝑛, respectively, the secure probability of route 𝐿
can be formulated as

𝑃𝐿 = 𝑛∏
𝑙=1

𝑝𝑙. (1)

We are supposed to select a route for each MGV so
that the sum of all routes’ 𝑃𝐿 is maximized. We employ the𝑘th-shortest-path method to help find the possible routes
for each OD pair in the road network, based on which
the routing problem of MGV is transformed into MGV
allocation problem.Through allocation of MGVs to different𝑘th-shortest paths of OD pairs, their route and destinations
can be optimized to maximize the overall security.

2.1. Assumptions. In order to facilitate the formulation of the
problem, several underlying assumptions are proposed.

There are two statuses for each arc in the road network:
secure and insecure. For an arc in the secure status,MGVs can
safely travel through the arc, while, for an arc in the insecure
status, there is a probability that the MGV is attacked.

Each road arc is associated with a capacity limiting the
maximum number of MGVs that can travel through. We
consider the capacity of each arc is limited in the whole
maneuvering process. Unlike the hypothesis in CMP [3] that
no pair of convoys is allowed to occupy the same part of
the network at the same time, we employ the vehicle hiding
description presented by Yang et al. [15] as the hypothesis. In
their work, they set V𝑖𝑗(𝑃) as standardized value of the flow
between node 𝑖 and 𝑗 in a given transport program 𝑃, and the
information entropy between node 𝑖 and 𝑗 is expressed as

𝐼 (V𝑖𝑗 (𝑃)) = −∑
𝑖

∑
𝑗 ̸=𝑖

V𝑖𝑗 (𝑃) ln V𝑖𝑗 (𝑃) . (2)

It is observed that the information entropy 𝐼(V𝑖𝑗(𝑃))
increases along with the V𝑖𝑗(𝑃) decreasing. If all vehicles
are distributed to different roads, we can obtain higher
network information entropy, which also provides a better
performance in elusiveness. Therefore, the capacity of each
arc is assumed to be artificially limited in the entiremaneuver
process in our paper.

The MGVs considered are identical and are able to
execute missions independently. To ensure the safety of vehi-
cles and reduce losses during the moving process, sending
vehicles to separate terminals is a bright choice. In this paper,
we suppose that each destination can accommodate one
vehicle at most.

As destinations are also assumed to be homogenous in
this paper, the main issue we need to focus on is to select a
route to an alternative destination for each vehicle.

2.2. Notations. To describe the problem more clearly, the
notations used in the model are presented as follows.

Indices

𝑖: index of origins, and 𝑖 = 1, 2, . . . , 𝐼, where 𝐼 is the total
number of origins;𝑗: index of alternative destination, and 𝑗 = 1, 2, . . . , 𝐽,
where 𝐽 is the total number of destinations;𝑘: index of 𝑘th-shortest path, and for each pair of OD𝑘 = 1, 2, . . . , 𝐾𝑖𝑗, where 𝐾𝑖𝑗 is the total number
of shortest paths considered between origin 𝑖 and
destination 𝑗;𝑙: index of arc 𝑠, and 𝑙 = 1, 2, . . . , 𝐿, where 𝐿 is the total
number of arcs involved in the road network;𝑠: index of scenarios, and 𝑠 = 1, 2, . . . , 𝑆, where 𝑆 is the
total number of scenarios considered.

Parameters

𝑤𝑖: the number of MGVs dispatched from origin 𝑖;𝑝𝑠: the probability that scenario 𝑠 occurs;𝑞𝑙: the probability that arc 𝑙 is in insecure state;𝑝𝑠𝑙: the probability that a vehicle travels through arc 𝑙
safely in scenario 𝑠, where the arc 𝑙 can be either secure
or insecure;𝜃𝑙: the probability a vehicle travels through the insecure
arc 𝑙 safely;𝑎𝑠𝑙: 1 if arc 𝑙 is in secure state in scenario 𝑠, 0 otherwise;𝑃𝑖𝑗𝑘𝑠: the secure probability of the 𝑘th-shortest path from
origin 𝑖 to destination 𝑗 in scenario 𝑠;𝑅𝑖𝑗𝑘: a set of arcs, composed of all arcs in the 𝑘th-shortest
path from origin 𝑖 to destination 𝑗;𝑡𝑠𝑙: time consumed for travelling through arc 𝑙 in scenario𝑠, which is obtained considering distance of the arc
and the vehicle velocity in the specific scenario;𝑇𝑒: time length of the mission, that is, the time allowed to
finish the movement;𝛼𝑙𝑖𝑗𝑘: 1 if arc 𝑙 is included in the 𝑘th-shortest path from
origin 𝑖 to destination 𝑗, 0 for otherwise;𝜆𝑙: the capacity of arc 𝑙.

Decision Variable

𝑥𝑖𝑗𝑘: 0-1 variable. 1 for dispatching a vehicle from origin 𝑖
to destination 𝑗 through the 𝑘th-shortest path, 0 for
otherwise.

As each scenario specifies a subset of arcs which become
insecure, given scenario 𝑠 (in which 𝑎𝑠𝑙, ∀𝑙 are known),
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the probability that it occurs can be obtained through the
following function:

𝑝𝑠 = ∏
𝑙∈𝐿:𝑎𝑠𝑙=0

𝑞𝑙 ⋅ ∏
𝑙∈𝐿:𝑎𝑠𝑙=1

(1 − 𝑞𝑙) . (3)

2.3. Formulation. We formulated the problem as follows:

max 𝑍 = ∑
𝑠

𝑝𝑠∑
𝑖

∑
𝑗

∑
𝑘

𝑥𝑖𝑗𝑘𝑃𝑖𝑗𝑘𝑠 (4)

s.t. ∑
𝑗

∑
𝑘

𝑥𝑖𝑗𝑘 = 𝑤𝑖, ∀𝑖, (5)

∑
𝑖

∑
𝑘

𝑥𝑖𝑗𝑘 ≤ 1, ∀𝑗, (6)

𝑥𝑖𝑗𝑘 ∑
𝑙∈𝑅𝑖𝑗𝑘

𝑡𝑠𝑙 ≤ 𝑇𝑒, ∀𝑖, 𝑗, 𝑘, (7)

𝑝𝑠𝑙 = {{{
1 if 𝑎𝑠𝑙 = 1
𝜃𝑙 if 𝑎𝑠𝑙 = 0 (8)

𝑃𝑖𝑗𝑘𝑠 = ∏
𝑙∈𝑅𝑖𝑗𝑘

𝑝𝑠𝑙 ∀𝑖, 𝑗, 𝑘 (9)

∑
𝑖

∑
𝑗

∑
𝑘

𝛼𝑙𝑖𝑗𝑘𝑥𝑖𝑗𝑘 ≤ 𝜆𝑙 ∀𝑙 (10)

𝑥𝑖𝑗𝑘 ∈ {0, 1} ∀𝑖, 𝑗, 𝑘. (11)

The objective function of the problem is to maximum the
sum of expectations of all vehicles travelling securely to their
destinations. Constraints (5) ensure that all vehicles at origin𝑖 are dispatched. Constraints (6) restrict that the number of
vehicles in each destination should be no more than one.
Constraints (7) present that in any scenario, each vehicle’s
moving time should be less than the time length restricted by
the mission. In our paper, the time consumed in each arc, 𝑡𝑠𝑙,
is assumed to different under different scenario. Constraints
(8) show that if an arc is in secure status, the MGV can pass
through it safely with probability 1, and the safely travelling
probability turns to be 𝜃𝑙 if the arc is insecure. Constraints
(9) are the variants of formula (1) in an appropriate form.
Constraints (10) show that the flow in each arc is limited.
Constraints (11) state that decision variables, 𝑥𝑖𝑗𝑘, are all 0-1
variables.

It is observed that in a specified scenario, the problem is
a deterministic BIP, which can be solved by CPLEX solver.
If there are 𝑟 arcs involved in a problem and each arc can
either be in secure status or insecure status, 2𝑟 scenarios
need to be considered. Thus, the number of scenarios grows
exponentially with the number of arcs. It would be a tough
work to get the optimal solutionwith all scenarios considered.
To cope with this problem, we introduce the SAA method to
solve the problem in the next section.

3. Solving Methodology

In this section, we present the solution approach based on the
SAA method.

3.1. ProblemDescription Based on SAA. The SAAmethod is a
Monte Carlo simulation based approach to stochastic discrete
optimization problems [16]. In this method, the expected
value of the objective function is approximated by solving
the problem for a sample of scenarios. The sample size of the
SAA problem is much smaller than the number of scenarios
in the true problem and as the sample size increases, SAA
converges exponentially fast to the true problem [16]. The
SAA method has been applied in many stochastic programs
lacking exact algorithms, for example, the network design
[17–19] and empty container repositioning [20, 21].

The SAA method repeats the sampling and solving
process for several times to select a best solution. In each
sample, 𝑁 scenarios are randomly generated, and thus the
objective function (4) of the true problem is approximated
with

𝑍𝑁 (𝑥) fl max 1𝑁
𝑁∑
𝑛=1

∑
𝑖

∑
𝑗

∑
𝑘

𝑥𝑖𝑗𝑘𝑃𝑛𝑖𝑗𝑘. (12)

For each scenario in a sample, both the time, 𝑡𝑙, and the
secure probability, 𝑝𝑙, of each arc are fixed. The true problem
(4)–(11) in each scenario can be rewritten as

max 𝑍 = ∑
𝑖

∑
𝑗

∑
𝑘

𝑥𝑖𝑗𝑘𝑃𝑖𝑗𝑘 (13)

ST (5)-(6), (10)-(11), and

𝑥𝑖𝑗𝑘 ∑
𝑙∈𝑅𝑖𝑗𝑘

𝑡𝑙 ≤ 𝑇0, ∀𝑖, 𝑗, 𝑘, (14)

𝑃𝑖𝑗𝑘 = ∏
𝑙∈𝑅𝑖𝑗𝑘

𝑝𝑙, ∀𝑖, 𝑗, 𝑘. (15)

This problem is a deterministic BIP, which can be solved
by CPLEX solver. However, since the time, 𝑡𝑠𝑙, varies from
scenario to scenario, a solution suiting a scenario well may
be an infeasible solution to another scenario.The solution we
selected should be universally applicable. A solving process
to this matter is given in Procedure 1.

First, we solve the problem of each scenario and get
the optimal solutions separately. The solutions recurring
for many times are thought to be of better performances
than these hardly recurring, which are optimal in just some
extreme scenarios. With all scenarios considered, we keep
several solutions with the most recurring times. (In fact, in
the experiment it is observed that the first three or four
solutions consist of best solutions to more than a half of
all scenarios.) From these solutions, the solution which is
feasible in all scenarios and has the largest value of formula
(12) is selected as the solution to the sample, denoted by 𝑥.

Theprocess of sampling𝑁 scenarios and solving to obtain𝑍𝑁 and 𝑥𝑁 is repeated𝑀 times. Calculate the average of the
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Procedure: Selecting a solution for a sample
(1) Input the N randomly-generated scenarios, and initialize the solution 𝑥 = 0
(2) Solving the problem of each scenario with CPLEX, record the best solution to each scenario
(3) Counting the solutions, sort the diverse solutions in non-increasing order of counts
(4) Choose the first 𝑅 diverse solutions (𝑅 is the number of solutions to check)
(5) For solution 𝑥𝑟 (𝑟 = 1, 2, . . . , 𝑅), calculate the 𝑍𝑁(𝑥𝑟) in formula (12)
(6) Check solution 𝑥𝑟 in all scenarios, if 𝑥𝑟 is not feasible overall, update 𝑍𝑁(xr) = 0
(7) Choose 𝑥𝑟∗ with the biggest 𝑍𝑁(𝑥𝑟∗ ), and let 𝑥 = 𝑥𝑟∗
(8) Return x

Procedure 1: The solving process in a sample.

(1) Choose initial sample sizes𝑁 and𝑁, a decision rule for determining repeating times𝑀 and a rule for increasing the sample
sizes𝑁 and𝑁.

(2) For repetition𝑚 (𝑚 = 1, 2, . . . ,𝑀), generate a sample of size𝑁, and solve the SAA problem to get the objective value 𝑍𝑚𝑁(𝑥),
and the corresponding solution 𝑥𝑚.

(3) Calculate the sample average 𝑍𝑀𝑁 and the corresponding deviation �̂�
𝑍
𝑀
𝑁
.

(4) For repetition𝑚 (𝑚 = 1, 2, . . . ,𝑀), generate a sample of size𝑁 and calculate 𝑍𝑁 (𝑥𝑚).
(5) Select a solution with the maximum objective value 𝑥∗ = argmax{𝑍𝑁 (𝑥) : 𝑥 ∈ 𝑥1, 𝑥2, . . . , 𝑥𝑀}, 𝑍𝑁 = 𝑍𝑁 (𝑥∗), and calculate

the corresponding deviation �̂�𝑍
𝑁
.

(6) Calculate the two gaps, gap and �̂�
𝑍
𝑀
𝑁+𝑍𝑁

.
(7) If convergence criterions are met then stop; if not, change𝑁 and𝑁, and repeat from step (2).

Algorithm 1: SAA algorithm.

optimal objective function values of the𝑀 samples, namely,
the value of the sample average, as

𝑍𝑀𝑁 fl
1𝑀
𝑀∑
𝑚=1

𝑍𝑚𝑁 (𝑥) . (16)

It is noteworthy that the sample size 𝑁 is a tradeoff between
computational complexity and accuracy. A larger value of𝑁
brings a more accurate estimate of the true problem, but an
increase in computing complexity as well. The size𝑁 can be
selected dynamically. The SAA solving process starts with a
smaller size, and then we can regulate the sample size based
on the acquired accuracy and the computational complexity.

The selected solution, given a candidate solution 𝑥, for
example, a feasible solution from the optimal solutions of𝑀
samples, needs to be evaluated. The evaluation of objective
function is conducted by taking sample size of𝑁 (𝑁 ≫ 𝑁).
That is, a number of𝑁 scenarios are randomly generated for
the evaluation. Let

𝑍𝑁 (𝑥) fl 1𝑁
𝑁∑
𝑛=1

∑
𝑖

∑
𝑗

∑
𝑘

𝑥𝑖𝑗𝑘𝑃𝑛𝑖𝑗𝑘. (17)

Since𝑁 is much larger than𝑁, the objective value obtained𝑍𝑁(𝑥) is considered as an estimator of the true objective
function (3) [19]. In a common SAA problem, the quality
of the solution is evaluated by calculating the optimality
gap and the variance of optimality gap. In our problem,
as the involved expectations are all numbers around 1, to

highlight the dispersion of the result, we replace the variance
of optimality gap with the deviation of optimality gap. Here,
we define the optimality gap as

gap fl 𝑍𝑀𝑁 − 𝑍𝑁 (𝑥) . (18)

And we define the deviation of optimality gap as

�̂�
𝑍
𝑀

𝑁+𝑍𝑁
fl �̂�
𝑍
𝑀

𝑁

+ �̂�𝑍
𝑁
, (19)

where

�̂�
𝑍
𝑀

𝑁

fl √ 1𝑀(𝑀 − 1)
𝑀∑
𝑚=1

(𝑍𝑚𝑁 (𝑥) − 𝑍𝑀𝑁)2,

�̂�𝑍
𝑁

fl √ 1𝑁 (𝑁 − 1)
𝑁∑
𝑛=1

(𝑍𝑛 (𝑥) − 𝑍𝑁 (𝑥))2.
(20)

3.2. SAA Algorithm. Based on description above, the SAA
algorithm process is presented in Algorithm 1.

4. Experiment Design and Computational
Results Analysis

4.1. Experiment Design. In this part, we examine the perfor-
mance of the algorithmon different dataset.We selected three
road networks: a small-scale designed network with 13 nodes
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Origins

Destinations

Figure 2: Network 1: the small-scale random network.

Table 1: The problems to be solved in the 3 networks.

Number Network Amount of
nodes

Involved
nodes

Involved
arcs

Number of
origins (𝐼) Number of

destinations (𝐽) Number of MGVs
dispatched (𝑤𝑖) Road

capacity (𝜆𝑙)
(1) Random 13 13 27 2 3 [1, 1]a 2
(2) Changsha City 46 37 57 3 5 [1, 2, 1] 2
(3) Fujian Province 226 112 147 3 15 [2, 3, 2] 2
aValues in square brackets stand for the number of vehicles dispatched from the origins separately.

Figure 3: Network 2: a network from Changsha, China.

Figure 4: Network 3: the arterial traffic network of Fujian Province
of China.

and 27 arcs (Figure 2), a middle scale practical network with
46 nodes and 77 arcs in Hunan Province of China (Figure 3),
and a large scale practical network with 226 node and 239
arcs in southeast of China (Figure 4). The lengths of the arcs

in Network 1 were randomly generated, while in Network 2
andNetwork 3 the lengths were calculated by the commercial
software, ArcGIS, based on the practical data of the two
regions.

The 𝑘th-shortest-path datasets were derived by the meth-
ods in [22–24]. Other key parameters are given as follows:

𝜃 is a constant and is set to be 0.2 in all experiments;
the value of 𝑡𝑠𝑙 is set to be the road length divided by
the velocity, which varies in a range around ±10% of a
given velocity as the scenario varies;𝑞𝑙 is randomly generated.

The data for all the experiments can be found in the
supplementarymaterial noted as dataset. Table 1 shows a brief
look of the problems considered in 3 networks, respectively.
For the fulfillment of SAA, the value of 𝑀 is set to be 10
and keeps constant for all sample sizes. The sample size 𝑁
ranges from 100 through 1000, with an interval of 100. And
the value of𝑁 is set to be 10,000.The algorithms were coded
inMATLAB by invoking CPLEX v.12.6. And all the programs
were executed on a 64-bit computer with a 3.2 GHz CPU and
8.0GB of physical RAM.

4.2. Computational Results and Analysis. The computational
results for the three networks are presented in Tables 2,
3, and 4, respectively. We give the minimum, maximum,
average, and corresponding deviation of each sample size, as
the results of the SAA process. The calculating time of each
SAA process is also listed as the CPU time. It can be seen
that the calculating time increases as the sample size grows,
where the growth rate keeps almost constant for each network
separately. This is an acceptable result, since that we viewed
the working time of each module of the program and found
the scenario generating and CPLEX solving parts, both of
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Figure 5: The line graph of sample size and gap (%).

Table 2: SAA results for test Network 1.

Sample
Size (N)

SAA process Evaluation Optimality gap

𝑍min 𝑍max 𝑍𝑀𝑁 �̂�
𝑍
𝑀
𝑁

CPU timea
(s) 𝑍𝑁 (𝑥) �̂�𝑍

𝑁
gap gap (%)b �̂�

𝑍
𝑀
𝑁+𝑍𝑁

100 0.532 0.5864 0.5579 5.3275𝑒 − 03 0.83 0.5548 6.7234𝑒 − 03 3.0553𝑒 − 03 0.5477 1.2051𝑒 − 02
200 0.5456 0.5731 0.5586 3.8670𝑒 − 03 1.54 0.5548 6.7919𝑒 − 03 3.7395𝑒 − 03 0.6695 1.0659𝑒 − 02
300 0.5305 0.5783 0.5498 5.4558𝑒 − 03 2.28 0.5548 6.7253𝑒 − 03 −4.983𝑒 − 03 0.9063 1.2181𝑒 − 02
400 0.5438 0.5589 0.5525 1.7122𝑒 − 03 3.01 0.5550 6.7581𝑒 − 03 −2.4441𝑒 − 03 0.4423 8.4703𝑒 − 03
500 0.5450 0.5684 0.5567 3.0237𝑒 − 03 3.76 0.5548 6.836𝑒 − 03 1.967𝑒 − 03 0.3533 9.8597𝑒 − 03
600 0.5397 0.5595 0.5495 2.0991𝑒 − 03 4.49 0.5549 6.8159𝑒 − 03 −5.4032𝑒 − 03 0.9833 8.9149𝑒 − 03
700 0.5493 0.5695 0.5600 2.6198𝑒 − 03 5.20 0.5549 6.8249𝑒 − 03 5.0636𝑒 − 03 0.9043 9.4447𝑒 − 03
800 0.5501 0.5656 0.5565 1.7425𝑒 − 03 5.94 0.5542 6.7327𝑒 − 03 2.2589𝑒 − 03 0.4059 8.4752𝑒 − 03
900 0.5497 0.5651 0.5588 1.3669𝑒 − 03 6.73 0.5550 6.8224𝑒 − 03 3.9135𝑒 − 03 0.7003 8.1893𝑒 − 03
1000 0.5417 0.5630 0.5542 2.5303𝑒 − 03 7.39 0.5549 6.6988𝑒 − 03 −6.5813𝑒 − 03 0.1187 9.2291𝑒 − 03
aThe CPU time presents the total time cost in the SAA sampling and solving process. bgap (%) = (|gap|/𝑍𝑀𝑁) ∗ 100%.

which require repeating 𝑁 (the value of sample size) times
and take the most of the time (more than 95% of the whole).
The evaluation part shows the results of employing the
selected solution of the SAA process to a much bigger sample
of size𝑁. And the gaps between these results are given in the
optimality gap part. Several discussions about the optimality
gap and the deviations are given as in Tables 2, 3, and 4.

Figure 5 shows the trends of gap (%) for the 3 networks
while the sample size increases. Here the index, gap (%),
means the closeness between the SAA results and evaluation
results, which can be viewed as the estimator of the true
problem. For Network 1, the gaps (%) are all below 1% and
fluctuate irregularly, while, for Network 2 and Network 3,
the values start from 4.46% and 5.69%, respectively, as the
sample size is 100 and decrease distinctly as the sample
size increases. Although there are several fluctuations in
both of them, the downtrends are obvious. These differences
between Network 1 and Network 2/3 arise from the solutions
selected in each network. In fact, the solution selected for
Network 1 stays constant from sample size 100 through 1000.

The fluctuation is caused by the uncertainty of sampling.
However, the solutions selected for Network 2 and Network
3 vary as the sample size increases. Better solution brings
smaller optimality gap, which indicates that better solution
to the true problem is obtained.

Figure 6 presents comparison for the trends of SAA
results and evaluation results. We can see the evaluation
results of Network 1 stay relative constant, while the SAA
results fluctuate around the evaluation results in a quite
small range. For Network 2, the SAA results have a distinct
downtrend as the sample size increases, while the trend of
the evaluation results is opposite. The gap between the two
values is first below 1% when sample size is 500, after which
the SAA results fluctuate around the evaluation results. The
smallest gap between the two values reaches 0.013% when
sample size is 900. The discussion for Network 2 can be
applied to Network 3 as well, in which these trends are
more obvious.The SAA results rise and evaluation results fall
distinctly as the sample size increases from 100 through 600.
From 600 through 1000, the SAA results fluctuate. And the
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Table 3: SAA results for test Network 2.

Sample
size (N)

SAA process Evaluation Optimality gap

𝑍min 𝑍max 𝑍𝑀𝑁 �̂�
𝑍
𝑀
𝑁

CPU time
(s) 𝑍𝑁 (𝑥) �̂�𝑍

𝑁
gap gap (%) �̂�

𝑍
𝑀
𝑁+𝑍𝑁

100 0.6988 0.7319 0.7175 3.7930𝑒 − 03 3.2 0.6855 1.5881𝑒 − 02 3.1969𝑒 − 02 4.4557 1.9674𝑒 − 02
200 0.6934 0.7197 0.7058 2.9367𝑒 − 03 5.97 0.6862 1.5822𝑒 − 02 1.9587𝑒 − 02 2.7752 1.8760𝑒 − 02
300 0.6943 0.7108 0.7035 1.6460𝑒 − 03 8.65 0.6862 1.5815𝑒 − 02 1.7336𝑒 − 02 2.4642 1.7461𝑒 − 02
400 0.6923 0.7169 0.7036 2.8679𝑒 − 03 11.45 0.6918 1.2582𝑒 − 02 1.1795𝑒 − 02 1.6764 1.5449𝑒 − 02
500 0.6872 0.712 0.6996 2.5119𝑒 − 03 14.17 0.6927 1.2499𝑒 − 02 6.9041𝑒 − 03 0.9869 1.5011𝑒 − 02
600 0.6929 0.7099 0.7013 1.6643𝑒 − 03 17.03 0.6929 1.2475𝑒 − 02 8.3798𝑒 − 03 1.195 1.4140𝑒 − 02
700 0.6922 0.7033 0.6998 1.2746𝑒 − 03 19.75 0.694 1.2445𝑒 − 02 5.8449𝑒 − 03 0.8352 1.3719𝑒 − 02
800 0.7004 0.7077 0.7035 7.1520𝑒 − 04 22.41 0.7015 1.0357𝑒 − 02 2.0178𝑒 − 03 0.2868 1.1072𝑒 − 02
900 0.6947 0.7098 0.7016 1.9050𝑒 − 03 25.22 0.7015 1.0322𝑒 − 02 9.2599𝑒 − 05 0.0132 1.2227𝑒 − 02
1000 0.6959 0.7039 0.6995 9.1399𝑒 − 04 27.99 0.7025 1.0217𝑒 − 02 −2.9942𝑒 − 03 0.4281 1.1131𝑒 − 02

Table 4: SAA results for test Network 3.

Sample
size (N)

SAA process Evaluation Optimality gap

𝑍min 𝑍max 𝑍𝑀𝑁 �̂�
𝑍
𝑀
𝑁

CPU time
(s) 𝑍𝑁 (𝑥) �̂�𝑍

𝑁
gap gap (%) �̂�

𝑍
𝑀
𝑁+𝑍𝑁

100 1.0532 1.1621 1.0922 1.0115𝑒 − 02 36.02 1.0301 2.2434𝑒 − 02 6.2161𝑒 − 02 5.6911 3.255𝑒 − 02
200 1.0519 1.1191 1.0744 7.0514𝑒 − 03 64.02 1.0328 2.2288𝑒 − 02 4.1606𝑒 − 02 3.8724 2.934𝑒 − 02
300 1.034 1.1179 1.0641 7.8205𝑒 − 03 92.09 1.038 1.8193𝑒 − 02 2.6097𝑒 − 02 2.4525 2.6013𝑒 − 02
400 1.0535 1.1072 1.0683 4.8197𝑒 − 03 120.2 1.0499 1.6410𝑒 − 02 1.8438𝑒 − 02 1.7259 2.1229𝑒 − 02
500 1.0517 1.07 1.0626 2.2199𝑒 − 03 148.23 1.0476 1.6670𝑒 − 02 1.5009𝑒 − 02 1.4125 1.889𝑒 − 02
600 1.0344 1.0796 1.047 4.2979𝑒 − 03 176.4 1.0571 1.3658𝑒 − 02 −1.009𝑒 − 02 0.9638 1.7956𝑒 − 02
700 1.0381 1.0881 1.0628 5.6404𝑒 − 03 204.6 1.0619 1.3634𝑒 − 02 8.4620𝑒 − 04 0.0796 1.9275𝑒 − 02
800 1.0412 1.0829 1.0546 4.0003𝑒 − 03 232.48 1.0557 1.3209𝑒 − 02 −1.1158𝑒 − 03 0.1058 1.7209𝑒 − 02
900 1.0439 1.0745 1.054 2.7739𝑒 − 03 260.69 1.0595 1.3410𝑒 − 02 −5.4381𝑒 − 03 0.5159 1.6184𝑒 − 02
1000 1.0432 1.0601 1.0535 1.7549𝑒 − 03 288.78 1.0584 1.3530𝑒 − 02 −4.8823𝑒 − 03 0.4634 1.5284𝑒 − 02
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Figure 6: The comparison between SAA results (the colored solid
lines) and evaluation results (the black dashed lines) with sample
size varying.

smallest gap between the two is 0.08%,when the sample size is
700.

The results of Network 1 indicate that, for a network
of small scale, a good solution can be obtained with a
considerably small sample size. But for networks of bigger
scales, such as Network 2 and Network 3, as the number
of arcs considered in the problem increases, the number of
possible scenarios increases. A sample of small size cannot
reflect the panorama of the problem. In our algorithm, 10
samples are generated and solved, and the sample solution
with the biggest expectation value is selected, while, for a
sample of small size, a suboptimal solution may have a better
performance than the “good” solution (as we cannot tell
whether it is the optimal one) does. This explains why for
networks of bigger scales, suboptimal solutions are usually
selected when the sample size is small. But if the sample
size is big enough, the good solutions can still be obtained
constantly.

Figure 7 presents the deviation trends with the sample
size increasing. All the deviations of the three networks have
downward trends, which are especially evident in Network 2
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Figure 7:The line graph of sample size and deviations of 3 networks.

and Network 3. The deviation consists of the sampling devi-
ation and the evaluation deviation. The evaluation deviation
reflects the quality of a given solution.As all solutions selected
in sample sizes are identical in Network 1, the evaluation
deviations vary a little.Thevariation of the deviation ismainly
caused by the sampling deviations, whichmanifests volatility.
For networks 2 and 3, of each sample size, the evaluation
deviation is much bigger than the sampling deviation. And
as the selected solutions vary, the evaluation deviations have
evident downtrends. In fact, the sampling deviations of
Network 2 and 3 are fluctuating, of which the overall trends
are drops as well. As the longest time spent on sampling
and calculating is just 288.78 s (for Network 3, of sample size
1000), the time spent on calculating is relatively short and
grows linearlywith the growth of the sample size, we can solve
the problem with bigger sample size to get a good solution of
higher accuracy to reflect the true problem better.

5. Conclusion

In this paper, we addressed the problem MGVs maneuver
in unsecure road networks in battlefield environment. We
describe the uncertainty of the network based on discrete sce-
narios and introduce the 𝑘th-shortest-path method to calcu-
late the possible paths between origins and destinations. The
problem is formulated into a binary integer programming
model. Due to the huge number of scenarios generated by the
combination of uncertain arcs, we proposed a SAAmethod to
solve the model. Experiments based on three networks with
different scales were conducted to test the efficiency of the
solution approach. Computational results show that bigger
sample brings relevant progress of the approximation and an
acceptable increasing in computational complexity.

In our paper, we did not consider the fortification or
camouflage resource for the maneuver, and we only need
to decide routes for all vehicles. In some cases, there are

protective resources available in the MGV moving process,
which can be allocated to some road arcs and reduce the
risk for being attacked. Therefore, it is a valuable extension
for integrating the protective resources in the MGV routing
problem in future works.
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