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An extended car-following model is proposed on the basis of experimental analysis to improve the performance of the traditional
car-following model and simulate a microscopic car-following behaviour at signalised intersections. The new car-following model
considers vehicle gather and dissipation. Firstly, the parameters of optimal velocity, generalised force and full velocity difference
models are calibrated by measured data, and the problems and causes of the three models are analysed with a realistic trajectory
simulation as an evaluation criterion. Secondly, an extended car-following model based on the full optimal velocity model is
proposed by considering the vehicle gather and dissipation. The parameters of the new car-following model are calibrated by
the measured data, and the model is compared with comparative models on the basis of isolated point data and the entire car-
following process. Simulation results show that the optimal velocity, generalised force, and full velocity difference models cannot
effectively simulate a microscopic car-following behaviour at signalised intersections, whereas the new car-following model can
avoid a collision and has a high fit degree for simulating themeasured data of the car-following behaviour at signalised intersections.

1. Introduction

A car-following model is a mathematical description of the
movement of a car in the same lane given the change in the
moving state of the front car under the case of no overtaking;
this model is also a link or bridge between macroscopic
traffic flow theory and microscopic traffic flow model [1]. In
recent years, an increasing number of mathematical models
on car-following behaviour have been developed on the basis
of experimental observations and theoretical analyses; the
cornerstone for simulation modelling and traffic control,
including early linear models proposed by Chandler et al. [2]
and Herman et al. [3] and nonlinear models by Reuschel [4],
Pipes [5], Gazis et al. [6], Newell [7], Bando et al. [8], Helbing
and Tilch [9], and Jiang et al. [10], has been established.
Chandler et al. [2] proposed the first prototype car-following
model in 1958 at the General Motors Research Laboratory.
This model was based on an intuitive hypothesis that the
acceleration of a driver is proportional to the relative velocity
of the front car. An initial calibration of this model used wire-
linked vehicles to examine the responses of eight test subjects
to a ‘realistic’ speed profile of a lead vehicle for 30min on a
test track. A rapid development of this model subsequently
followed; Herman et al. [3] studied local and asymptotic

stabilities of traffic flow in the fleet and discussed the influ-
ence of subadjacent leading vehicle car-following behaviour.
Reuschel [4] and Pipes [5] first used analytical methods
to study the problem of car-following behaviour; many
subsequent models were developed from the Pipes model.
Gazis et al. [6] discussed various nonlinear follow-the-leader
models of traffic flow given available observational and
experimental data that focus on steady-state flow equations.
Newell [7] believed that the stimulus of a driver originates
from the headway but not the relative speed; thus, Newell
proposed a nonlinear car-following model with the headway
as a stimulus. An optimal velocity (OV) model proposed by
Bando et al. [8] is a favourable car-following model because
it can describe many properties of actual traffic flow, such
as instability of traffic flow, evolution of traffic congestion,
and formation of stop-and-go waves. However, a comparison
of empirical data indicates that the OV model exhibits
significantly high acceleration and unrealistic deceleration;
Helbing and Tilch [9] proposed a generalised force (GF)
model by considering the negative velocity difference to
overcome the abovementioned limitation. The simulation
showed that the GF model is poor in the delay time of a
car motion; owing to this problem, Jiang et al. [10] modified
the model in 2001 by considering the negative and positive
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velocity differences and developed a full velocity difference
(FVD) model. Subsequently, many similar works have been
performed by several other authors [11–43].

The exploration of an urban signal intersection is impor-
tant in traffic flow research because it can provide a theo-
retical basis for intersection signal timing. In recent years,
the research on traffic flow theory of signal intersection has
also gained certain favourable results. Sasaki and Nagatani
[44] used the OV model to study traffic flow controlled by
traffic lights on a single-lane roadway and found that the
saturation of current occurs at the critical density; moreover,
the critical density of a dynamical transition depends on
the cycle time of the traffic light and strategy. Tang et al.
[45] analysed the car-following behaviour in a road traffic
system that contains signal lights and presented a traffic flow
model that considers the signal light influence. However,
the two models have not been calibrated or verified using
the measured data; therefore, Yu et al. [46–49] proposed
the car-following model which considers the influence of a
signal lamp on the basis of the experimental analysis; the
measured data were mined to find endogenous variables as
the input variables of the car-following model by using a
grey correlation analysis method; then, various extended car-
following models were proposed on the basis of the FVD
model; the results of the numerical simulations indicated
that the extended car-following models can improve traffic
flow stability. Fitting verification through the measured data
remains lacking despite various car-following models that
consider the influence of signal lamps in the literature [46–
49]. Subsequently, Yu and Shi [50] used the OV and GF
models to simulate the car-following behaviour at signalised
intersections on the basis of the simulation system that
analyses the problems and their causes; a new car-following
model was proposed, and a fitting verification was conducted
on the basis of the measured data. Similarly, Li and Yu [51]
proposed a newmodel and improved the fit degree of the car-
following model to the actual trajectory of the vehicle.

In summary, many important research results have been
achieved on the car-following model. However, analysing
a car-following behaviour at signalised intersections and
studying the adaptability of the car-following models to
vehicle trajectory simulations are limited.Themeasured data
are used to calibrate the related car-following model and
conduct the fitting analysis in the literature [50, 51], and
the new car-following model at signalised intersections is
proposed on the basis of the analysis results; however, only the
car-following behaviours of the gather vehicles is considered,
whereas those of the dissipated vehicles are disregarded.
Thus, studying the car-followingmodel at signalised intersec-
tions remains necessary, especially based on measured data;
moreover, a new car-following model with a high fit degree
must be proposed. In contrast to the literature [50, 51], the
present study verifies the fit of the OV, GF, and FVD models
for the measured car-following behaviour, analyses existing
problems and their causes, and proposes a new car-following
model on the basis of the measured data by considering the
vehicle gather and dissipation behaviours.

The remainder of this paper is organised as follows. The
data sources are introduced in Section 2. The analysis results

Figure 1: Study area: Lankershim Boulevard, where 101 is US
Highway 101, and 1, 2, 3, and 4 are the intersection numbers.

of the OV, GF, and FVD models are presented in Section 3.
An extended car-following model at signalised intersections
is proposed in Section 4. A comparative analysis is conducted
and then discussed in Section 5 to illustrate the effectiveness
of the improved car-following model. Finally, the paper is
summarised, and conclusions are drawn in Section 6.

2. Data Source

The Federal Highway Administration (FHWA) has been
a leader in developing traffic simulation models since the
1970s. Commercial traffic simulation packages remained
lacking in the marketplace before the FHWA assumed a
leadership role. The Traffic Analysis Tools Programme of the
FHWA launched the Next Generation SIMulation (NGSIM)
programme to help achieve an extensive acceptance of using
microsimulation systems and ensure that the tools provide
accurate results. The data for the simulation analysis used in
the present study are derived from the NGSIM programme,
and the US Highway Agency provides the data free of charge
[52]. Lankershim Boulevard dataset was collected under
the NGSIM programme. The researchers for the NGSIM
programme collected detailed vehicle trajectory data from
Lankershim Boulevard in the Universal City neighbourhood
of Los Angeles, CA, on 16 June 2005. The study area, as
illustrated in Figure 1, consisted of bidirectional data of three-
to four-lane arterial segments and a complete coverage of
three signalised intersections; the study area is approximately
500m in length. The Lankershim Boulevard dataset was
selected as the data source. Data acquisition period is from
8:30 a.m. to 9:00 a.m.; at this time, the traffic state has just
recovered from the morning to flat peak, the traffic density
is relatively moderate, and the car-following behaviour is
widespread and has robust representativeness. These data
were collected using five video cameras mounted on the
roof of a high building, and the vehicle trajectory data
were transcribed from the video through NG-VIDEO, a
customised software application that was developed for the
NGSIM programme and recorded in the database.
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Figure 2: Data processing flow.

These vehicle trajectory data provided the precise location
of each vehicle within the study area every one-tenth of
a second. The data include solid-state information, such
as vehicle number, type, width and length, and dynamic
information, such as vehicle lane, intersection number, lead-
ing vehicle number, following vehicle number, acceleration,
speed, distance headway, and global time.Thevehicle number
is the unique identification of each vehicle.We can determine
the change in the position and motion state in the contin-
uous time and then determine the relatively complete car-
following process through the vehicle number and time infor-
mation. The data of the car-following process can be divided
into the road and intersection. The present study focuses
on the car-following model at signalised intersections. The
dataset must be processed to obtain the data required for
this study. The data processing flow is illustrated in Figure 2.
Firstly, we filtered the data that did not accumulate near the
intersection on the basis of the intersection number.Then, we
imported the filtered dataset into the database. Furthermore,
we built a self-connection of data tables on the basis of the
intersection number, leading vehicle number, following vehi-
cle number and global time, and thereby obtaining numerous
complete car-following processes. On this basis, we deleted
the car-following process that had apparent errors in the
dataset. Examples of these errors included the following:
vehicle distance headwaywas less than 5m, and the leading or
following vehicle had unreasonable acceleration/deceleration
and velocity. Then, we obtained 82 complete car-following
processes that included 3,924 isolated point data. The data of
the two car-following processes are summarised in Table 1.
The data in Table 1 include only the car-following track for
every 0.5 s given the limited length of this paper. In Table 1,
𝑎𝑛−1(𝑡) is the acceleration/deceleration of the 𝑛 − 1th car,
that is, the leading car at time t; V𝑛−1(𝑡) is the velocity of the
𝑛 − 1th car at time t; 𝑎𝑛(𝑡) is the acceleration/deceleration
of the nth car, that is, the following car at time t; V𝑛(𝑡)
is the velocity of the nth at time t; Δ𝑥𝑛(𝑡) is the distance
headway between the nth car and its leading car 𝑛 − 1 at
time 𝑡. At the signal intersection, the vehicle cannot traverse
the intersection smoothly, the vehicle decelerates, and the
idle speed is maintained for a certain period. Then, the
vehicle speeds away from the intersection when the red
light is turned off and the green light is turned on. This
phenomenon is called complete parking. Simultaneously, the
vehicles that arrive during the green-light stagewill decelerate
given the influence of the queuing vehicles during the red-
light stage and the queuing vehicles in front will accelerate.
This phenomenon is called incomplete parking. In the two
phenomena, the driver will have a different car-following

behaviour.Thus, Processes 1 and 2 inTable 1 correspond to the
situation of incomplete and complete parking, respectively,
which are selected to represent the two types of car-following
behaviour at the intersection. The two typical processes are
simulated to judge the adaptability of the car-followingmodel
to analyse the car-following track.

3. Model Simulation and Analysis

The vehicle trajectory fitting simulation of the intersection is
conducted on the basis of the OV, GF, and FVD models. The
establishment of a traffic flowmodel will eventually return to
the actual application. We can obtain a realistic model only
by identifying the parameters of the model on the basis of
numerous observations and an in-depth analysis of the actual
traffic phenomenon. Thus, we randomly select 48 complete
car-following processes that include 2626 isolated point data
as learning samples to calibrate the model. Furthermore, the
adaptive verification and analysis are conducted using theOV,
GF, and FVD models which are calibrated by the actual car-
following data.

3.1. OV Model. Bando et al. [8] proposed the OV model in
1995 to describe the car-following behaviour on a single-lane
highway. The model was presented by introducing the OV
function to optimise the OV in accordance with the distance
headway. The motion formula is expressed as follows:

𝑎𝑛 (𝑡) = 𝜅 (𝑉 (Δ𝑥𝑛 (𝑡)) − V𝑛 (𝑡)) , (1)

where V𝑛(𝑡) is the velocity of the nth car at time t; Δ𝑥𝑛(𝑡) =
𝑥𝑛−1(𝑡)−𝑥𝑛(𝑡) is the distance headway between thenth car and
its leading car 𝑛−1 at time t;𝑥𝑛−1(𝑡) and𝑥𝑛(𝑡) are the positions
of the 𝑛 − 1th and nth cars, respectively; 𝜅 is the sensitivity
parameter of the driver, and 𝑉(⋅) is the OV function which
can be formulated as follows:

𝑉 (Δ𝑥𝑛 (𝑡)) = V1 + V2 tanh (𝑐1 (Δ𝑥𝑛 (𝑡) − 𝑙) − 𝑐2) , (2)

where 𝑙 is the vehicle length, and V1, V2, 𝑐1, and 𝑐2 are the
parameters of the OV function that lacks physical meaning
and must be calibrated.

Helbing et al. [9] calibrated the OV model, but the
calibration data are obtained from the experimental site and
are not the measured data at the signalised intersection.
Thus, recalibrating the OV model by using the measured
data of the car-following process at signalised intersections is
required.The 2626 isolated point data are selected as learning
samples, and the parameters of the OV model are calibrated
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through the optimisation algorithm. In literature [50, 51,
53], particle swarm optimisation and genetic algorithms are
used to calibrate the model, correspondingly. In contrast to
literature [50, 51, 53], we select the standard artificial bee
colony (ABC) algorithm which performs better than the
other heuristic algorithms [54] in terms of calibrating the
model.

The error between the actual and the simulated velocities
can be used as the criterion of the consistency degree of the
vehicle state in simulating the car-following process because
the velocity can describe the running state of the vehicle in
real time. The distance headway is the key parameter of the
transition from the microscopic behaviour of a vehicle to the
macroscopic phenomenon of the traffic flow.The error of the
distance headway can directly reflect the consistency degree
of the car-following phenomenon which is obtained by the
individual vehicle on the basis of applying the OV model.
Thus, the distance headway error should also be used as a
criterion to evaluate the effect of the car-following model.
That is, the mean absolute relative error of the velocity and
the distance headway are considered, simultaneously, the
optimisation criteria which can be formulated as follows:

𝐸𝐶 = 𝑤1𝑀𝐴𝑅𝐸 (Δ𝑥) + 𝑤2𝑀𝐴𝑅𝐸 (V) , (3)

where 𝑤1 and 𝑤2 are the weight parameters. Simulating the
microscopic behaviour of vehicles and analysing the macro-
scopic trafficphenomena are equally important because of the
application of the car-following model for the analysis of the
car-following behaviour at signalised intersection.That is, the
distance headway and the velocity errors must be accorded
with the same attention. Thus, we set 𝑤1 and 𝑤2 to 0.5 and
0.5, correspondingly.𝑀𝐴𝑅𝐸(Δ𝑥) and𝑀𝐴𝑅𝐸(V) correspond
to the mean absolute relative error of the distance headway
and the velocity and can be formulated as follows:

𝑀𝐴𝑅𝐸 (Δ𝑥) = 1
𝑛

𝑛

∑
𝑖=1


Δ𝑥 − Δ𝑥
Δ𝑥


, (4)

𝑀𝐴𝑅𝐸 (V) = 1
𝑛

𝑛

∑
𝑖=1


V − V̂
V̂


, (5)

where 𝑛 is the number of learning sample,Δ𝑥 is the simulated
distance headway of the OV model, Δ𝑥 is the empirical
distance headway, V is the simulated velocity of theOVmodel,
and V̂ is the empirical velocity.

The ABC algorithm is selected as the optimisation
algorithm, and (3) can be minimised by optimising the
parameters of the OV model. The number of employed,
onlooker, and scout bees is set to 100, 100, and 1, respectively,
and the maximum number of stagnation and the number
of iteration in the ABC algorithm are set to 1600 and 3000,
correspondingly.The same resulting parameters are obtained
consistently through repeated analyses of the experiment.
Moreover, the algorithm converges to these resulting param-
eters, and the number of first ABC iteration of the result is
at most 2000 times.Thus, the algorithm has converged to the
global optimal solution. The resulting parameters of the OV
model are 𝜅 = 0.70, V1 = 2.04, V2 = 1.99, 𝑐1 = 18.07, and
𝑐2 = 99.93.

We selected two complete car-following processes, as
presented in Table 1, to verify the adaptability of the calibrated
OV model to the car-following trajectory at the signal
intersection and test the OV model. In Table 1, the first point
data of the two car-following process data are used as the
initial state of the simulation.The complete simulation of the
car-following process can then be obtained on the basis of the
evolution of the model.The simulation results are depicted in
Figures 3 and 4.

Figure 3(a) demonstrates the simulation analysis of the
acceleration/deceleration of the OV model for car-following
Process 1. This figure displays that the deceleration is faster
than the measured data at the early deceleration stage, but
the subsequent deceleration stage is slower than themeasured
data. Moreover, the simulation results of the OV model
at the acceleration stage indicate a slow and insufficient
acceleration over the measured data. Figure 3(b) exhibits the
simulation analysis of the velocity of the OV model in car-
following Process 1. This figure presents that the velocity of
the early deceleration stage is less than the measured data,
but the velocity of the subsequent deceleration stage is greater
than the measured data. Moreover, the velocity of the OV
model at the acceleration stage is less than the measured
data. Figure 3(c) illustrates the simulation analysis of the
distance headway of the OV model in car-following Process
1. This figure depicts that the distance headway of the entire
deceleration stage is greater than themeasured data given the
significant deceleration at the early deceleration stage. The
distance headway of the subsequent deceleration and early
acceleration stages is greater than themeasured data given the
minimal deceleration at the succeeding deceleration stage.
Furthermore, the simulation value of the distance headway
for a period is close to 5m given the minimal deceleration.
Thus, the following car has the risk of a rear-end collision.
The comprehensive analysis of Figures 3(a), 3(b), and 3(c)
indicate the same results as those obtained through the
simulation analysis of acceleration/deceleration, velocity, and
distance headway.TheOVmodel simulation of car-following
Process 1 has the problem of significant deceleration at the
early deceleration stage and minimal deceleration at the
subsequent deceleration stage. Thus, the distance headway
of the following car is approximately 5m for a period,
thereby resulting in the risk of rear-end collision for the
following car. Furthermore, the OV model demonstrates a
slow and insufficient acceleration over the measured data at
the acceleration stage. Therefore, the fit degree is relatively
low between the simulation and the measured trajectories
when the OV model simulates car-following Process 1.

Figure 4(a) presents the simulation analysis of the acceler-
ation/deceleration of the OV model in car-following Process
2. This figure shows that the deceleration is slower than the
measured data at the deceleration stage, and the problem
of the OV model simulation of car-following Process 2 at
the acceleration stage is consistent with that of car-following
Process 1. The simulation results of the OV model show
slow and insufficient acceleration over the measured data.
Figure 4(b) illustrates the simulation analysis of the velocity of
the OV model in car-following Process 2. This figure depicts
that the velocity is greater in the deceleration stage than
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Figure 3: OV model simulations of car-following Process 1.

in the measured data, and the problem of the OV model
simulation of car-following Process 2 at the acceleration stage
is consistent with that of car-following Process 1. Moreover,
the velocity is less in theOVmodel than in themeasured data.
Figure 4(c) depicts the simulation analysis of the distance
headway of the OV model in car-following Process 2. This
figure illustrates that the distance headway of the following
car is less than 5m in the entire idling stage given theminimal
deceleration at the deceleration stage, thereby causing a risk
of a rear-end collision for the following car. Furthermore,
the distance headway at the acceleration stage is greater in
the OV model than in the measured data given the minimal
acceleration. The comprehensive analyses of Figures 4(a),
4(b), and 4(c) depict the same results as those obtained

through the simulation analysis of acceleration/deceleration,
velocity, and distance headway. The OV model simulation
of car-following Process 2 shows a minimal deceleration at
the deceleration stage. Thus, the distance headway of the
following car is less than 5m in the entire idling stage, thereby
resulting in a rear-end collision of the following car. The
OV model shows a slow and insufficient acceleration over
the measured data at the acceleration stage. Therefore, the
fit degree is relatively low between the simulation and the
measured trajectories when the OV model simulates car-
following Process 2.

The results of the simulation analysis of car-following
Processes 1 and 2 using the OV model show that the
OV model simulation of the gather vehicle has a minimal
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Figure 4: OV model simulations of car-following Process 2.

deceleration at the deceleration stage, thereby causing the
following car to be subjected to the risk of a rear-end
collision. The OV model simulation of the dissipation
vehicle has a slow acceleration at the acceleration stage.
Comprehensively, the fit degree is relatively low using the
OV model simulation of car-following Processes 1 and
2.

3.2. GF Model. Helbing and Tilch [9] calibrated the OV
model with the empirical data and found that unrealistically
high acceleration and deceleration appear in the OV model.

To obtain improved results, Helbing and Tilch developed a
GF model which is formulated as follows:

𝑎𝑛 (𝑡) = 𝜅 (𝑉 (Δ𝑥𝑛 (𝑡)) − V𝑛 (𝑡))

+ 𝜆𝐻 (−ΔV𝑛 (𝑡)) ΔV𝑛 (𝑡) ,
(6)

where 𝜆 is the parameter of the GF model, ΔV𝑛(𝑡) = V𝑛−1(𝑡) −
V𝑛(𝑡) is the velocity difference between the nth car and its
leading car 𝑛 − 1 at time 𝑡, and V𝑛−1(𝑡) and V𝑛(𝑡) correspond
to the velocities of the 𝑛 − 1th and nth cars, and 𝐻(⋅) is the
Heaviside function.



Journal of Advanced Transportation 9

Helbing et al. [9] calibrated the parameters of the GF
model by using the car-following data of the experimental
site. Similar to the OV model, the calibration data are not
the measured data at the signalised intersection. Therefore,
the GF model is recalibrated by using the measured car-
following process data at signalised intersections. Equation
(3) is selected as the optimisation criterion, and the ABC
algorithm is used to calibrate the model. The number of
employed, onlooker, and scout bees is set to 100, 100, and 1,
respectively, and themaximumnumber of stagnation and the
number of iterations in the ABC algorithm are set to 1900
and 3000, correspondingly. The same resulting parameters
are obtained consistently through repeated analysis of the
experiment. Moreover, the algorithm converges to these
resulting parameters, and the number of first ABC iterations
of the result is at most 2000 times. Thus, the algorithm
has converged to the global optimal solution. The resulting
parameters of the GF model are 𝜅 = 0.11, V1 = 10.51,
V2 = 10.38, 𝑐1 = 2.13, 𝑐2 = 11.01, and 𝜆 = 1.26.

We selected two complete car-following processes, as
displayed in Table 1, to verify the adaptability of the calibrated
GF model to the car-following trajectory at the signal inter-
section. In Table 1, the first point data of the two process
data are used as the initial state of the simulation. Then,
the complete simulation of the car-following process can be
obtained on the basis of the evolution of the model. The
simulation results are presented in Figures 5 and 6.

Figure 5(a) exhibits the simulation analysis of the acceler-
ation/deceleration of the GF model in car-following Process
1. This figure shows that the deceleration is faster than the
measured data at the early deceleration stage, but the sub-
sequent deceleration stage is slower than the measured data.
The acceleration simulation of the GF model is smaller in
the acceleration stage than in the measured data. Figure 5(b)
displays the simulation analysis of the velocity of the GF
model in car-following Process 1. This figure shows that
the velocity simulation of the GF model is less than the
measured data at the early deceleration and greater than the
measured data at the subsequent deceleration stage, similar
to the OVmodel. Figure 5(c) presents the simulation analysis
of the distance headway of the GF model in car-following
Process 1. This figure shows that the distance headway of the
entire deceleration stage is greater than the measured data
given the significant deceleration at the early deceleration
stage, and the distance headway gradually reduces at the
subsequent deceleration stage considering the slow decel-
eration. Moreover, the distance headway simulation of the
GF model at the acceleration stage is close to the measured
data. The comprehensive analyses of Figures 5(a), 5(b), and
5(c) show the same results as those obtained through the
simulation analysis of acceleration/deceleration, velocity, and
distance headway. The GF model simulation of car-following
Process 1 has the problem of a significant deceleration in
the early deceleration stage and the minimal deceleration at
the subsequent deceleration stage. Moreover, the simulation
results of the GF model at the acceleration stage are better
than the OV model, thereby ensuring that the following car
avoids the risk of a rear-end collision. The simulation of
car-following Process 1 shows that the GF model is better

than the OV model, but the fit degree remains relatively
low between the simulation and the measured trajecto-
ries when the GF model simulates car-following Process
1.

Figure 6(a) illustrates the simulation analysis of the
acceleration/deceleration of the GF model in car-following
Process 2. This figure presents that the deceleration is slower
than the measured data in the early deceleration stage, and
the deceleration is greater than the measured data at the
subsequent deceleration stage. The problem of the GF model
simulation of car-following Process 2 at the acceleration stage
is consistent with that of the OV model. The simulation
result shows a slower and insufficient acceleration over the
measured data. Figure 6(b) depicts the simulation analysis
of the velocity of the GF model in car-following Process
2. This figure shows that the simulation velocity is greater
than the measured data at the deceleration stage, and the
simulation velocity of the GF model at the acceleration stage
is smaller than the measured data. Figure 6(c) demonstrates
the simulation analysis of the distance headway of the GF
model in car-following Process 2. This figure shows that the
distance headway of the following car is close to 5m during
the entire idling stage given the minimal deceleration at the
deceleration stage, thereby resulting in the risk of a rear-
end collision of the following car. Moreover, the distance
headway of the GF model at the acceleration stage is greater
than the measured data given the minimal acceleration.
The comprehensive analyses of Figures 6(a), 6(b), and 6(c)
show the same results as those obtained through the sim-
ulation analysis of acceleration/deceleration, velocity, and
distance headway. The GF model simulation of car-following
Process 2 has a problem similar to the OV model. The
deceleration of the GF model simulation process is smaller
than the measured data at the deceleration stage, thereby
causing the distance headway of the following car to be
close to 5m at the idling stage. The GF model shows a
slow and insufficient acceleration over the measured data
at the acceleration stage. Therefore, the fit degree remains
relatively low between the simulation and the measured tra-
jectories when theOVmodel simulates car-following Process
2.

The results of the simulation analysis of car-following
Processes 1 and 2 by the GF model show that the GF model
simulation of the gather and dissipation vehicles has the
same problem as the OV model considering the minimal
deceleration at the deceleration stage, thereby resulting in the
risk of a rear-end collision of the following car. Moreover,
the GF model shows a slow and insufficient acceleration
over the measured data at the acceleration stage. Com-
prehensively, the fit degree remains relatively low by using
the GF model to simulate car-following Processes 1 and
2.

3.3. FVDModel. Jiang et al. [10] proposed the FVDmodel by
considering the negative and positive velocity differences to
avoid an unrealistic acceleration. This model can explain the
instance; that is, if the leading car is fast, then the car will not
stop, although its headway is smaller than the safe distance.
The model can be formulated as follows:
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Figure 5: GF model simulations of car-following Process 1.

𝑎𝑛 (𝑡) = 𝜅 (𝑉 (Δ𝑥𝑛 (𝑡)) − V𝑛 (𝑡)) + 𝜆ΔV𝑛 (𝑡) , (7)

where 𝜆 is the parameter of the FVD model.
Similarly, the FVD model is recalibrated by using the

measured car-following process data at signalised intersec-
tions. Equation (3) is selected as the optimisation criterion,
and the ABC algorithm is used to calibrate the model. The
number of employed, onlooker, and scout bees is set to
100, 100, and 1, respectively, and the maximum number of
stagnation and the number of iterations in theABC algorithm
are set to 1900 and 3000, correspondingly.The same resulting
parameters are obtained consistently through a repeated anal-
ysis of the experiment. Moreover, the algorithm converges

to these resulting parameters, and the number of the first
ABC iterations of the result is at most 2000 times. Thus, the
algorithm has converged to the global optimal solution. The
resulting parameters of the FVD model are 𝜅 = 1.93, V1 =
2.49, V2 = 2.45, 𝑐1 = 19.69, 𝑐2 = 98.14, and 𝜆 = 0.63.

We selected two complete car-following processes in
Table 1 to test the FVDmodel to verify the adaptability of the
calibrated FVD model to the car-following trajectory at the
signal intersection.The first point data of the two process data
are used as the initial state of the simulation. The complete
simulation of the car-following process can then be obtained
on the basis of the evolution of the model. The simulation
results are demonstrated in Figures 7 and 8.
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Figure 6: GF model simulations of car-following Process 2.

Figures 7(a), 7(b), and 7(c) exhibit the simulation analyses
of the acceleration/deceleration, velocity, and distance head-
way of the FVDmodel in car-following Process 1, respectively.
Figure 7 displays that the FVD model simulation of car-
following Process 1 has the same problem as the OV and GF
models. The deceleration of the FVD model is faster than
the measured data at the early deceleration stage, but the
subsequent deceleration stage is slower than the measured
data. Moreover, the simulation results of the FVD model
indicate a significant acceleration at the early acceleration
stage and avoid an acceleration delay, but the simulation
of the entire acceleration process is insufficiently smooth.
Overall, the simulation results of the FVD model avoid the

risk of a rear-end collision which exists in the OV model.
Simultaneously, the problem of acceleration insufficiency
in the OV and GF models is solved, but the fit degree
remains relatively low between the simulation and measured
trajectories when the FVD model is used to simulate car-
following Process 1.

Figures 8(a), 8(b), and 8(c) plot the simulation analy-
ses of the acceleration/deceleration, velocity, and distance
headway of the FVD model in car-following Process 2,
correspondingly. Figure 8 presents that the fit degree of
the FVD model simulation in car-following Process 2 at
the deceleration process is unfavourable. The deceleration
of the FVD model is slower than the measured data at the
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Figure 7: FVD model simulation of car-following Process 1.

entire deceleration process given the phenomenon of large
deceleration at the early deceleration stage, thereby causing
the distance headway to become larger than the measured
data at the idling stage. The simulation of the FVD model
at the acceleration stage avoids the problem of acceleration
delay. The acceleration is significant at the early acceleration
stage, but the FVD model demonstrates a slow and insuffi-
cient acceleration over the measured data at the subsequent
acceleration stage, thereby resulting in a deviation between
the simulation trajectory and the measured data. Overall, the
simulation results of the FVD model avoid the risk of a rear-
end collision which exists in the OV model. Simultaneously,
the problem of acceleration insufficiency in the OV and GF
models at the early acceleration stage is solved. However,

the FVD model still has insufficient acceleration at the
acceleration stage, and the fit degree remains relatively low
between the simulation and the measured trajectories when
the FVD model is used to simulate car-following Process 2.

The simulation analysis results of car-following Processes
1 and 2 by the FVD model show that the FVD model
has several advantages over the OV model and the GF
model, thereby avoiding the risk of a rear-end collision.
Moreover, the problem of slow and insufficient acceleration
at the early acceleration is solved. However, slow deceleration
and insufficient acceleration still occur at the subsequent
deceleration and acceleration stage. Comprehensively, the fit
degree remains relatively low when the FVDmodel is used to
simulate car-following Processes 1 and 2.
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Figure 8: FVD model simulations of car-following Process 2.

3.4. Other Models. The exploration of an urban signal inter-
section is important in traffic flow research because it can
provide a theoretical basis for intersection signal timing. To
describe car-following behaviour at signalised intersection,
literature [46–49] proposed various extended car-following
models on the basis of the FVD model under the analysis of
measured data; literature [51] also proposed an extended car-
following model based on the General Motor car-following
model. Literature [46] proposed an extended car-following
model considering multiple leading cars’ acceleration that
adapts to vehicle automation and safety early warning sys-
tems; literature [47] proposed an improved car-following
model considering the velocity difference of an immediately
ahead car; literature [48, 49] suggested essentially the same

type of car-following model that improved the car-following
model considering headway changes with memory on a
single lane. Therefore, the car-following models proposed in
literature [47, 49] are selected as comparative models, con-
sidering the comparability of the improved model proposed
in this study.The car-following models proposed in literature
[47, 49] can be expressed as follows, respectively.

𝑎𝑛 (𝑡) = 𝜅 (𝑉 (Δ𝑥𝑛 (𝑡)) − V𝑛 (𝑡)) + 𝜆ΔV𝑛 (𝑡)

+ 𝛾 (V𝑛−1 (𝑡) − V𝑛−1 (𝑡 − 1)) ,
(8)

𝑎𝑛 (𝑡) = 𝜅 (𝑉 (Δ𝑥𝑛 (𝑡)) − V𝑛 (𝑡)) + 𝜆ΔV𝑛 (𝑡)

+ 𝛾 (Δ𝑥𝑛 (𝑡) − Δ𝑥𝑛 (𝑡 − 1)) ,
(9)
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In (8) and (9), V𝑛−1(𝑡) − V𝑛−1(𝑡 − 1) is velocity difference
of the immediately leading car and Δ𝑥𝑛(𝑡) − Δ𝑥𝑛(𝑡 − 1) is the
headway changes with memory between the nth car and its
leading car 𝑛−1 at time t; 𝛾 denotes the sensitivity parameter
and the other parameters remain constant.

In the previous analysis, the problems and causes of
OV, GF, and FVD model to simulate a microscopic car-
following behaviour at signalised intersections are illustrated;
it is necessary to propose an extended car-following model to
overcome the defects of the OV, GF, and FVDmodels in sim-
ulating the car-following process at signalised intersections.
The car-following models proposed in literature [47, 49] are
selected as comparative models to illustrate the effectiveness
of the improved model. Therefore, these two models need
to be recalibrated using the measured car-following data
at signalised intersection. Similarly, (3) is selected as the
optimisation criterion, and the ABC algorithm is used to
calibrate the model. The number of employed, onlooker,
and scout bees is set to 100, 100, and 1, respectively, and
the maximum number of stagnation and the number of
iterations in the ABC algorithm are set to 2200 and 3000,
correspondingly. Thus, the algorithm has converged to the
global optimal solution. The resulting parameters of the car-
following model proposed in literature [47] are 𝜅 = 0.48,
V1 = 3.21, V2 = −3.15, 𝑐1 = −13.58, 𝑐2 = −74.57, 𝜆 = 0.58,
and 𝛾 = 0.08 and those of the car-following model proposed
in literature [49] are 𝜅 = 0.37, V1 = 3.01, V2 = 2.57,
𝑐1 = 14.60, 𝑐2 = 80.21, 𝜆 = 0.59, and 𝛾 = 0.14. Notably,
the results obtained in this study are not the same as those
obtained in literature [47, 49] because of the different car-
following data sources. In addition, these two models are
selected as comparative models to illustrate the effectiveness
of the improvedmodel in the subsequent sections.Therefore,
the car-following processes shown in Table 1 will not be used
in analysing the two car-following models.

4. Extended Car-Following Model

In Section 3, the OV, GF, and FVD models are used to
simulate car-following Processes 1 and 2. The experimental
analysis results show that the three models are ineffective
for simulating car-following Processes 1 and 2. In the OV,
GF, and FVD models, the influence of distance headway on
the driving behaviour is insufficiently considered when the
vehicles gather at the signalised intersection. In literature [46,
51], actual data were collected through the grey correlation
analysis method to obtain a conclusion that the leading
vehicle acceleration evidently influences the following vehicle
acceleration. In an actual traffic situation, drivers focus on
the effect of distance headway while the vehicles gather at
signalised intersections. The deceleration amplitude is min-
imal when the distance headway is large, but the deceleration
amplitude increases when the distance headway is small.
However, the drivers focus on the acceleration of the front
vehicle when the vehicle is dissipated.Therefore, an extended
FVD (EFVD) model is proposed to improve the fit degree
of the car-following model to simulate the car-following
trajectory at signalised intersections. The EFVD model can
be formulated as follows:

𝑎𝑛 (𝑡) = 𝜅 (𝑉 (Δ𝑥𝑛 (𝑡)) − V𝑛 (𝑡)) + 𝜆ΔV𝑛 (𝑡)

+ 𝜇1𝐻(−ΔV𝑛 (𝑡)) (Δ𝑥𝑛 (𝑡) − 𝜇2)

+ 𝜇3𝐻(ΔV𝑛 (𝑡)) 𝑎𝑛−1 (𝑡) ,

(10)

where 𝑎𝑛−1(𝑡) is the acceleration/deceleration of the 𝑛 − 1th
car at time t, 𝑢1 is the sensitivity parameter of the distance
headway when the vehicles gather, and 𝑢2 is the safe driving
distance headway of the driver's deceleration that is different
from the parking distance headway. The driver focuses on
a minimal deceleration to decelerate when Δ𝑥𝑛(𝑡) ≥ 𝑢2,
and if Δ𝑥𝑛(𝑡) < 𝑢2, then the driver will focus on a large
deceleration to decelerate. 𝑢3 is the sensitivity parameter
of the acceleration/deceleration of the 𝑛 − 1th car. 𝑢1, 𝑢2,
and 𝑢3 must be calibrated, and the other parameters remain
constant.

The EFVD model is calibrated by using the measured
car-following data at signalised intersections. Equation (3) is
selected as the optimisation criterion, and the ABC algorithm
is used to calibrate the model. The number of employed,
onlooker, and scout bees is set to 100, 100, and 1, respectively,
and the maximum number of stagnation and the number of
iterations in the ABC algorithm are set to 2500 and 3000,
correspondingly.The same resulting parameters are obtained
every time through repeated analysis of the experiment.
Moreover, the algorithm converges to these resulting param-
eters, and the number of the first ABC iterations of the result
is at most 2000 times. Thus, the algorithm has converged to
the global optimal solution. The resulting parameters of the
FVD model are 𝜅 = 0.31, V1 = 5.71, V2 = 5.65, 𝑐1 = 6.76,
𝑐2 = 67.01, 𝜆 = 0.68, 𝜇1 = 0.44, 𝜇2 = 7.27, and 𝜇3 = 0.31.

We selected two complete car-following processes, as
listed in Table 1, to verify the adaptability of the calibrated
EFVD model to the car-following trajectory at the signal
intersection and test the EFVD model. The first point data
of the two car-following process data are used as the initial
state of the simulation. The complete simulation of the car-
following process can then be obtained on the basis of the
evolution of the model. The simulation results are presented
in Figures 9 and 10.

Figures 9(a), 9(b), and 9(c) plot the simulation analyses of
the acceleration/deceleration, velocity, and distance headway,
respectively, of the EFVD model to car-following Process
1, correspondingly. Figure 9 illustrates that the deceleration
of the EFVD model is faster than the measured data at the
entire deceleration stage, and the simulation results of the
EFVD model at the acceleration stage avoid the problem of
acceleration delay and insufficient acceleration. Overall, the
EFVDmodel solves the problem of deceleration rapidly at the
early deceleration stage. Moreover, the deceleration is slow at
the subsequent deceleration stage in the OV, GF, and FVD
models, thereby avoiding the risk of a rear-end collision in
the OV model. Simultaneously, the proposed method solves
the problem of the insufficient acceleration of the OV and
GF models and the unsmoothed acceleration fitting of the
FVD model. The EFVD simulation results of car-following
Process 1 show a certain improvement over the OV, GF, and
FVD models.
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Figure 9: EFVD model simulations of car-following Process 1.

Figures 10(a), 10(b), and 10(c) plot the simulation anal-
yses of the acceleration/deceleration, velocity, and distance
headway of the EFVD model in car-following Process 2,
respectively. Figure 10 depicts that the deceleration of the
EFVD model is slower than the measured data at the entire
deceleration stage, but the distance headway at the idling
stage is close to the measured data. The simulation of the
EFVD model has a problem of advance acceleration at the
acceleration stage but avoids the problem of insufficient
acceleration. For car-following Process 2, the EFVD model
shows slow deceleration but avoids the risk of a rear-end
collision. The proposed model also solves the problem of
insufficient acceleration. The EFVD simulation results of

car-following Process 2 show a certain improvement over the
OV, GF, and FVD models.

The simulation analysis results of car-following Processes
1 and 2 by the EFVD model show that the proposed method
can eliminate the rapid deceleration at the early deceleration
stage and slow deceleration at the subsequent deceleration
stage. The fit degree of car-following Processes 1 and 2 are
better in the proposed method than in the OV, GF, and
FVD models. However, several problems, such as faster
deceleration than the measured data in car-following Process
1 and slower deceleration than the measured data in car-
following Process 2, remain. Moreover, the EFVD model
simulation of car-following Process 2 has a problem of
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Figure 10: EFVD model simulations of car-following Process 2.

advance acceleration. The EFVD model is more effective in
simulating car-following Processes 1 and 2 than the OV, GF,
and FOV models. Similarly, the EFVD model considers the
influence of distance headway at the deceleration stage. The
model can avoid the problem of early deceleration when the
distance headway is large, whereas this model can induce a
large deceleration and avoid the risk of a rear-end collision
when the distance headway is small. Simultaneously, the
problem of low fit degree at the deceleration stage in the OV,
GF, and FVDmodels is solved.Theproposedmodel considers
the influence of the acceleration of the leading car at the
acceleration stage, although the proposed model causes the
problem of advance acceleration. However, the EFVDmodel

solves the problem of acceleration insufficiency and slower
acceleration at the late acceleration stage of the FVD model
than the OV and GF models.

5. Comparative Analysis

In Section 3, we verified the problems of the OV, GF, and
FVD models in fitting the actual car-following behaviour at
the signal intersection through the two typical car-following
processes. The analysis of its causes indicates that the OV,
GF, and FVD models do not consider the car-following
distance headway when the vehicle decelerates. Simultane-
ously, the OV, GF, and FVD models also do not consider
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the acceleration of the leading vehicle when the vehicle
accelerates.The two factors lower the fitting degree of the OV,
GF, and FVD models when fitting the actual car-following
behaviour at signalised intersections. On the basis of this
analysis, we further proposed the EFVD model in Section 4
based on the FVD model. Then, the EFVD model is verified
on the basis of the two typical car-following processes. The
experimental simulation shows that the EFVD model can
solve the problems in the OV, GF, and FVD models. We
used three models in this section for comparative analysis to
fully demonstrate the superiority of the EFVDmodel. In this
study, we firstly analysed the problems of the OV, GF, and
FVD models in fitting the actual car-following behaviour at
the signal intersection. Then, we proposed the EFVD model.
Thus, we compared the EFVD model with the FVD model,
which is better than the OV and GF models, through car-
following Processes 1 and 2. The parameters of the FVD and
EFVD models are constant, and the comparative results are
plotted in Figures 11 and 12, respectively.

Figures 11 and 12 display that the EFVD model is better
than the FVD model in simulating car-following Processes
1 and 2. To accurately explain the improvement effect of the
EFVD model, (11) is selected as the evaluation criterion to
measure the fitting effect of the EFVD and FVD models.
Equation (9) can be formulated as follows:

𝑃𝐴𝐷 = 𝐴𝐷
𝐴 − 𝐴𝐷𝐵

𝐴𝐷𝐵
(11)

where𝑃𝐴𝐷 is the prior percentage of the fitting precision of A
model to Bmodel when𝑃𝐴𝐷 < 0. A small𝑃𝐴𝐷 represents an
improved fitting effect of A model relative to B model while
representing a degraded fitting effect of the A model relative
to the B model.𝐴𝐷𝐴 and𝐴𝐷𝐵 denote the fitting deviation of
certain car-following data usingA and Bmodels, respectively,
as follows:

𝐴𝐷 = (0.5V + 0.5Δ𝑥) − (0.5V̂ + 0.5Δ̂𝑥)
 , (12)

where Δ𝑥 is the calculated distance headway of the car-
following model, Δ𝑥 is the measured distance headway, V is
the calculated velocity of the car-following model, and V̂ is
the measured velocity.

The calculated results of the fitting deviation of car-
following data shown in Table 1 are summarised in Table 2.
Table 2 lists the three car-following data for the fitting
deviation that is larger in the EFVD model than in the FVD
model when simulating car-following Process 1. The 12 other
types of car-following data have better fitting results than the
FVD model with a minimum improvement of −65.10%. In
comparison with the FVD model, the fitting effect of 80%
car-following data is improved in car-following Process 1 of
the EFVD model simulation. Car-following Process 2 has
six car-following data at the early acceleration stage for the
fitting deviation that is larger in the EFVD model than in
the FVD model. The 48 other car-following data have better
fitting results than the FVD model. In comparison with the
FVD model, the fitting effect of 88.89% car-following data
is improved in car-following Process 2 of the EFVD model
simulation. However, the verification analysis is only for the

two car-following processes shown in Table 1.Thus, we tested
the EFVDmodel by using the 32 other complete car-following
processes, which included 922 isolated point data. In the
follow-up comparison process, we abbreviated the FVD
model as Model 1. Simultaneously, the car-following models
proposed in literature [47, 49] were selected as comparative
models and abbreviated as Models 2 and 3, respectively,
considering the comparability of the EFVD model proposed
in this study. In the testing process, each group of test samples
was placed in the model, and the deviation between the
output of the model and the measured data was calculated
using (12). Then, (11) was selected as the evaluation criterion
for the EFVD model compared with Models 1, 2, and
3.

Models 1, 2, and 3 were used to compare and analyse the
results, as presented in Figure 13. The graph shows only the
comparison results of all data points with starting data of 1
and a gap of 4 to clarify Figure 13. The isolated point used
in the EFVD model compared with Models 1, 2, and 3 is
only 602 because of the influence of V𝑛(𝑡 − 1) and Δ𝑥𝑛(𝑡 −
1) in Models 2 and 3, respectively. Figure 13 illustrates that
the 𝑃𝐴𝐷 value is less than 0 for most of the isolated points
when comparing the EFVD with Models 1, 2, and 3. The
results show that the fitting degree of the EFVD model for
the 602 isolated point data is better than that of Models 1,
2, and 3 for most of the isolated points. However, the fitting
degree of partially isolated points in the EFVD model is
inferior to Models 1, 2, and 3. According to the statistics of
the simulation results, the fitting degree of the EFVD model
has 60, 140, and 134 isolated points, which indicates that this
model is worse than Models 1, 2, and 3, respectively. Overall,
the fitting effect of the EFVD model remains better than
that of Models 1, 2, and 3. Fitting effects of 90.03%, 76.74%,
and 77.74% isolated points are improved when the EFVD
model is compared with Models 1, 2, and 3, respectively.
In literature [53], a significant shortage in the comparative
testing of the car-following models based on isolated point
data was emphasised in calibrating the parameters of the
car-following model, and a comprehensive testing of the
entire car-following process was lacking, thereby resulting
in inaccurate test results. In literature [53], the authors also
highlighted that the test of the car-following model should
be based on the entire car-following process.Thus, the EFVD
model was retested on the basis of the entire car-following
process; that is, the first set of data for each car-following
process and all subsequent model inputs were based on the
computational evolution of the model itself. Furthermore,
(12) was used to calculate the deviation of each set of data
for each process. The fitting deviation of each car-following
process is then calculated using the following:

𝐸𝐷 = 1
𝑛

𝑛

∑
𝑖=1

𝐴𝐷𝑖, (13)

where 𝑛 is the number of isolated points that are included in
each of the car-following processes and 𝐴𝐷𝑖 is the deviation
for each isolated point data. The EFVD model was tested on
the basis of the 32 complete car-following processes. Models
1, 2, and 3 were adopted as the comparative model. The 𝐸𝐷
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Figure 11: Simulation comparison of car-following Process 1.

of the different models are presented in Table 3, and the
comparative results are summarised in Table 4.

Tables 3 and 4 list six, eight, and nine test car-following
processes for the simulation deviation that is larger in the
EFVD model than in Models 1, 2, and 3, respectively. The
remaining car-following processes indicate that the simula-
tion deviation is better in the EFVDmodel than in Models 1,
2, and 3, and the improvement of the simulation is evident.
According to the statistics of the simulation results, the

fitting effect of 90.03%, 76.74%, and 77.74% test car-following
processes is improved when the EFVD model is compared
withModels 1, 2, and 3, correspondingly.Therefore, the EFVD
model from the overall perspective is better than Models 1,
2, and 3 in simulating the car-following process at signalised
intersections.

The comprehensive analysis results indicate the EFVD
model several advantages over Models 1, 2, and 3, whether
the proposed model is tested on the basis of the isolated
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Figure 12: Simulation comparison of car-following Process 2.

point data or the entire car-following process. In combination
with the previous analysis, Model 1 ignores the influence of
distance headway on the driving behaviour when the vehi-
cles gathered at the signalised intersections and insufficient
acceleration occurs at the acceleration stage. Furthermore,
we conducted an in-depth analysis of Models 2 and 3.
Model 2 was proposed considering the velocity difference
of the leading car, and Model 3 was proposed considering
the distance headway changes with memory. In comparison

with the EFVD model, although Model 2 was proposed
based on Model 1 considering the velocity difference of the
leading car, the influence of the distance headway on the
deceleration behaviour of the drivers was neglected. Model
3 was proposed based on Model 1 considering the distance
headway change with memory, but the distance headway
at different deceleration stages had a different effect on
the deceleration behaviour of the drivers, and the velocity
difference of the leading car was also neglected in Model
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Figure 13: Comparison of the EFVD with Models 1, 2, and 3.

Table 3: 𝐸𝐷 of the different models.

Car-following process 𝐸𝐷 of the EFVD model 𝐸𝐷 of Model 1 𝐸𝐷 of Model 2 𝐸𝐷 of Model 3
1 0.18 0.74 0.30 0.29
2 0.52 0.45 0.48 0.51
3 0.27 1.32 0.52 0.32
4 0.81 1.81 0.91 0.93
5 0.38 1.15 0.41 0.43
6 0.24 0.71 0.31 0.36
7 0.42 0.50 0.31 0.31
8 0.52 0.92 0.54 0.52
9 0.30 1.54 0.52 0.35
10 0.22 0.42 0.31 0.32
11 0.32 0.57 0.23 0.23
12 0.20 1.06 0.22 0.21
13 0.55 0.45 0.66 0.66
14 0.36 0.61 0.18 0.17
15 0.54 1.06 0.76 0.82
16 0.37 0.29 0.31 0.31
17 0.24 0.40 0.33 0.32
18 0.70 0.83 0.78 0.76
19 0.31 0.76 0.25 0.28
20 0.04 0.64 0.14 0.13
21 0.32 0.98 0.50 0.41
22 0.14 0.24 0.16 0.17
23 0.17 0.44 0.22 0.19
24 0.93 1.70 1.28 1.36
25 0.49 2.02 1.55 1.61
26 0.81 1.68 1.18 1.29
27 0.61 1.44 0.65 0.67
28 0.49 0.27 0.54 0.56
29 0.42 0.40 0.25 0.24
30 0.11 0.94 0.40 0.39
31 0.31 0.66 0.22 0.23
32 0.50 0.36 0.63 0.63
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Table 4: Analysis of the EFVD compared with Models 1, 2, and 3 on the basis of the car-following process.

Car-following process (𝐸𝐷 of the EFVD model− ED of
Model 1)/𝐸𝐷 of Model 1

(𝐸𝐷 of the EFVD model− ED of
Model 2)/𝐸𝐷 of Model 2

(𝐸𝐷 of the EFVD model− ED of
Model 3)/𝐸𝐷 of Model 3

1 -74.95% -37.67% -36.29%
2 13.82% 6.64% 2.01%
3 -79.81% -48.52% -17.10%
4 -55.29% -10.90% -13.30%
5 -66.72% -7.87% -11.25%
6 -65.69% -20.66% -32.48%
7 -16.34% 35.44% 36.70%
8 -43.03% -2.70% 1.82%
9 -80.28% -41.18% -13.43%
10 -48.32% -29.23% -32.13%
11 -43.65% 39.08% 41.40%
12 -81.29% -9.63% -6.49%
13 20.70% -16.95% -17.23%
14 -40.81% 105.85% 115.86%
15 -48.66% -28.35% -34.07%
16 29.12% 21.87% 21.34%
17 -39.12% -27.23% -25.46%
18 -15.54% -9.91% -7.78%
19 -58.82% 23.47% 12.56%
20 -93.75% -70.83% -70.07%
21 -67.72% -37.08% -23.61%
22 -40.38% -12.78% -15.55%
23 -61.74% -22.40% -12.21%
24 -45.58% -27.83% -31.74%
25 -75.79% -68.41% -69.61%
26 -51.94% -31.81% -37.16%
27 -57.77% -7.37% -9.47%
28 79.26% -9.79% -13.19%
29 3.55% 67.01% 73.15%
30 -88.85% -73.68% -73.28%
31 -52.98% 42.94% 35.14%
32 39.30% -20.69% -20.00%

3. In this study, the improvement of the EFVD model is
different from that of Models 2 and 3. We distinguished the
vehicles that gather and dissipation based on the velocity of
following and leading vehicles. In comparison with Model
2, the EFVD model emphasised the effect of acceleration
on car-following behaviour only at the acceleration stage
that was different from that of Model 2. In comparison with
Model 3, the EFVDmodel highlighted the influence of head-
way distance on vehicle deceleration behaviour at different
deceleration stages. Moreover, we determined the average
safe driving distance headway of the driver’s deceleration
based on parameter 𝑢2. When the distance headway is greater
than 𝑢2, the vehicle will decelerate with a small deceleration.
By contrast, when the distance headway is smaller than 𝑢2,
the vehicle will decelerate with a large deceleration. This
improvement method avoids the risk of a rear-end collision.

Comprehensively, the EFVDmodel distinguishes the vehicles
that gather and dissipation based on the velocity of following
and leading vehicles. The effects of different factors on the
car-following behaviour were considered at different stages.
The EFVD model can improve the deficiencies in the OV,
GF, and FVD models. However, we still need to explain the
worse fitting degree of the EFVD model than Models 1, 2,
and 3 in the partially isolated point and car-following process.
We analysed the EFVD model and the simulation of the car-
following behaviour. The main reasons for the insufficient
fitting of the EFVD model were caused by parameters 𝑢2
and 𝑎𝑛−1(𝑡) in the EFVD model, and 𝑢2 was the average safe
driving distance headway of the driver's deceleration which
is decided by numerous car-following processes. In the actual
car-following environment, the safe driving distance headway
of the driver’s deceleration is inconsistent with 𝑢2, given the



24 Journal of Advanced Transportation

influence of the driver’s characteristics. When the driver's
driving behaviour is aggressive and unsteady, the driver's
deceleration safety distance is often less than the parameter
𝑢2. When the driver's driving behaviour is conservative
and careful, the driver's deceleration safety distance is often
greater than parameter 𝑢2. In these two cases, the EFVD
model was insufficient to simulate deceleration behaviour
because of the influence of parameter 𝑢2. The EFVD model
also considers the effect of 𝑎𝑛−1(𝑡) in solving the problem
of insufficient acceleration in the FVD model. However, this
effect results in the problem of advanced acceleration at the
early acceleration stage. The analysis of the experimental
simulation indicates that when the car-following process
contains more data points, the acceleration data points in
the early stage are relatively less, and the fitting degree
improvement of the entire car-following process brought by
parameter 𝑎𝑛−1(𝑡) is better than the fitting degree error caused
by the advanced acceleration. Conversely, when the car-
following process contains less data points, the acceleration
data points in the early stage are relatively more, and the
advanced acceleration caused by parameter 𝑎𝑛−1(𝑡) has a
relatively worse effect on the fitting degree improvement of
the entire car-following process. The two factors combined
cause the EFVD model to have several defects. Overall, the
improvement effect of the EFVD model in most of the test
data is evident, although the EFVD model is worse than
Models 1, 2, and 3 in the partially isolated point and car-
following process.

6. Conclusion

The car-following behaviour at signalised intersections is
different from that on the road. The driving behaviour when
the vehicle is gathered is also different from the driving
behaviour when the vehicle is dissipated. The OV, GF, and
FVD models are tested by using two types of car-following
processes, namely, incomplete and complete parking, to
address the abovementioned problem. The results show that
the deceleration of the three models is larger than the
measured data at the early stage of deceleration. However,
the deceleration is smaller than the measured data at the
subsequent deceleration stage. Moreover, the simulation of
the car-following behaviour at signalised intersections using
the OV and GF models demonstrates the risk of a rear-end
collision. The OV and GF models at the acceleration stage
have the problem of acceleration insufficiency in the entire
acceleration stage, although the FVD model has a significant
acceleration in the early acceleration stage. However, the
acceleration remains insufficient at the subsequent acceler-
ation stage. We consider the effect of distance headway on
the following behaviour when the vehicle is gathered and
the effect of the acceleration of the front vehicle on the
following behaviour when the vehicle is dissipated to solve
the deficiencies of the three models because the driver has
different emphases when the vehicle is gathered and when
dissipated. Furthermore, we propose the EFVDmodel on the
basis of the FVD model. The experimental analysis confirms
that the EFVD model can improve the deficiencies in the
OV, GF, and FVD models. Furthermore, the 622 isolated

point data of the 32 complete car-following processes are
used to test the EFVD model, FVD model, and two other
models which are adopted as the comparative model. The
results show that the simulation fit is better in the EFVD
model than in the FVD model for most of the test data.
Thus, the extended model is effective. The EFVD model is
more reasonable than the OV, GF, FVD, and two other mod-
els for analysing the car-following behaviour at signalised
intersections.

However, a certain deficiency is observed in the EFVD
model considering the influence of parameters 𝑢2 and 𝑎𝑛−1(𝑡),
similar to the previous analysis. Thus, improving this model
should firstly focus on driver character analysis and dynamic
adjustment of the parameter 𝑢2 value in combination with
driver's character, and the determination of other parameters
should also be combinedwith the driver's character. Secondly,
we should dynamically adjust the coefficient of 𝑎𝑛−1(𝑡) in
accordance with the velocity of the following vehicle con-
sidering the problem of advance acceleration at the early
acceleration stage in thismodel.We can then further improve
the fitting degree of the EFVD model for simulating the
measured data of the car-following behaviour at signalised
intersections. The car-following model summarises the char-
acteristics of many drivers and describes these characteristics
mathematically. The simulation results show the average
driving behaviour. In the actual driving behaviour, the car-
following model cannot fully fit the trajectory of the vehicle
given the influence of various conditions. Therefore, we
propose various new car-following models that adapt to the
automatic driving environment with the rapid development
of information and vehicle technologies. In the next stage,
we will focus on analysing the influencing factors of the car-
following model at signal intersections under the automatic
driving environment. We will further improve the traditional
car-following model and develop an enhanced car-following
model at signalised intersections to adapt to the automatic
driving environment.

Data Availability

The data for the simulation analysis used in the present study
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its/06135/index.cfm.
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