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The solution to a dynamic context of the Capacitated Vehicle Routing Problem (CVRP) is challenging. Routing and replenishment
decisions are necessary by considering the assignment of customers to vehicles when the information is gradually revealed over
horizon time. The procedure to solve this type of problems is referred to as route reoptimization, which is the best option for
minimizing expected transportation cost without incurring failures of unsatisfied demand on a route. This paper proposes a
heuristic algorithm for the reoptimization of CVRP in which the number of customers increases. The algorithm uses proposed
performance metrics to reduce route dispersion and minimize length. The initial solution is generated using the savings algorithm
and then enhanced using the Record-to-Record travel metaheuristic. By including or reducing new customers in the system, a
reoptimization is performedwhich considers the visited nodes and edges as fixed.The optimization of the algorithm is implemented
hierarchically by first minimizing dispersion and then minimizing distance. Next, the local search procedure is executed to
improve the solution. A classic optimization is performed on all instances using the original and new customers’ information
for later comparison to minimize distance.The efficiency of the proposed algorithm was validated using real-world cases from the
literature.The results are promising and show the effectiveness of the proposedmethod for solving the considered problem by using
reoptimization procedures in order to achieve good approximation ratios within short computing times.

1. Introduction

The transportation industry has various problems of different
levels of complexity. Perhaps one of the most interesting
of these problems is route development, which is usually
performed based on expert knowledge. Although the vehicle
routing problem has been studied for more than 70 years, the
challenge of solving it has increased as more difficult variants
arise in the prominent area of development.

Thevehicle routing problem (VRP), which is an extension
of the well-known traveling salesman problem (TSP) [1], is
considered NP-hard within the research area of combinato-
rial optimization problems. In TSP, a list of cities and the
distances between each pair of cities are used to find the
path that minimizes the distance traveled. For CVRP, a set of
customerswith known location and demandmust be satisfied
by a single depot by distributing vehicles of known capacity

to design the routes of these vehicles to minimize traveling
costs.

The considered reoptimization problem uses an initial
set of customers for designing routes for each vehicle.
The vehicles start the routes with the previously scheduled
customers until a part of the customers have been fulfilled,
and some routes have been performed. Then, new customers
are gradually revealed over the horizon time, each with
known demand, which must be served by the used vehicles
on the current routes, without exceeding their capacity and
without modifying the sequence of customers already visited.
However, the order of the initial unvisited customers on
the routes could be modified. Therefore, it is desired to
reoptimize the routing problem when new customers appear
at any moment of a day.

This paper proposes a route reoptimization heuristic for
VRP when the number of customers increases after the
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development of the initial routes to reduce route dispersion
and evaluate whether to modify or entirely redesign the route
and its associated costs and provide relevant information for
decision-making. However, the proposed approach could be
used to reoptimize the routes when the customers decrease.
This case is trivial due to the fact that the initial routes are
reordered by considering less initial customers. A heuristic
for reoptimizing vehicle routing, which delivers information
on route dispersion and cost variation via key performance
indicators (KPI), offers new decision elements for the trans-
portation industry and streamlines the process of decision-
making when including new customers.

Currently, many studies on the vehicle routing problem
focus on VRP variants, such as capacity-constrained VRP
[2], multidepot VRP [3], heterogeneous fleet [4], time-
frame VRP [5, 6], and Backhauls customers [7]. However,
there is little information available for reoptimization when
the number of customers increases in VRP. For this study,
we considered the Capacitated Vehicle Routing Problem
(CVRP) for route reoptimization. Toth andVigo [8] proposed
the formal definition of CVRP as follows: consider the
distribution of goods from a single depot, denoted as point 0,
to a given group of 𝑛 points (normally known as customers,𝑁 = {1, 2, . . . , 𝑛}), where the amount to be delivered to
each customer 𝑖 ∈ 𝑁 is known as the demand (𝑞𝑖) and
must meet the condition that 𝑞𝑖 ≥ 0. In addition, there is a
homogeneous vehicle fleet 𝐾 = {1, 2, . . . , |𝐾|}, which means
that |𝐾| vehicles are available in the depot, all with the same
capacity 𝑄 > 0. In the CVRP problem, a vehicle serving a
subgroup of customers 𝑆𝑘 ⊆ 𝑁 starts in the depot, moves
once towards each customer in 𝑆𝑘, and finally returns to the
depot. A vehicle moving from 𝑖 to 𝑗 incurs in a travel cost 𝑐𝑖𝑗.
CVRP aims to find the group of routes that minimize the cost
of the distance travelled, with a route defined as the sequence𝑟 = (𝑖0, 𝑖1, 𝑖2, . . . , 𝑖𝑠, 𝑖𝑠+1) with 𝑖0 = 𝑖𝑠+1 = 0 in which group𝑆𝑘 = {𝑖1, . . . , 𝑖𝑠} ⊆ 𝑁 of customers is visited. Route 𝑟 has a
cost 𝑐(𝑟) fl ∑𝑆𝑝=0 𝑐𝑖𝑝,𝑖𝑝+1 .

In a possible solution of CVRP, the capacity constraints𝑞(𝑆) fl ∑𝑖∈𝑆 𝑞𝑖 ≤ 𝑄 are met, and additionally, no customer
is visited more than once; that is, 𝑖𝑗 ̸= 𝑖𝑘 for each 1 ≤ 𝑗 <𝑘 ≤ 𝑠. In this case, it is said that 𝑆𝑘 ⊆ 𝑁 is a feasible cluster.
One solution to the CVRP problem consists of |𝐾| possible
routes, one for each vehicle 𝑘 ∈ 𝐾. Routes 𝑟1, 𝑟2, . . . , 𝑟|𝐾| and
their corresponding clusters 𝑆1, 𝑆2, . . . , 𝑆|𝐾| provide a possible
solution for CVRP if all routes are feasible and the clusters
form an𝑁 partition.

The problem considered in this study is of general interest
given its relevance in the transportation industry because
adding new customers can affect the routing of existing
customers if the modification of initially planned routes is
required. Therefore, it is necessary to analyze this situation
and generate indicators that allow the measurement of the
route's efficiency and the load balance between vehicles and
the cost variation while minimizing the distance traveled and
met the requirements of the customers. The load balance
factor of vehicles represents the work distribution in the
routes developed. Optimizing the balance in a route produces
benefits such as a generation of savings and reduction in the

use of extra hours and perceived equality regarding workers
receiving fair treatment [9]. A good balance influences
service quality and customer satisfaction; therefore, it is a
relevant factor for decision-making.

For reoptimization, which is similar to solving a dynamic
VRP, a series of static VRPs is solved (multiple times) using
several methods. An initial situation is a group of customers
that produce a portion of the requests received during a
particular time of the day and are assigned specific routes by
a traditional optimization method. At a given point during
the route, each vehicle stops and waits to receive a route
update, including a new customer to visit, which can be a
node modification of its original itinerary. Given that the
information of new customers is not previously known, the
initial routes do not consider the position or demand of
new customers; therefore, reoptimization depends on more
comprehensive constraints than does classic VRP.

2. Review of Literature

Dantzig and Ramserin first presented the vehicle routing
problem (VRP) in 1959 under the name “the Truck Dis-
patching Problem” [10]. Since then, several variants of this
problem have been studied, and an increasing number of
reports show interest in this topic. Eksioglu et al. [11] estimate
an exponential annual growth of 6.09% for the number of
papers published on VRP.

Several methods have been introduced to solve VRP; they
can be classified as exact methods, heuristic algorithms, and
metaheuristic algorithms [2]. Exact methods can solve small
and medium VRP instances. Due to this limitation, most
algorithms used to solve VRP are heuristic and metaheuris-
tic [10]. Both heuristic and metaheuristic algorithms offer
approximate solutions in reasonable computing times, so
they are more practical for real-world cases and commercial
applications.

There are several variants of VRP; each variant is pre-
sented in scientific publications, and most variants include
specific constraints that differentiate them. Toth and Vigo
[8] reported approximately 40 variants of the problem
and showed a classification that helps identify the general
characteristics of VRP. Additionally, several taxonomies that
consider the problemapproached, solutionmethods, or other
factors have been created to classify VRP literature. Eksioglu
et al. [11] proposed a method for organizing VRP literature,
while Psaraftis et al. [12] suggested a taxonomy for articles on
dynamic and static VRPs. In particular, the problem targeted
by this article is directly related to dynamic CVRP.

However, stochastic and dynamic VRPs (DVRPs) are not
mutually exclusive. Some articles show algorithms that can
solve both problems [8]. A routing problem is dynamic if part
of the relevant information about the conditions of the system
becomes available during operations, and it is stochastic if
the requirements of the system are unknown; a probability
distribution describes this uncertainty.

Currently, available solutions for DVRP are based on a
simulated environment in which there is an event admin-
istrator who generates a static problem to be solved at
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every decision to create a new updated solution [13]. Several
algorithms have been proposed to address DVRP [14–16].
Solving dynamic routing problems is challenging because
the problem requires optimization in two directions. In
principle, routes to be developed must be planned, while
in a second stage, uncertain changes in the future must be
anticipated to quantify their impact on the development of
routes. Ulmer [17] compared the efficiency of reoptimization
versus anticipation for DVRP with stochastic requirements,
while Secomandi and Margot [16] developed and analyzed a
Markovian process with a finite horizon for the problem of a
single vehicle by establishing a partial characterization of the
optimal policy.

Periodic reoptimization is a solution strategy used for
dynamic routing in which critical information becomes
known over time. Thus, the entire instance is only known
at the end of the planning horizon [18]. Therefore, exact
methods provide an optimal solution for the current state,
but they do not guarantee that the solution will remain
optimal once new data is available. Thus, most dynamic
approaches are based on heuristics that rapidly calculate
a solution for the current problem state. For deterministic
dynamic VRPs, there are two main solution approaches:
periodic reoptimization and continuous reoptimization. The
complexity of reoptimization processes increases for NP-
Hard problems, according to Ausiello et al. [19].

In the reviewed literature, few reports exist which are
related to VRP reoptimization. Relevant studies in this area
have been performed by Yang et al. [20], Montemanni et
al. [13], Chen et al. [14], Hanshar and Ombuki-Berman [21],
Créput et al. [15], Dan et al. [22], Yu et al. [23], Elhassania et
al. [24], and Elhassania et al. [25]. Of these studies, the use of
distance minimization as the objective function is prevalent
[15, 23–25]. In Dan et al. [22], the number of vehicles and
total traveled distance are considered in a weighted objective
function. Montemanni et al. [13] discuss the travel time as
the objective function given that, in cases applied for the
same distance, there are different travel times, either because
of traffic or terrain limitations. In contrast, Chen et al. [14]
consider a combination of travel time and response time as
the objective function of the system. Finally, Yang et al. [20]
and Hanshar and Ombuki-Berman [21] consider cost (more
specifically, travel cost) as the objective function, while Yang
et al. [20] discuss the sum of multiple costs, such as empty
travel costs, marginal costs derived from serving every new
customer, and customer-rejection costs.

Regarding the solution methods used, algorithms based
on Ant Colony Optimization (ACO) have been introduced
by Montemanni et al. [13], Dan et al. [22], Yu et al. [23],
and Elhassania et al. [24]. In contrast, Hanshar and Ombuki-
Berman [21] and Elhassania et al. [25] consider Genetic
Algorithms (GA), and Yang et al. [20] proposemethods based
on local search procedures for stochastic DVRP with pick-
up and delivery constraints. In particular, this study suggests
policies based on the reoptimization of static VRP with
insertion methods that calculate the marginal cost of serving
a new customer and adding them at the end of the route.
Chen et al. [14] propose a method based on the generation
of columns to optimize travel and response times. Créput et

al. [15] suggest a memetic algorithm based on organizational
maps for dynamic scenarios.

Most studies proposed for DVRP with reoptimization
strategies focus on obtaining reduced computation times
because the goal of dynamic VRP is obtaining information
on routes as soon as possible, especially in real-world situa-
tions, for which it is necessary to transmit route adaptation
information to a driver. Recent studies on reoptimization of
similar problems have been proposed by AbdAllah et al. [26],
Zhu et al. [27], Ninikas &Minis [28], and Archetti et al. [29].

Contrary to what is found in, the literature we propose
the use of measurements that calculate various indicators
when reoptimizing to measure the difference between each
generated scenario. In particular, we propose a methodology
for obtaining solution alternatives that indicate performance
measurements, and we consider factors such as the efficiency,
balance, and homogeneity of the routes. Thus, the goal is
reducing the impact on the route and the drivers to reduce
costs.

3. Proposed Solution Method

3.1. Efficiency Measurements. The algorithm proposed uses
quantitative factors that influence the efficiency of a route,
which allows an objective comparison of various solutions in
several dimensions. In particular, we propose four KPIs for
measuring the length, balance, and dispersion of each route.
Example of such measurements are: route length, average
route efficiency [30], workload distribution [9], the marginal
cost of adding a new customer, travel time, travel time as a
percentage of the work day, and empty travel percentage [20].

In this paper, we propose four KPIs: the well known
of minimizing the total distance traveled, the minimization
of the route length plus load dispersion, the minimization
of the route load dispersion, and the minimization of the
route length dispersion. The proposed criteria of efficiency
measurement are as follows:

(i) Route length (MRlen): this is calculated as the total
length of every route. This KPI corresponds to the
classical measure of performance from the point of
view of the owner of the vehicles.

(ii) Route length load dispersion (MLLSD): this is calcu-
lated as the standard deviation of the length of every
route by its load. It considers both measures in the
same indicator, which is a benefit. It is used to balance
route length and load. This KPI is directly related to
the fuel consumption.

𝜎𝑙𝑙 = √∑
𝑛
𝑖=1 (𝑥𝑖 − 𝜇𝑖)2𝑛 (1)

where𝜇𝑖 is the mean of the length by the route load, 𝑥𝑖
is the length by the route load 𝑖, and 𝑛 is the number
of routes.

(iii) Route load dispersion (MLoadSD): this measures
standard deviation of the load on a route, that is,
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customer demand. It corresponds to the standard
deviation of the route load.

𝜎𝑙𝑜𝑎𝑑 = √∑
𝑛
𝑖=1 (𝑦𝑖 − 𝛾𝑖)2𝑛 (2)

where 𝛾𝑖 is the mean load of all routes, 𝑦𝑖 is the load
of route 𝑖, and 𝑛 is the number of routes.

(iv) Route length dispersion (MLengthSD): this
measures the length standard deviation on a
route, that is, distance traveled. It can be used as
a measure to guarantee a balanced workload and
similar working times, thus avoiding driver overload.
Given that it uses the standard deviation as a measure
of dispersion, for a perfect balance, this dispersion
should be zero.

𝜎 = √∑𝑁𝑖=1 (𝑧𝑖 − 𝛿𝑖)2𝑛 (3)

Here 𝛿𝑖 is the mean route length 𝑖, 𝑧𝑖 is the length of
route 𝑖, and 𝑛 is the number of routes.

For vehicle routing, reoptimization problems focused on
route balance, a decision that focuses on minimizing disper-
sion. Nonetheless, there are not enough studies or dispersion
measures tested or used as decision criteria to be used in this
paper.

3.2. Description of the Proposed Algorithm. In this study, we
proposed a heuristic algorithm that considers four variants
to solve the reoptimization VRP. The first variant minimizes
the total distance. The other variants correspond to methods
of dispersion reduction of long ∗ load, load, and length.
These KPIs correspond to the minimization of the objective
function only with one variant.

An algorithm based on local searches is applied to
improve the solution of the resultant VRP with the new
information of the customers. The proposed algorithm is
hierarchal, and it is split into three phases: (i) the first pro-
cedure establishes the routes with the original customers; (ii)
then a reoptimization of the KPIs with the new customers is
performed; and (iii) finally the reoptimization of the distance
for each route is developed by keeping the performance of the
KPIs. The details are presented below.

3.2.1. Phase 1: Heuristic Solution with Only Initial Customers.
The initial solution is generated using the VRPH library,
which is based on the methods proposed by Groër et al. [31]
[3, 32, 33]. Several algorithms are available in this library,
including Record to Record (RTR) and Simulated Annealing
(SA). Although both methods can create good feasible solu-
tions, a priori comparison regarding length and computation
timewas performed to select the best algorithm between RTR
and SA. In particular, RTR was chosen to generate the initial
solution because it offers a shorter computation time with
similar solution quality.

3.2.2. Phase 2: KPI Minimization Procedure with Initial and
New Customers. After phase 1, the clock stops when the
vehicles have traveled part of the routes. At this moment,
information is received from new customers, which must
be scheduled considering the customers that have not been
visited yet.The order on the routes of the unvisited customers
can be modified during this phase.

The new customers are inserted with a procedure for
a KPI minimization implemented within Pseudocode 1. In
particular, we considered three methods that use the previ-
ously described efficiency measures. The first minimizes the
length∗load using the standard deviation of the length∗load
(MLLSD), the second minimizes the standard deviation of
the load (MLoadSD), and the third minimizes the standard
deviation of the length (MLengthSD). All three measures
have the same code structure, while the comparison mea-
surement is changed for each according to the method used.
The code structure resembles the structure in Pseudocode 1,
which shows the hierarchical nature of the algorithm.

3.2.3. Phase 3: Local Search Procedure with Initial and New
Customers. After reoptimization is performed, there is a
local search [34] improvement stage that uses insertion and
swap neighborhoods. The goal of this stage is improving
the distance for each route. The local search approach could
be seen as descendant gradient algorithm, where the neigh-
borhood solutions could be performed moving a customer
from the current position and inserting it in another position
(Insertion) or exchanging the order of customers within
routes (Swap) [35, 36]. The pseudocode is presented in
Pseudocode 2.

4. Results and Discussion

Theproposed algorithm was implemented in PHP 5.6 using a
computer with a 3.10-GHz AMD FX(tm)-8120 microproces-
sor with 8-GB RAM and 64-bit Microsoft Windows 8 Pro.
The most recent set of instances presented by Uchoa et al.
[37] was used to test the efficiency of the proposed approach.
This set contains 100 instances ranging from 100 to 1,000
customers.

Due to the dynamic nature of the VRP problem, the
existing instances must be adapted. The customers for each
instance are divided into original and new customers. These
nodes are randomly selected using the method proposed by
Matsumoto and Nishimura [38]. Then phase 1 is executed,
and new customers are added reoptimizing phases 2 and 3.
For each classic instance, five random seeds were generated
to create a unique set of extracted nodes. The results show
themean of the measurements for each instance andmethod.
Figure 1 shows the experimental layout.

4.1. Results of the Mean Length by Method. When com-
paring the dispersion methods with length reoptimization,
we observed that all methods show an increase between
10.4% and 11.3% (Table 1). From a business point of view,
the variations correspond to an increase in the travelled
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1 For each node in nodes do:
2 r = NULL, KPI = +inf
3 For each route in routes do:
4 If load(route) + demand(node) > capacity then Skip route
5 KPIm = KPI marginal when inserting node in route
6 If (KPI < KPIm) then
7 r = route
8 KPI = KPIm
9 If r == NULL then
10 r = new route
11 cheapest insertion of node in r
12 End

Pseudocode 1: Dispersion minimization reoptimization algorithm.

1 For each route in routes do:
2 mov = NULL; node1 = NULL, node2 = NULL, delta = +inf
3 For each n1, n2 in routes do:
4 if cost-insertion(n1, n2) < delta, then
5 mov = insertion; node1 = n1; node2 = n2; delta = then cost-insertion(n1, n2)
6 if cost-swap(n1, n2) < delta, then
7 mov = swap; node1 = n1; node2 = n2; delta = then cost-insertion(n1, n2)
8 if temporal dispersion < initial dispersion then:
9 if delta <= 0 and mov == insertion, then
10 apply-insertion(node1, node2)
11 if delta <= 0 and mov == swap, then
12 apply-swap(node1, node2)
13 End

Pseudocode 2: Local search reoptimization algorithm.

Table 1: Length variation.

Method Mean variation
MLLSD – MRlen 10.49%
MLoadSD – MRlen 11.26%
MLengthSD – MRlen 10.42%

Table 2: Difference in the standard deviation of each method.

Mean variation MLoadSD MLengthSD MLLSD
MLoadSD - 7.26% 4.97%
MLengthSD 21.65% - 1.48%
MLLSD 14.94% 1.32% -

distance to obtain routes with less deviation to achieve
smaller differences in load, length, or load by length.

4.2. Mean Standard Deviation Results. Table 2 shows the
difference between themethods in the rowminus the method
in the column. Thus, if we aim for minimal load deviation,
minimizing length deviation (21.65%) or length by load
(14.94%) is more expensive than the other method. Based
on the results, we recommend having a minimal deviation of
length per load because, with this method, the load (4.97%)

Table 3: Contribution of the local search of each method.

Method Average contribution
MRlen 2.07%
MLLSD 5.33%
MLoadSD 23.14%
MLengthSD 3.78%

and length (1.48%) deviations have smaller increases than
the methods in columns 1 and 2. This result is important
because length per load has a direct relationship with fuel
consumption.

Regarding computation time, we found that theCPU time
for all four methods is quite similar in instances of up to
400 nodes; for larger instances, the computation time of the
length reoptimization method rapidly increases and is longer
than the other methods for these instances. Finally, when the
MRlen method is removed, we observed that, on average, the
algorithm does not surpass 40 seconds of CPU time.

Likewise, a local search (phase 3) provides a significant
contribution to the objective function in all reoptimization
methods, especially for the method that minimizes the stan-
dard deviation of the load of the routes. Table 3 summarizes
these findings.
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Figure 1: Experimental layout.

Table 4: Cost relative to perfect information.

Method Increase
MRLen-Ori 36.96%
MLLSD-Ori 51.19%
MLoadSD-Ori 52.26%
MLengthSD-Ori 51.07%
Planner 72.18%

When comparing the original problem, that is, having
complete information at the beginning of optimization, with
the length reoptimization case, the length was observed
to increase by an average of 36.96%. For the reoptimiza-
tion method, the load dispersion cost was minimized by
52.26% more than the method with perfect information.
The cost of the planner is based on taking naive decisions
for each additional customer inserted (see Table 4). This
is understood as the no-information cost or as the cost
of not having complete information at the beginning of
optimization. In contrast, for the instances used, demand
is generated in seven ways. Thus, balancing the load in an
instance will be affected by the structure of demand, which,
according to Uchoa et al. [37], also affects the length of the
routes.

This procedure could be extended to the case where the
number of customers is reduced by applying the method-
ology proposed by Ausellio et al. [39]. In the case that
some customers must be added and others must be elim-
inated, the customers assigned to the existing routes must
be removed from the current routes, and then the new
customers must be added by using the proposed algo-
rithm.

The proposed approach could be extended to other
variants of the VRP, being able to distinguish two cases. The
first case could be adapted to problems when the capacity
of the vehicle is considered a fundamental constraint, and
it is previously verified. The first problem of this case is
the Vehicle Routing Problem with Backhauls (VRPB) [7].
In the VRPB, the insertion of new customers does not
invalidate the route due to the fact that they are inserted
in the phase of linehaul and/or backhaul stage. The second
problem could be the Vehicle Routing Problem with Pickup
and Delivering (VRPPD) and other related problems with
similar characteristics.

The second case occurs when the new inserted customers
could invalidate the planned routes. The insertion of new
customers for problems such as Vehicle Routing Problem

with Time Windows (VRPTW) could become unfeasible
routes due to the timewindows constraints. In this case, a new
algorithmmust be developed considering a penalty scheme to
avoid infeasible solutions.

5. Conclusions and Future Studies

In this study, we proposed a heuristic algorithm for capaci-
tated vehicle routing reoptimization with an increase in the
number of customers. The algorithm uses several proposed
efficiency metrics to reduce route dispersion and minimize
length.

The initial solution is generated using the Record-to-
Record (RTR) algorithm proposed in the VRPH library from
Groër et al. [31]. Following the inclusion of new customers
in the system, a reoptimization is performed which considers
the visited nodes and edges as fixed. The optimization of the
algorithm is performed hierarchically; KPI is first minimized,
and then distance is minimized. Next, a local search proce-
dure is executed using insertion and swap neighborhoods to
improve the solution.

The effectiveness of the algorithm proposed has been
confirmed using real-world instances from the litera-
ture. The proposed key performance indicators (KPIs) are
designed to improve the balance among routes, generate
savings, reduce the number of extra hours, and increase
the perception of the fair treatment of workers. In con-
trast, planners are willing to consider longer routes if the
workload is equally distributed among the vehicle fleet
[40].

The results show that is necessary to make significant
sacrifices regarding route cost to minimize dispersion. On
average, the cost of minimizing load dispersion is 11.26% to
obtain a reduction of at least 12.81%. The costs of this policy
surpass the perfect information cost by 52.26%. Regarding the
local searches used, for the load standard deviation method,
a mean reduction of 23.14%, in terms of KPI, is achieved.

For future studies, we recommend the design of a meta-
heuristic focused on minimizing dispersion; particularly, the
use of tabu search or simulated annealing is recommended.
Moreover, adding new local search neighborhoods special-
ized for the minimization of dispersion and reoptimization is
recommended.

Data Availability

Thebenchmarking instance data used to support the findings
of this study have been attached in a supplementary file.
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