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This paper analyzes the impact of capacity drop on commuters’ travel choice behaviors under uncertainty. For clarity, we assume that
the capacity drop is triggered by the queue forming at the bottleneck under the hypercongestion circumstances, and the stochasticity
of the drop could not be neglected. Considering the uncertainty of travel time, we establish a bottleneck model with commuters
choosing their departure time according to the mean travel cost. From the proposed model, analytical solutions are achieved and
therefore several properties are presented, including monotonicity of travel cost and departure rate, and the relationship between
dispersion degree and length of peak period. To alleviate traffic congestion at the bottleneck and avoid capacity drop, we design a
time-varying toll scheme and a step toll scheme. Evolution of queue length in equilibrium is discussed based on the Laih model.
Numerical examples are also presented to demonstrate the established model and the effectiveness of the proposed toll schemes.

1. Introduction

Capacity plays one key role in the commuting systems,
and the capacity drop phenomenon attracts much research
from the field of transportation. As presented by empirical
studies, the self-organized capacity drop could be observed in
bottlenecks atmany locations. For instance, by observation in
and near Toronto, Canada, Cassidy and Bertini [1] reported
that the average rate discharge from a queue could be 10%
lower than the flows measured prior to queue’s formation.
Latterly, Zhang and Levinson [2] observed 3-12% capacity
drop on freeway bottlenecks in Twin Cities area, Minnesota.
In addition, self-organized capacity drop phenomenon is also
observed in a bottleneck located in the Twin Cities west
metropolitan region by Srivastava and Geroliminis [3].

Thoughmost of the existing literature on capacity drop in
bottlenecks is from deterministic perspective, there is some
research suggested that the self-organized capacity drop does
not always occur at a fixed flow rate and is intrinsically
stochastic. It is even pointed out that that capacity of a
bottleneck could be defined as a function of breakdown
probability [4, 5]. In fact, the stochastic properties may not
be limited in the self-organized capacity drop phenomenon.

For example, the capacity could fluctuate from day to day
and could be treated as a stochastic one [6]. Based on
the consideration, this paper is to investigate the impact of
capacity drop at a bottleneck in a stochastic circumstance.

The analysis of this paper is based on the classical bot-
tleneck model, which is originally developed by Vickrey [7].
Themodel could formulate commuters’ trip schedule andwas
recognized as a useful tool for modeling the queuing behav-
iors at a bottleneck during the morning peak. In literature,
many studies have extended the basic bottleneck model from
different aspects, like considering the case of elastic demand
[8] and commuters’ heterogeneity [9, 10]. Specifically, the
influences of various impact factors on the performance of
commuting systems are discussed too. For example, Lindsey
[11] investigated the effects of information provision under
stochastic bottleneck capacity conditions. van den Berg and
Verhoef [12] studied the influence of commuters’ value of
time on the efficiency of the commuting system. By con-
sidering the provision of parking spaces, Arnott et al. [13]
examined the effects of parking availability on the commuting
systems and evaluated the efficiency of road tolls and parking
fees. Latterly, Qian et al. [14, 15] considered various impact
factors including parking capacity allocations, parking fees
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and access times for traffic congestion mitigation, and total
social costs reduction. In addition, extensions of bottlenecks
could also be found like day-to-day travel behavior evolution
[16], preference of autonomous vehicle users [17], and travel
choice of shared-riders [18, 19]. Highly correlated with the
work in this paper, Fosgerau and Small [20] investigated
the bottleneck model with variable capacity in the rush
hour in the hypercongestion environment. However, the
authors discussed the commuters’ travel choice behavior
under deterministic circumstances.

Besides the works on deterministic bottleneck model,
the commuting systems are also discussed in stochastic
environments. Fosgerau [21] derived a closed form expression
for the expected cost in a bottleneck model with stochastic
capacity and demand. Latterly, Fosgerau [22] presented char-
acterization of how the expected delay and the variance of
delay are related in a congested facility with random capacity
and demand. Li et al. [23] analyzed the departure time choice
behavior under stochastic capacity using Vickrey bottleneck
model and developed numerical methods to solve a bottle-
neck where daily capacity follows a uniform distribution.
Siu et al. [24] considered equilibrium trip scheduling under
random travel delay in commuting system at rush hours.They
found that random delay plays a significant role in travel costs
and introduces substantial differences in the queuing pattern,
departure, and arrival times. Xiao et al. [6] studied the
bottleneckmodel with stochastic capacity with a uniformdis-
tribution; both analytical and numerical results show that the
capacity variability of bottleneck leads to significant changes
in departure time patterns. Xiao et al. [25, 26] extended
the stochastic bottleneck model to heterogeneous values of
time for studying the heterogeneous travelers’ departure time
choice behavior. Furthermore, commuters depart at the same
time can experience early or late arrival depending on the
capacity in the stochastic circumstances. Furthermore, the
impact of stochastic capacity at the downstream bottleneck
after a merge is also investigated by Xiao et al. [25, 26].

As the capacity drop degrades the performance of the
commuting system, researchers also tried to find approaches
for alleviate the efficiency loss caused by capacity drop.
Among the proposed approaches, ramp metering is proved
to be effective for enhancing the dropped capacity [2, 27].
In addition, variable speed limit seems to work also [28],
at least at the theoretical level. However, there are many
methods to eliminate the queue and decrease the externality
cost of the commuting system, which are toll based schemes.
As a seed work, Arnott et al. [29] discussed the time-
varying toll scheme together with the step toll scheme for
higher efficiency in a commuting system. Compared with the
time-varying toll schemes which are not easy to implement,
the step toll schemes are much more practical and were
studied bymany researchers [30, 31]. In the step toll schemes,
some fixed pricing toll charges are set during time intervals.
Commuter in front of the queue need to pay the charges
according to the time intervals. In the single-step toll scheme
proposed by Arnott et al. [29] which is called ADL model,
the arrival period is affected and the total private travel cost
is found to be higher than that in the no-toll equilibrium.
Furthermore, to achieve equilibrium, a mass of individuals

depart just after the toll is lifted. Laih [32] proposed a single-
step toll scheme called Laih model. Under the assumption
that there are separate queuing facilities where commuters
can wait and no mass departures are needed when the toll
comes, the arrival times and the total travel cost may not be
affected by the toll scheme. By considering the case in which
drivers have an incentive to wait for the toll decrement if the
waiting cost is less than the amount of toll saved, Lindsey
et al. [30] presented a single-step toll scheme called braking
model. In themodel, the bottleneck is idle for a certain period
in equilibrium; thus the peak period will be prolonged and
higher total travel cost could be expected. Besides the toll
scheme, there is another approach to enhance the efficiency
of the commuting system from economic perspective, which
is credit scheme. It is proved theoretically that the tradable
credit schemes are able to gain the same efficiency that toll
scheme could achieve [33–35].

Based on the fact and above studies, we investigate the
impact of stochastic capacity drop on commuters’ departure
time choice behavior in this paper by deriving the analysis
solution at equilibrium state. For convenience, it is assumed
that the bottleneck capacity will drop by a stochastic amount
when the queue at the bottleneck reaches a certain level,
i.e., the capacity of bottleneck becomes stochastic after the
queue length exceeds the certain level. Such kind of changes
in capacity of bottleneck will yield different trip costs and
inevitably affect the departure time choice behavior of the
commuters. Furthermore, we design a time-varying toll to
avoid capacity drop by eliminating queue. Because the time-
varying toll is practically difficult to employ, here we also
propose a step toll scheme to avoid capacity drop associated
with a bottleneck.

The rest of this paper is organized as follows. Section 2
formulates the commuters’ travel costs and departure time
choice in a bottleneck and reports the closed form solution
and properties of the proposedmodel. Impacts of the stochas-
tic capacity drop are discussed analytically. Section 3 presents
both the time-varying toll scheme and the step toll scheme to
avoid capacity drop for efficiency improvement. In Section 4,
numerical examples are presented and sensitivity analysis is
conducted. Finally, Section 5 concludes the paper.

2. The Bottleneck Model with
Stochastic Capacity Drop

2.1. The Basic Model. The basic model could be seen as a
simplification of the work byVickrey [7]. Assume that there is
a fixed number (𝑁) of commuters from residential district to
the Central Business District (CBD) through a highway with
a single bottleneck. Since the bottleneck capacity is limited
in the morning rush hour, if the commuters’ departure rate
exceeds the capacity 𝑠, a queue forms at the bottleneck. For
any commuter traveling from residential location to the CBD,
the travel time contains two parts, which are queuing time
and free flow travel time of highway 𝑡𝑓𝑟𝑒𝑒. For simplicity, it
is assumed that 𝑡𝑓𝑟𝑒𝑒 = 0. For all commuters, the preferred
arrival time (work start time) is set to be 𝑡∗; one faces a
schedule delay cost no matter he or she arrives early or late.



Journal of Advanced Transportation 3

We assume the departure rate at time point 𝑥 is 𝑟(𝑥) and the
earliest departure time is 𝑡0.

As there are a lot of symbols with various of subscripts
in the paper, a table that summarizes all used notations is
presented as an appendix (see the appendix).

The cumulative departures 𝑅(𝑡) could be formulated as

𝑅 (𝑡) = ∫𝑡
𝑡0

𝑟 (𝑥) 𝑑𝑥. (1)

In the morning rush hour, the capacity of the bottleneck
is fully utilized from time 𝑡0 and the length (in vehicles) of the
queue is

𝑄 (𝑡) = max {𝑅 (𝑡) − 𝑠 (𝑡 − 𝑡0) , 0} . (2)

Therefore, the queuing time for commuters depart at time𝑡 is
𝑇 (𝑡) = 𝑄 (𝑡)

𝑠 . (3)

The total cost could be seen as the sum of the travel time
cost and schedule delay cost:

𝐶 (𝑡) = 𝛼𝑇 (𝑡)

+ {{{
𝛽 (𝑡∗ − 𝑡 − 𝑇 (𝑡)) , 𝑖𝑓 𝑡∗ ≥ 𝑡 + 𝑇 (𝑡) ;
𝛾 (𝑡 + 𝑇 (𝑡) − 𝑡∗) , 𝑖𝑓 𝑡∗ ≤ 𝑡 + 𝑇 (𝑡) ;

(4)

where 𝛼, 𝛽, and 𝛾 are the values of travel time, schedule delay
early (SDE), and schedule delay late (SDL). In accordance
with empirical finding by Small (1982), we assume 𝛾 > 𝛼 > 𝛽
for the existence and uniqueness of the equilibrium.

At equilibrium, no commuter can reduce his or her travel
cost by unilaterally altering his or her departure time; i.e.,𝑑𝐶(𝑡)/𝑑𝑡 = 0. Then the departure rate during the rush hour
is

𝑟 (𝑡) =
{{{{{{{

𝛼𝑠
(𝛼 − 𝛽) 𝑖𝑓 𝑡0 ≤ 𝑡 ≤ 𝑡𝑡
𝛼𝑠

(𝛼 + 𝛾) 𝑖𝑓 𝑡𝑡 ≤ 𝑡 ≤ 𝑡𝑒 (5)

where 𝑡𝑡 is the departure time at which an individual arrives
at the CBD on time 𝑡∗ and 𝑡𝑒 is the ending time of the rush
hour period. Because all commuters incur the same cost, and
the duration of the peak is N/s, we can deduce that

𝑡0 = 𝑡∗ − 𝛾𝑁
(𝛽 + 𝛾) 𝑠 ,

𝑡𝑒 = 𝑡∗ + 𝛽𝑁
(𝛽 + 𝛾) 𝑠 .

(6)

The commuter’s travel cost at equilibrium could also be
obtained by looking at the first commuter:

𝐶 = 𝛽 (𝑡∗ − 𝑡0) = 𝑁
𝑠

𝛽𝛾
𝛽 + 𝛾 . (7)

The longest queue at equilibrium is

𝑞0 = 𝑁
𝛼

𝛽𝛾
𝛽 + 𝛾 . (8)

2.2. Problem Settings and Assumptions. In this paper, we
assume that the capacity of the single bottleneck will drop
when the queue at the bottleneck reaches a certain level,
denoted as 𝑞𝑐; thus there are basically two stages during
the rush hour. Before the capacity drop occurs, the capacity
of bottleneck is relatively high and stable. Let 𝑠 be the
capacity of the bottleneck during the first stage. As the
queue length exceeds the critical length 𝑞𝑐, the second stage
begins, and during the second stage, the capacity drops
down stochastically. The dropped capacity of the bottleneck
could be seen as a stochastic variable and follows a uniform
distribution within interval [𝜃𝑠, 𝑠], where 𝑠 = 𝜆𝑠, 𝜆 < 1,
representing the percentage of the remaining capacity, and0 < 𝜃 ≤ 1, representing the lowest rate of available capacity.
Let 𝑓(𝑠) be the probability density function of the capacity; it
follows that

𝑓 (𝑠) = 1
𝑠 − 𝜃𝑠 . (9)

In addition, we present the basic assumptions listed
below:

(1) Commuters are homogeneous with the same values of
travel time and schedule delays.

(2) Once the capacity has dropped, it would not recover
until the queue dissipates. Then the intermediate travelers
who are already in the queue should keep on waiting and
passing through the bottleneck.

(3) At the second stage, the capacity of the bottleneck is
constant within a day but fluctuates from day to day [6].

(4) Commuters are aware of the capacity drop probability,
and their departure time choice follows the user equilibrium
principle in terms of mean travel cost.

2.3. Formulation of the Bottleneck Model with Capacity Drop.
Under the above conditions, the commuters’ travel cost is
not always deterministic; commuters are assumed to make
departure time decisions according to the mean trip cost. For
simplicity, we set the preferred arrival time 𝑡∗ equal to 0. The
mean travel cost with respect to departure time 𝑡 could be
formulated as

𝐸 [𝐶 (𝑡)] = 𝛼𝐸 [𝑇 (𝑡)] + 𝛽𝐸 [𝑆𝐷𝐸(𝑡)] + 𝛾𝐸 [𝑆𝐷𝐿 (𝑡)] . (10)

Here 𝑆𝐷𝐸(𝑡) and 𝑆𝐷𝐿(𝑡) are the schedule delay early and late
for commuters departing at time 𝑡, where

𝑆𝐷𝐸 (𝑡) = max {0, −𝑇 (𝑡) − 𝑡} , (11)

and

𝑆𝐷𝐿 (𝑡) = max {0, 𝑇 (𝑡) + 𝑡} . (12)

We consider a very congested rush hour, in which
commuters always queue behind the bottleneck. As assumed
above, at the first stage, the capacity of the bottleneck is
deterministic; thus once the departure time is chosen by a
commuter, his or her travel time and schedule delay are both
deterministic. At the second stage, due to the stochasticity
of the capacity, commuters departing at the same time may
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endure schedule delay early or late in different days. They
may or may not encounter queuing delays randomly. For the
complexity of the commuter’s choice behaviors, the rush hour
could be divided into five departure intervals to characterize
the different travel choice behaviors as listed below:

(I) Commuters always arrive early and pass the bottle-
neck before the capacity drop.

(II) Commuters always arrive early and pass the bottle-
neck after the capacity drop.

(III) Depending on capacity commuters can arrive early or
late.

(IV) Commuters always arrive late and incur a queuing
delay.

(V) Commuters always arrive late and, depending on
capacity, may or may not incur a queuing delay.

Here we use 𝑡1, 𝑡3, 𝑡4, and 𝑡5 to denote the time points
that separate the five situations. For clarity, here we assume
that commuters queuing at length 𝑞𝑐 exactly do not suffer the
capacity drop, whichmeans the capacity drop begins after the
commuters queuing at time point 𝑡1 with length 𝑞𝑐 passed the
bottleneck. For convenience, let 𝑡2 denote the time point at
which the capacity drops and the queue length reach 𝑞𝑐 at
time point 𝑡1. it follows that

𝑡1 + 𝑞𝑐𝑠 = 𝑡2. (13)

As the equilibrium condition for commuters’ departure
time choice is that no commuter can reduce their mean trip
cost by unilaterally altering his or her departure time, the
five situations under the user equilibrium scheme could be
summarized as follows.

Situation I. Commuters always arrive early in [𝑡0, 𝑡1], and
commuters departing at this interval will pass the bottleneck
before the bottleneck capacity drops.

The departure rate is derived by differentiating (10) and
setting the derivative as zero; i.e.,

𝑑𝐸 [𝐶 (𝑡)]
𝑑𝑡 = 0, if 𝑟 (𝑡) > 0. (14)

The departure rate in this interval is

𝑟1 (𝑡) = 𝛼𝑠
𝛼 − 𝛽 , 𝑡0 ≤ 𝑡 ≤ 𝑡1, (15)

where 𝑡0 is the earliest departure time. The boundary con-
dition for this situation is that the cumulative number of
departures by time 𝑡1 reaches𝑁1; that means

𝑅 (𝑡1) = 𝑁1 = 𝛼
𝛽𝑞𝑐. (16)

Situation II. Commuters always arrive early in (𝑡1, 𝑡3], and
commuters departing at this interval will pass the bottleneck
after the bottleneck capacity drops.

Using the equilibrium condition, we can obtain the
departure rate in this interval:

𝑟2 (𝑡) = 𝛼𝑠 (1 − 𝜃)
(𝛼 − 𝛽) ln 𝜃−1 , 𝑡1 < 𝑡 ≤ 𝑡3. (17)

When the capacity of the bottleneck at the second stage is
𝜃𝑠, 𝑆𝐷𝐸(𝑡3) = 0. Thus we have

𝑅 (𝑡3) = 𝑁1 + 𝜃𝑠 (𝑡∗ − 𝑡2) . (18)

Situation III. Depending on capacity, commuters can arrive
early or late in (𝑡3, 𝑡4].

If the capacity of the bottleneck at the second stage is 𝑠,
no commuters experience schedule delay late. If the capacity
of the bottleneck at the second stage is 𝜃𝑠, no commuters
experience schedule delay early. In other cases, i.e., where the
capacity of the bottleneck is distributed stochastically within
the interval [𝜃𝑠, 𝑠], either schedule delay early or late may
occur. If commuters departing at time point 𝑡 arrive at their
workplaces on time, the corresponding capacity is

𝑠 = 𝑅 (𝑡) − 𝑁1−𝑡2 . (19)

The departure rate in this interval is

𝑟3 (𝑡) = 𝛼
𝐴 + 𝐵 (ln (𝑅 (𝑡) − 𝑁1) + 1) , 𝑡3 < 𝑡 ≤ 𝑡4, (20)

where

𝐴 = −𝛼 ln 𝜃 + 𝛽 ln (−𝑡2𝑠) + 𝛾 ln (−𝑡2𝜃𝑠) + (𝛽 + 𝛾)𝑠 − 𝜃𝑠 ,
𝐵 = 𝛽 + 𝛾

𝑠 − 𝜃𝑠 .
(21)

When the capacity of the bottleneck at the second stage is
𝑠, 𝑆𝐷𝐸(𝑡4) = 0. Thus we have

𝑅 (𝑡4) = 𝑁1 + 𝑠 (𝑡∗ − 𝑡2) . (22)

Situation IV. Commuters always arrive late and incur a
queuing delay in (𝑡4, 𝑡5].

Using the equilibrium condition, we can obtain the
departure rate within this interval is:

𝑟4 (𝑡) = 𝛼𝑠 (1 − 𝜃)
(𝛼 + 𝛾) ln 𝜃−1 , 𝑡4 < 𝑡 ≤ 𝑡5. (23)

The boundary condition for this situation is

𝑅 (𝑡5) = 𝑁1 + 𝑠 (𝑡5 − 𝑡2) . (24)

That means the queuing length at time instant 𝑡5 is 0, if
the capacity at the second stage is 𝑠.
Situation V. Commuters always arrive late and, depending
on capacity, may or may not incur a queuing delay in (𝑡5, 𝑡𝑒].

For any time instant 𝑡 in (𝑡5, 𝑡𝑒], there is a watershed
capacity of the bottleneck such that the queuing length equals
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zeros; i.e., 𝑅(𝑡) −𝑁1 = 𝑠(𝑡 − 𝑡2); the corresponding watershed
capacity is

𝑠 = 𝑅 (𝑡) − 𝑁1𝑡 − 𝑡2 . (25)

We then get the departure rate in this interval:

𝑟5 (𝑡) = (𝛼 + 𝛾) (𝑅 (𝑡) − 𝑁1) / (𝑡 − 𝑡2) − (𝛼𝜃 + 𝛾) 𝑠(𝛼 + 𝛾) (ln (𝑅 (𝑡) − 𝑁1) − ln (𝜃𝑠 (𝑡 − 𝑡2))) ,
𝑡5 < 𝑡 ≤ 𝑡𝑒.

(26)

The boundary condition for this situation is 𝑟5(𝑡𝑒) = 0,
and we could also have

𝑅 (𝑡𝑒) = 𝑁1 + 𝑠∗ (𝑡𝑒 − 𝑡2) , where 𝑠∗ = (𝛼𝜃 + 𝛾) 𝑠
𝛼 + 𝛾 . (27)

Since 𝑡𝑒 are the ending times of the rush hour period,
there is no more departure after that; we have 𝑅(𝑡𝑒) = 𝑁, and
From (13) and (27) we have

𝑡𝑒 = 𝑡0 + 𝑁1𝑠 + 𝑁 − 𝑁1𝑠∗ . (28)

The mean trip cost is identical for all commuters, so𝐸[𝐶(𝑡0)] = 𝐸[𝐶(𝑡𝑒)] = −𝑡0𝛽. Thus, we have

𝑡0 = 𝑁1𝑠 (− 𝛾
𝛽 + 𝛾) +

𝑁 −𝑁1𝑠∗ ( 1
𝑘0 − 1) , (29)

and

𝑡𝑒 = 𝑁1𝑠 ( 𝛽
𝛽 + 𝛾) +

𝑁 −𝑁1𝑠∗ ( 𝑘0𝑘0 − 1) . (30)

Here

𝑘0 = 1 − (1 − 𝜃) (𝛽 + 𝛾) 𝑠
(𝛼 + 𝛾) 𝑠∗ (ln 𝑠∗ − ln 𝜃𝑠) . (31)

Using the boundary conditions and (13), we can obtain

𝑡1 = 𝑁1𝑠 (𝛼 − 𝛽𝛼 − 𝛾
𝛽 + 𝛾) +

𝑁 − 𝑁1𝑠∗ ( 1
𝑘0 − 1) ,

𝑡2 = 𝑁1𝑠 ( 𝛽
𝛽 + 𝛾) +

𝑁 −𝑁1𝑠∗ ( 1
𝑘0 − 1) ,

(32)

𝑡3 = 𝑁1𝑠 [𝛼 − 𝛽𝛼 (1 + 𝜃 ln 𝜃
1 − 𝜃 ) −

𝛾
𝛽 + 𝛾𝑘1]

+ 𝑁 −𝑁1𝑠∗ ( 𝑘1𝑘0 − 1) ,
(33)

𝑡4 = 𝑁1𝑠 [𝛼 + 𝛾𝛼 (1 + ln 𝜃
1 − 𝜃) −

𝛾
𝛽 + 𝛾𝑘2]

+ 𝑁 −𝑁1𝑠∗ ( 𝑘2𝑘0 − 1) ,
(34)

𝑡5 = 𝑁1𝑠 [1 + (1 − 𝜃) 𝛾
(1 − 𝜃) 𝛼 + (𝛼 + 𝛾) ln 𝜃 −

𝛾
𝛽 + 𝛾𝑘3]

+ 𝑁 −𝑁1𝑠∗ ( 𝑘3𝑘0 − 1) ,
(35)
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Figure 1: Equilibrium departures in a bottleneck.

where

𝑘1 = 1 − 𝛼 − 𝛽
𝛼

𝜃 ln 𝜃−1
1 − 𝜃 ,

𝑘2 = 𝛼 + 𝛽 + 𝛾
𝛼 + (𝛼 + 𝛾) ln 𝜃

𝛼 (1 − 𝜃)
and 𝑘3 = 1 + (1 − 𝜃) (𝛽 + 𝛾)

𝛼 (1 − 𝜃) + (𝛼 + 𝛾) ln 𝜃 .

(36)

The equilibrium cumulative departure and arrival curves
are shown in Figure 1. From the figure, one can confirm that at
the beginning, the departure rate is constant and then exceeds
the capacity so that a queue forms; the last commuter who
departs at time point 𝑡1 will be the last one who passes the
bottleneck before capacity drops, and commuters departing
after that one will pass the bottleneck after the capacity drops.
Under the influence of capacity drop, the departure rate after𝑡1 has a decrease but remains constant until 𝑡3. When the
capacity equals 𝜃𝑠, commuters departing at time instant 𝑡3
will arrive at CBD on time.Then the departure rate gradually
decreases until 𝑡4. For commuters departing at time pint 𝑡4,
the capacity which equals 𝑠 will make the commuters arrive
on time. Thereafter, commuters arrive late, the departure rate
will remain constant until 𝑡5 , and the departure rate continues
to decrease until 0 at the last departure interval (𝑡5, 𝑡𝑒].
2.4. Properties of the Watershed Bottleneck Model. To reveal
interesting properties of the proposed bottleneck model and
understand the impact of the stochastic capacity drop, here
we present the following theorems.

Theorem 1. At equilibrium, the expected trip cost is a strictly
monotonically increasing function of the travel demand.

Proof. At equilibrium, the expected trip cost is identical for all
commuters. Since 𝐸[𝐶(𝑡0)] = −𝑡0𝛽 and 𝑡0 = (𝑁1/𝑠)(−𝛾/(𝛽 +𝛾)) + ((𝑁 − 𝑁1)/𝑠∗)(1/(𝑘0 − 1)), we have

𝜕𝐸 [𝐶 (𝑡0)]𝜕𝑁 = −𝛽
𝑠∗ (𝑘0 − 1) . (37)
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Because 0 < 𝜃 < 1, it is easy to conclude 𝑘0 − 1 < 0;
then 𝜕𝐸[𝐶(𝑡0)]/𝜕𝑁 > 0. Therefore, the expected trip cost
is a strictly monotonically increasing function of the travel
demand.

For the departure rate and cumulative departures, the
following two theorems could be presented.

Theorem 2. At equilibrium, the departure rate is a monoton-
ically decreasing function of the departure time 𝑡, 𝑡 ∈ [𝑡0, 𝑡𝑒].
Proof. The theorem coincides with Theorem 2 in Xiao et al.
[33] or Proposition 3 in Lindsey [36].

Theorem 3. The following inequality holds:

𝑠∗ (𝑡 − 𝑡2) ≤ 𝑅 (𝑡) − 𝑁1 ≤ 𝑠 (𝑡 − 𝑡2) , 𝑡 ∈ [𝑡5, 𝑡𝑒] . (38)

Proof. Since the queue may exist during [𝑡5, 𝑡𝑒], we have
𝑅 (𝑡) ≥ 𝑁1 + 𝜃𝑠 (𝑡 − 𝑡2) . (39)

Additionally, the departure rate 𝑟5(𝑡) is nonnegative, so
we have

𝑅 (𝑡) ≥ 𝑁1 + 𝑠∗ (𝑡 − 𝑡2) (40)

and, on the other hand, since the queue may not exist
during [𝑡5, 𝑡𝑒],

𝑅 (𝑡) − 𝑁1 ≤ 𝑠 (𝑡 − 𝑡2) (41)

holds.

For the impact of the stochasticity of capacity drop, the
following theorem presents some analytical results.

Theorem 4. When the value of the parameter 𝜃 is increasing,
the length of peak period will decrease.

Proof. From (30), the length of peak period is

𝑡𝑒 − 𝑡0 = 𝑁1𝑠 + 𝑁 − 𝑁1𝑠∗ . (42)

Since 𝑠∗ is amonotonically increasing function of 𝜃 and 𝑠∗
as denominator, 𝑡𝑒−𝑡0 is amonotonically decreasing function
of 𝜃.

Next, we discuss the effect of the capacity drop on
equilibrium departures.

Theorem5. At equilibrium, the departure rates 𝑟3(𝑡) and 𝑟5(𝑡)
are dependent on the critical queue length 𝑞𝑐.
Proof. Because 𝑟3(𝑡) is the solution to the nonlinear equation
(20) and according to (16), the critical queue length 𝑞𝑐 is
increasing with respect to𝑁1; hence 𝑟3(𝑡) is dependent on the
critical queue length 𝑞𝑐.

Similarly, based on (26), the departure rate 𝑟5(𝑡) is
dependent on the critical queue length 𝑞𝑐.

The departure rates 𝑟1(𝑡), 𝑟2(𝑡), and 𝑟4(𝑡) are constant, and
they are independent of the critical queue length 𝑞𝑐.

Theorem 6. At equilibrium, the expected trip cost is a strictly
monotonically decreasing function of the critical queue length𝑞𝑐.
Proof. Thefirst order derivative of the expected trip cost with
respect to 𝑞𝑐 is

𝜕𝐸 [𝐶 (𝑡0)]𝜕𝑞𝑐 = 𝛼( 𝛾
𝑠 (𝛽 + 𝛾) +

1
𝑠∗ (𝑘0 − 1))

= 𝛼((1 − 𝜃) 𝑠𝛾 − 𝑠 (𝛼 + 𝛾) (ln 𝑠∗ − ln 𝜃𝑠)
𝑠 𝑠 (1 − 𝜃) (𝛽 + 𝛾) ) .

(43)

To prove 𝜕𝐸[𝐶(𝑡0)]/𝜕𝑞𝑐 < 0, we need only to prove

(1 − 𝜃) 𝑠𝛾 − 𝑠 (𝛼 + 𝛾) (ln 𝑠∗ − ln 𝜃𝑠) < 0. (44)

The first order derivative of the left term of (44) with respect
to 𝜃 is

−𝑠𝛾 + 𝑠 (𝛼 + 𝛾) 𝛾
𝜃 (𝛼𝜃 + 𝛾) > −𝑠𝛾 + 𝑠𝛾 > 0, (45)

Then at point 𝜃 = 1, term (1 − 𝜃)𝑠𝛾 − 𝑠(𝛼 + 𝛾)(ln 𝑠∗ −
ln 𝜃𝑠) reaches its maximum, and the maximum is 0, so𝜕𝐸[𝐶(𝑡0)]/𝜕𝑞𝑐 < 0 holds.
Theorem 7. With a fixed number of commuters and assuming
that capacity drop would happen, the length of the morning
peak period is shorter when the critical queue length 𝑞𝑐 is larger,
and vice versa.

Proof. According to (28), the length of the morning peak
period is as follows:

𝑡𝑒 − 𝑡0 = 𝑁1𝑠 + 𝑁 − 𝑁1𝑠∗ = 𝑁1 (1𝑠 −
1
𝑠∗ ) +

𝑁
𝑠∗

= 𝛼𝑞𝑐𝛽 (1𝑠 −
1
𝑠∗ ) +

𝑁
𝑠∗ .

(46)

Since 0 < 𝜃 < 1, then 𝑠∗ = (𝛼𝜃+𝛾)𝑠/(𝛼+𝛾) < (𝛼+𝛾)𝑠/(𝛼+𝛾) = 𝑠 < 𝑠; we have 1/𝑠 − 1/𝑠∗ < 0. Therefore, the length of
peak period 𝑡𝑒 − 𝑡0 is monotonically decreasing with respect
to 𝑞𝑐.

The above three theorems confirm the influence of
capacity drop. Briefly, the length of the morning peak period
is longer and the expected trip cost of all travelers is larger
if the critical queue length 𝑞𝑐 is shorter. In fact, the length of
first stage is as follows:

𝑡2 − 𝑡0 = 𝑁1𝑠 = 𝑞𝑐𝑠
𝛼
𝛽 , (47)

so decreasing the critical queue length 𝑞𝑐 is equivalent to
the capacity drop taking place earlier.

2.5. Possible Equilibrium Traffic Flow Patterns. As shown
in Figure 2, the other two possible departure patterns can
happen, which depend on the critical queue length 𝑞𝑐. The
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Figure 2: Possible equilibrium departure flow patterns.

details of the two possible departure patterns are given as
follows:

Case 1 in Figure 2(a). Three situations (i.e., Situations I,
IV, and V) happen in this case, and the corresponding
departure rates of the three situations are 𝑟1 (𝑡), 𝑟4(𝑡), and 𝑟5(𝑡),
respectively.We canobserve fromFigure 2(a) that commuters
departing before 𝑡11 experience schedule delay early and
always experience queuing; they will pass the bottleneck
before the bottleneck capacity drops. Thereafter, the queue
length increased to 𝑞𝑐 when 𝑡 = 𝑡11, and capacity drop
happens when 𝑡 = 0. Commuters during (𝑡11, 𝑡51) experience
schedule delay late and always experience queuing, and
commuters departing after 𝑡51 experience schedule delay late
and possibly experience queuing.

Case 2 in Figure 2(b). Two situations (i.e., Situations I and IV)
happen in this case, and the corresponding departure rates of
the three situations are 𝛼𝑠/(𝛼 − 𝛽) and 𝛼𝑠/(𝛼 + 𝛾). We can
observe from Figure 2(b) that commuters departing before𝑡󸀠1 experience schedule delay early and always experience
queuing; the queue length initially increases when 𝑡 < 𝑡󸀠1, but
the queue length 𝑄(𝑡󸀠1) < 𝑞𝑐; then the queue length decreases
when 𝑡 > 𝑡󸀠1, so the capacity drop will not be triggered,
and the bottleneck model follows the deterministic model.
Commuters during (𝑡󸀠1, 𝑡𝑒) experience schedule delay late and
always experience queuing.

Meanwhile in case 1, by definition, we have
𝑡2 = 𝑡∗ = 0, (48)

and
𝑁1 = 𝑠 (−𝑡01) . (49)

Since the departure rates in the case have not changed,
according the derivation process of 𝑡01, (29) still holds;
substituting (48) and (49) into (29), we have

𝑁1 = (𝑁/𝑠∗) (1/𝑘0 − 1)(1/𝑠∗ (𝑘0 − 1) − 𝛽/𝑠 (𝛽 + 𝛾)) ,

𝑞𝑐 = 𝑁1 ∗ 𝛽
𝛼.

(50)

If 𝑞𝑐 < 𝑞𝑐, the commuting behaviors could be investigated
analytically in the five situations; if 𝑞𝑐 ≥ 𝑞𝑐, no commuters
experience schedule delay early and pass the bottleneck after
capacity drops.

The critical time points in Case 1 are given as follows:

𝑡01 = 𝑁/𝑠𝑠∗ (1 − 𝑘0)(1/𝑠∗ (𝑘0 − 1) − 𝛽/𝑠 (𝛽 + 𝛾)) , (51)

𝑡𝑒1 = −𝑁𝛽/𝑠𝑠∗ (𝛽 + 𝛾)
(1/𝑠∗ (𝑘0 − 1) − 𝛽/𝑠 (𝛽 + 𝛾)) , (52)

𝑡11 = 𝑁𝛽/𝑠𝑠∗𝛼 (1 − 𝑘0)(1/𝑠∗ (𝑘0 − 1) − 𝛽/𝑠 (𝛽 + 𝛾)) , (53)

𝑡51
= (𝑁𝛽/𝑠𝑠∗𝛼 (1 − 𝑘0)) (𝛼 (1 − 𝜃) / ((1 − 𝜃) 𝛼 + (𝛼 + 𝛾) ln 𝜃))(1/𝑠∗ (𝑘0 − 1) − 𝛽/𝑠 (𝛽 + 𝛾)) . (54)

Case 2 and the basic deterministic bottleneck model have
the same set of formulae for time instants 𝑡0 and 𝑡𝑒. Let 𝑡󸀠1 in
Case 2 be the departure time for which an individual arrives
at work on time. Then

𝑡󸀠1 = 𝑡∗ − 𝛽𝛾𝑁
𝛼 (𝛽 + 𝛾) 𝑠 . (55)

Theorem 8. Themaximum critical queue length 𝑞𝑐 which can
trigger capacity drop is bigger than the longest queue in the
basic deterministic bottleneck model; i.e., 𝑞𝑐 > 𝑞0.
Proof. According to (8) and (50), we have the following.

𝑞𝑐 − 𝑞0 = (𝑁/𝑠∗) (1/ (𝑘0 − 1))(1/𝑠∗ (𝑘0 − 1) − 𝛽/𝑠 (𝛽 + 𝛾)) (𝛽/𝛼) −
𝑁
𝛼
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Figure 3: Expected trip cost and marginal cost functions.

⋅ 𝛽𝛾
𝛽 + 𝛾 =

𝑁𝛽
𝛼 ( 1/𝑠∗ (𝑘0 − 1)(1/𝑠∗ (𝑘0 − 1) − 𝛽/𝑠 (𝛽 + 𝛾))

− 𝛾
𝛽 + 𝛾) = 𝑁𝛽

𝛼 (𝛽 + 𝛾)
⋅ 𝛽
(𝛼 + 𝛾) 𝑠 (ln 𝑠∗ − ln 𝜃𝑠) + 𝛽 (1 − 𝜃) 𝑠 (𝑠 (𝛼 + 𝛾)
⋅ (ln 𝑠∗ − ln 𝜃𝑠) − (1 − 𝜃) 𝑠𝛾)

(56)

According to (44), we have 𝑠(𝛼 + 𝛾)(ln 𝑠∗ − ln 𝜃𝑠) − (1 −𝜃)𝑠𝛾 > 0. Because 0 < 𝜃 < 1, it is easy to conclude ln 𝑠∗ −
ln 𝜃𝑠 > 0. Therefore, the right-hand side of (56) is more than
0, so, 𝑞𝑐 > 𝑞0 holds.

Theorem 8 presents an interesting result. That is, if
commuters believe the capacity drop will happen in the
bottleneck, they will leave home earlier to avoid potential
losses due to capacity drop, even if one may face a queue
longer than the longest queue with the capacity drop. And
in fact the capacity drop with critical queue length 𝑞𝑐 should
never happen.

Next, we study the expected trip cost varying with the
traffic demand 𝑁 over three distinct possible equilibrium
patterns.

According to (50), for a given critical queue length 𝑞𝑐, the
capacity drop is activated over some time interval when𝑁 =𝑁𝑐𝑎𝑠𝑒1, where

𝑁𝑐𝑎𝑠𝑒1 = 𝑞𝑐𝛼𝑠
∗ (𝑘0 − 1)𝛽 ( 1

𝑠∗ (𝑘0 − 1) −
𝛽

𝑠 (𝛽 + 𝛾)) . (57)

The three distinct possible equilibrium patterns, i.e., Case
2, Case 1, and the basic Case depicted in Figure 1, arise from

successively larger values of 𝑁. Thus the demand-varying
expected trip cost can be formulated as a piecewise function.
𝑒𝑐 (𝑁) = 𝐸 [𝐶 (𝑡0)]

=
{{{{{{{{{{{{{{{

𝑁
𝑠

𝛽𝛾
𝛽 + 𝛾, 𝑁 < 𝑁𝑐𝑎𝑠𝑒1

𝛼
𝑠 𝑞𝑐, 𝑁 = 𝑁𝑐𝑎𝑠𝑒1
𝑞𝑐𝛼( 𝛾

𝑠 (𝛽 + 𝛾) +
1

𝑠∗ (𝑘0 − 1)) −
𝛽𝑁

𝑠∗ (𝑘0 − 1) , 𝑁 > 𝑁𝑐𝑎𝑠𝑒1

(58)

It is straightforward to verify that the expected trip cost
function is upper semicontinuous at𝑁𝑐𝑎𝑠𝑒1.

Similar with the work by Fosgerau and Small [20], we
present the marginal cost to understand the relationship
between system performance and congestion.

The marginal cost is the derivative of total cost with
respect to𝑁. Thus, we have the following.
𝑚𝑐 (𝑁)

=
{{{{{{{

2𝑁
𝑠

𝛽𝛾
𝛽 + 𝛾, 𝑁 < 𝑁𝑐𝑎𝑠𝑒1

𝑞𝑐𝛼( 𝛾
𝑠 (𝛽 + 𝛾) +

1
𝑠∗ (𝑘0 − 1)) −

2𝛽𝑁
𝑠∗ (𝑘0 − 1) , 𝑁 ≥ 𝑁𝑐𝑎𝑠𝑒1

(59)

Using the parameters presented in Table 1, the expected
trip cost and marginal cost are given in Figure 3. The figure
shows that the expected trip cost and marginal cost increase
nonlinearly; both are discontinuous at 𝑁𝑐𝑎𝑠𝑒1. Hence, when
heavy congestion exists, the congestion is more sensitive to
travel demand. In addition, the larger capacity uncertainty
(i.e., lessening the value of the parameter 𝜃) will further
increase the sensitivity.

2.6. Comparison with Related Works. As Vickrey [7] devel-
oped a bottleneck model to capture the dynamics of traffic
congestion, at equilibrium state, all commuters experience
the same travel cost no matter when they leave home. Fos-
gerau and Small [20] analyzed an apparently complex system
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Table 1: Base parameters for a simple example.

Parameters Values
𝛼 6.4
𝛽 3.9
𝛾 15.21
𝑠 5000
𝑠 4000
𝜃 0.9
𝑞𝑐 1500

similarly to a bottleneck whose capacity declines when the
queue is long enough. Xiao et al. [6] assumed the bottleneck
capacity follows a uniform distribution and investigated the
equilibrium associated with the stochastic bottleneck. The
stochasticity of capacity variation combined is investigated
in the watershed bottleneck model proposed in this paper,
there are two stages with different capacity. The first stage
follows the schedule delay early part of the deterministic
bottleneck model, but the bottleneck capacity will drop in the
second state into a stochastic amount when the queue at the
bottleneck reaches a certain level.Therefore, travelers passing
through the bottleneck with a high capacity need to leave
home earlier, and under the influence of capacity drop and
stochastic capacity, travelers departing at the same time of a
daymay arrive at their destination either early or late, but the
commuters’ mean trip cost is constant with respect to a time
instant.

From the theoretical aspects, Theorems 1, 2, and 4 in this
paper are coincident with Theorems 1 and 2 and Proposition
3 in Xiao et al. [6]. Different from Xiao et al. [6], the
departure rates in Situations III and V are dependent on the
critical queue length 𝑞𝑐 and the occurrence time of capacity
drop. In addition, the critical queue length 𝑞𝑐 will affect
the equilibrium traffic flow pattern; this paper distinguishes
two cases of equilibria associated with the capacity drop and
derived the boundary conditions for all cases. We found that
shrinking the length of the first stage will result in an increase
in the length of peak period; when the critical queue length
is set as 𝑞𝑐, only Situations I, IV, and V will happen in the
bottleneck, and 𝑞𝑐 > 𝑞0, which means the capacity drop that
should not happen also happened.

The three distinct possible equilibrium patterns could
emerge with successively larger travel demand. Under the
hypercongestion circumstances, the capacity drops and the
expected trip cost and marginal cost increase with travel
demand. The conclusion coincides with the results for a
bottleneck with variable capacity investigated by Fosgerau
and Small [20]. Moreover, it is found that the stochasticity of
capacity variation will lead to the discontinuity of expected
trip cost. In addition, larger capacity stochasticity could
further increase the marginal cost with a higher speed with
the travel demand, which means higher stochasticity could
make the marginal cost more sensitive with travel demand
variation.

From the above theorems, one could expect shorter
congestion time period if the dispersion of capacity drop
is relatively low. Therefore, it is reasonable to consider

that control strategies aimed at traffic flow regularity could
enhance the efficiency of the commuting systems from the
congestion duration time point of view.

3. Time-Varying Toll and Step Toll Schemes

The capacity drop extends the morning peak and leads to
loss of efficiency; hence it is meaningful to find approaches
to alleviate the negative effects of capacity drop. From the
theorems given in the previous section on bottleneck capacity
drop, approaches to shortening the queue length could be
expected to avoid the capacity drop. As the time-varying toll
scheme could completely eliminate queue at bottleneck and
therefore could avoid the capacity drop, in this section we
design a time-varying toll scheme to enhance the efficiency of
bottleneck. In addition, because of the difficulty for using the
time-varying toll scheme in real world commuting system,we
also propose a step toll scheme to achieve higher performance
more practically.

3.1. Time-Varying Toll Scheme. The time-varying toll was
designed as the first-best toll by Arnott et al. [29] in the
general bottleneck model; they showed that the toll scheme
could eliminate queue completely without raising schedule
delay. Similarly, in this paper, we present the toll pricing
which is designed to match the marginal travel time cost in
the no-toll equilibrium:

𝑓 (𝑡) =
{{{{{{{{{{{{{{{

0, 𝑡 < 𝑡0
𝐶 + 𝑡𝛽, 𝑡 ∈ [𝑡0, 0)
𝐶 − 𝑡𝛾, 𝑡 ∈ [0, 𝑡𝑒]
0, 𝑡 > 𝑡𝑒

(60)

where 𝑡0 and 𝑡𝑒 are given by (6) and 𝐶 is given by (7).
Since the queue could be eliminated completely under the

time-varying toll scheme, the total cost of a trip and the peak
period are the same as in the no-toll equilibrium. Noticing
that the capacity drop studied in this paper associated
with the bottleneck will not be triggered under the time-
varying toll scheme, then the equilibrium flow pattern is
the same as the case if capacity drop phenomenon is not
considered.

Although the resulting departure and arrival patterns
are identical for all sizes of travel demand, the performance
for deploying the policy for the different travel demand is
different. Firstly, relative to the congestion equilibrium with
capacity drop, the bottleneck capacity could keep at the
highest level under this toll scheme, which could decrease the
commuters’ mean travel cost and shorten the peak period.
Secondly, all queuing costs are eliminated under the toll
scheme, and the travel cost for each commuter is𝑁𝛽𝛾/2𝑠(𝛽+𝛾). Combining both of the two cost saving parts, the total
saving cost could be formulated as the difference between
expected trip cost (ec) with and without time-varying toll as
follows.
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𝑒𝑐 − 𝑒𝑐 (𝑡𝑖𝑚𝑒 V𝑎𝑟𝑦𝑖𝑛𝑔 𝑡𝑜𝑙𝑙𝑒𝑑) =
{{{{{{{

𝑁
2𝑠

𝛽𝛾
𝛽 + 𝛾, 𝑁 < 𝑁𝑐𝑎𝑠𝑒1

𝑞𝑐𝛼( 𝛾
𝑠 (𝛽 + 𝛾) +

1
𝑠∗ (𝑘0 − 1)) −

𝛽𝑁
𝑠∗ (𝑘0 − 1) −

𝑁
2𝑠

𝛽𝛾
𝛽 + 𝛾, 𝑁 ≥ 𝑁𝑐𝑎𝑠𝑒1

(61)

It is not difficult to verify that the total cost saving
increases with travel demand𝑁. Essentially, under condition𝑁 < 𝑁𝑐𝑎𝑠𝑒1, the commuters’ difference between expected cost
with and without time-varying toll is zero because the cost
saving parts could be covered by the toll.

3.2. Step Toll Scheme. Since the time-varying toll is difficult
to implement and hard to be accepted for government and
commuters, now we try to find a more practical toll scheme,
which is step toll scheme.This type of toll scheme could limit
the queue length in a range to avoid capacity drop with finite
number of steps.

As reviewed above, there are mainly three types of step
toll scheme including ADL model, Laih model, and braking
model [30]. In this paper, we design a step toll scheme based
on Laih model to avoid the capacity drop, and we also try
to find least number of steps that should be used to achieve
optimal efficiency.

Firstly, we introduce some notations about the step toll
scheme used in Laih model. It is assumed that there are 𝑚
levels of toll pricing in the schedule; the tolling period 𝑖 spans
a time interval [𝑡+𝑖 , 𝑡−𝑖 ] with a toll level 𝜌𝑖, 𝑖 = 2, . . . , 𝑚. The
tolling periods are indexed and period 1 is the central period
containing 𝑡∗. For clarity, a diagrammatic sketch for a 4-step
toll scheme is illustrated in Figure 4. As is presented, the
lower-charge interval [𝑡+𝑖+1, 𝑡−𝑖+1] is disconnected during the
higher-charge interval [𝑡+𝑖 , 𝑡−𝑖 ]; optimal toll levels for the Laih
model are

𝜌1 = 𝑚
𝑚 + 1

𝑁
𝑠

𝛽𝛾
𝛽 + 𝛾 ,

𝜌𝑖 = 𝑚 + 1 − 𝑖
𝑚 𝜌1, 𝑖 = 2, . . . , 𝑚.

(62)

The optimal tolling periods for the Laih model are

𝑡+𝑖 = 𝑡0 + 𝜌𝑖𝛽 ,
𝑡−𝑖 = 𝑡𝑒 − 𝜌𝑖𝛾 ,

𝑖 = 1, . . . , 𝑚.
(63)

To have a deeper insight of the equilibrium under the
proposed step toll scheme, we discuss the queue length
evolution process in equilibrium.

Case 1 (before tolling period 1). Under the proposedmultistep
toll scheme, the length of queue is 0 at the moment when the
toll 𝜌𝑖 is applied and also immediately before it is lifted. For
commuters arriving early within [𝑡+𝑖 , 𝑡+𝑖−1], the one arriving
just before 𝑡+𝑖−1 must experience a queuing time (𝜌𝑖−1 − 𝜌𝑖)/𝛼,
which is longer than the queuing time the commuter arriving
after 𝑡+𝑖−1may face and pay the toll 𝜌𝑖−1.Therefore, the longest
queue length during time interval [𝑡+𝑖 , 𝑡+𝑖−1] is (𝜌𝑖−1 − 𝜌𝑖)𝑠/𝛼,
which could be simplified as

𝑞+𝑖 = (𝜌𝑖−1 − 𝜌𝑖) 𝑠𝛼 = 1
𝑚 + 1𝑞0, 𝑖 = 2, . . . , 𝑚 + 1. (64)

where 𝑞+𝑚+1 denotes the longest queue length during time
interval [𝑡0, 𝑡+𝑚] and 𝑞0 is the longest queue under the
equilibrium in the original setting without capacity drop.

Case 2 (during tolling period 1). The departure rate at
equilibrium is 𝛼𝑠/(𝛼−𝛽) for commuters who arrive early and
is 𝛼𝑠/(𝛼 + 𝛾) for commuters who arrive late, which is also
the same as the rates in the no-toll equilibrium. The optimal
multistep toll could be set so that the queue reaches 0 at 𝑡−1 , the
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total number of departures in [𝑡+1 , 𝑡−1 ] is 𝑠(𝑡−1 − 𝑡+1 ) = 𝑁/(𝑚 +1), and the longest queue length in [𝑡+1 , 𝑡−1 ] is, therefore,
𝑞1 = 1

𝑚 + 1𝑞0. (65)

Case 3 (after tolling period 1). As in the Laih model, it
is assumed that commuters who arrive just after 𝑡−𝑖−1 may
wait on a set of secondary lanes without impeding other
commuters who arrive before 𝑡−𝑖−1 and use the main set of
lanes; there are separate queues which will dissipate at 𝑡−𝑖 . To
achieve the equilibrium, the commuter arriving just after 𝑡−𝑖−1
must experience awaiting time that equals (𝜌𝑖−1−𝜌𝑖)/𝛼, which
is equivalent to the case in which the commuter faces a queue
with length (𝜌𝑖−1 − 𝜌𝑖)𝑠/𝛼. However, as illustrated in Figure 5,
the longest queue at the secondary lanes is

𝑞−𝑖 = 1
𝛼 + 𝛾

𝑁
𝑚 + 1

𝛽𝛾
𝛽 + 𝛾 <

1
𝛼

𝑁
𝑚 + 1

𝛽𝛾
𝛽 + 𝛾

= 1
𝑚 + 1𝑞0, 𝑖 = 2, . . . , 𝑚 + 1.

(66)

In summary, the longest queue length under the 𝑚-step
toll scheme should be 𝑞0/(𝑚 + 1). Thus, if we let

𝑚∗ = ⌊𝑞0𝑞𝑐 ⌋ , (67)

where ⌊∙⌋ denotes the ceil operator, then the longest queue
length is

𝑞∗ = 1
𝑚∗ + 1𝑞0 =

1
⌊𝑞0/𝑞𝑐⌋ + 1𝑞0 < 𝑞𝑐. (68)

It is straightforward to conclude that the 𝑚∗-step toll
scheme can guarantee that the commuters face a queue length
less than the critical length 𝑞𝑐 and capacity drop does not
arise; on the other hand, the 𝑚∗-step toll scheme with least
number of steps is convenient for practical application.

Similar to the time-varying toll, the 𝑚∗-step toll could
avoid the capacity drop phenomenon and further shorten the
queue length at bottleneck. The average cost with the𝑚∗-step
toll for each commuter is (1 − 𝑚/2(𝑚 + 1))(𝑁/𝑠)(𝛽𝛾/(𝛽 +𝛾)); then the total cost saving for each commuter could be
formulated as follows.

𝑒𝑐 − 𝑒𝑐 (𝑠𝑡𝑒𝑝 𝑡𝑜𝑙𝑙𝑒𝑑) =
{{{{{{{{{

𝑚
2 (𝑚 + 1)

𝑁
𝑠

𝛽𝛾
𝛽 + 𝛾, 𝑁 < 𝑁𝑐𝑎𝑠𝑒1

𝑞𝑐𝛼( 𝛾
𝑠 (𝛽 + 𝛾) +

1
𝑠∗ (𝑘0 − 1)) −

𝛽𝑁
𝑠∗ (𝑘0 − 1) − (1 −

𝑚
2 (𝑚 + 1))

𝑁
𝑠

𝛽𝛾
𝛽 + 𝛾, 𝑁 ≥ 𝑁𝑐𝑎𝑠𝑒1

(69)

From (69), it could also be concluded that the step toll
asymptotically approaches the efficiency of the first-best toll
as𝑚 󳨀→∞.

4. Numerical Examples

In this section, numerical results are presented for the
bottleneck model without toll, with a time-varying toll, and
with a multistep toll. As in Arnott et al. (1990b) and Xiao
et al. [33], we first use 𝛼 = 6.4$/hr, 𝛽 = 3.9$/hr, and𝛾 = 15.21$/hr and consider the situation with𝑁 = 6000 veh,𝑠 = 5000 veh/hr, 𝑠 = 4000 veh/hr, and 𝜃 = 0.9, To ensure
that all five situations could appear in no-toll equilibrium, the
watershed number 𝑁1 must be smaller than 𝑁1 ≈ 5000 veh;
thus we consider 𝑁1 = 3000 veh, and the corresponding
critical queue length that activates the capacity drop is 𝑞𝑐 =1828 veh.
4.1. No-Toll Equilibrium in the Bottleneck. To obtain the
departure rates in Situation III and V, we solve the differential
equations (20) and (26) using the Euler method with step size
equal to 0.005. Figure 6 shows the cumulative departure flows
in the bottleneck. The rush hour starts at -1.12 and ends at
0.26. Note that 𝑡2 separates the two stages mentioned above,
but it is irrelevant to these watershed times that separate the
five situations, and it is not always before 𝑡3.

The mean total travel cost, mean travel time cost, and the
mean schedule delay and early costs are shown in Figure 7;
at equilibrium, the mean total travel costs of all commuters
are the same and equal to 4.35; the travel time cost reaches
the highest point at time instant around -0.69, but the time
point is neither at the one with the minimum of schedule
delay early/late cost nor at the intersection of the schedule
delay early cost curves and the schedule delay late cost curves.
As expected, the queue exists and the travel time cost is
nonzero at the end of the peak period. Interestingly, although
the capacity of bottleneck will turn from deterministic to
stochastic as it drops, the mean travel time costs are still
linearly increasing or decreasing with departure time.

To understand the impact of stochasticity of the bottle-
neck capacity, Table 2 reports the sensitivity analysis results
for different values of 𝜃 and 𝑞𝑐. We change the 𝜃-value from
0.75 to 1.0 when 𝑞𝑐 = 1828 veh, and 𝑞𝑐 from 500 to 2500
when 𝜃 = 0.9, respectively; it is shown that both the length
of peak period and the mean trip cost increase as the 𝜃-
value decreases, which is consistent withTheorem 4. Because
smaller 𝜃-value will bring more uncertainty, then commuters
will depart earlier to avoid potential losses, which will also
increase the total travel cost of the whole system. As many
works use the concept reliability to capture the stochasticity of
the transportation systems [37], higher level of stochasticity
may lead to more unreliability and make the systems less
efficient consequently. In addition, from the table, we can
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Figure 6: Equilibrium departures in the bottleneck.

also find that when 𝜃 = 1, time points 𝑡3 = 𝑡4 and𝑡5 = 𝑡𝑒. It means that the elimination of the stochasticity
of bottleneck model degrade into the deterministic model.
By contrast, both the length of peak period and the mean
trip cost decrease as the 𝑞𝑐 increases, which is consistent
with Theorem 4. Since increasing the critical queue length
is equivalent to prolonging the period of the first stage of
the bottleneck, commuters departing at the same time could
enjoy higher capacity than the one in the model with shorter
critical queue length.

Figure 8 depicts the departure rates for different 𝜃-
values. It shows that in equilibrium the departure rate is
monotonically decreasing with time, and the departure rate
is around zero at the end of the peak period.Moreover, under
the influence of the capacity drop of bottleneck, the departure
rate suffers “a cliff-like drop” too, and when the 𝜃-value
approaches one, the stochastic bottleneck model follows the
deterministic model.

4.2. Time-Varying Toll in the Bottleneck Model. For equilib-
rium under time-varying toll scheme, the results are given in
Table 3 and are identical to the case without capacity drop as
discussed in Section 2.

4.3. Step Toll in the Bottleneck Model. With the input data of𝛼 = 6.4 $/hr, 𝛽 = 3.9 $/hr, 𝛾 = 15.21$/hr, 𝑁 = 6000 veh,𝑠 = 5000 veh/hr, the longest queue in bottleneckmodelwhen
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Figure 8: Influence of parameter 𝜃 on departure rate.

capacity drop is not considered is 𝑞0 = 2910 veh. To avoid the
capacity drop, the number of steps in the toll schedule needs
to satisfy 𝑚 ≥ ⌊𝑞0/𝑞𝑐⌋ = 1; i.e., a single-step toll can avoid the
capacity drop under this condition.

Despite the practicability which step toll schemes may
have, the loss of efficiency should also be considered. In the
following, we compare the performance of the bottleneck
with single-step toll and the time-varying toll in Table 3.
Specifically, the notations TC, TTC, and SDC denote total
travel cost, total travel time cost, and total schedule delay cost,
respectively.

FromTable 4, one could see that in terms of the total travel
time cost, the single-step toll is not so effective compared to
time-varying toll. Compared with classical Vickrey model,
the single-step toll could eliminate half of the total queuing
time that exists in the no-toll equilibrium when capacity drop
does not happen.

Asmultistep toll scheme can avoid capacity drop with the
least number of steps, Figure 9 shows the least number of
steps of multistep toll scheme for different 𝑞𝑐 values. From the
figure, one can see that 𝑞𝑐 value could affect the least number
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Table 2: Influence of parameter 𝜃 and 𝑞𝑐 on the mean trip cost and the watershed time instants.

𝐸 [𝐶] 𝑡0 𝑡1 𝑡2 𝑡3 𝑡4 𝑡5 𝑡𝑒 𝑡𝑒 − 𝑡0

𝜃

1.00 4.19 -1.07 -0.84 -0.47 -0.65 -0.65 0.28 0.28 1.35
0.95 4.27 -1.09 -0.86 -0.49 -0.67 -0.62 0.25 0.27 1.36
0.90 4.35 -1.12 -0.88 -0.52 -0.69 -0.59 0.23 0.26 1.37
0.85 4.44 -1.14 -0.91 -0.54 -0.71 -0.54 0.20 0.25 1.38
0.80 4.54 -1.16 -0.93 -0.56 -0.73 -0.49 0.18 0.23 1.40
0.75 4.65 -1.19 -0.96 -0.59 -0.76 -0.43 0.15 0.22 1.41

𝑞𝑐
500 4.81 -1.23 -1.17 -1.07 -0.77 -0.56 0.22 0.27 1.50
1000 4.64 -1.19 -1.06 -0.86 -0.74 -0.57 0.22 0.26 1.45
1500 4.47 -1.15 -0.95 -0.65 -0.71 -0.58 0.23 0.26 1.40
2000 4.29 -1.10 -0.84 -0.44 -0.68 -0.59 0.23 0.26 1.36
2500 4.12 -1.06 -0.74 -0.24 -0.65 -0.60 0.24 0.25 1.31

Table 3: Peak period and individual travel cost under two schemes (𝜃 = 0.9).
𝑡0 𝑡𝑒 𝐸 [𝐶] 𝑡𝑒 − 𝑡0

No-toll -1.1162 0.2567 4.3530 1.3729
Time-varying toll -0.9551 0.2449 3.7249 1.2000

Table 4: TC, TTC, and SDC with time-varying toll and single-step toll.

TC ($) TTC ($) SDC ($) The Longest queue (veh)
Time-varying toll 22350 0 11175 0
Single-step toll 22350 5587.5 11175 1455
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Figure 9: The least number of steps for different 𝑞𝑐 values.

of steps. Furthermore, as the 𝑞𝑐 value increases, the decrement
speed of the least number of steps becomes slow.

5. Conclusions

In this paper, we analyze the impacts of capacity drop on
commuting systems using a bottleneck model. Following the
empirical findings by Lorenz and Elefteriadou [4] and Brilon
et al. [5], it is assumed that the bottleneck capacity could drop
stochastically because of the irregularity of traffic flow. Under
the assumption that the commuters’ departure time choice
follows UE principle in terms of mean travel cost, analytical

solutions have been derived in five situations. Several proper-
ties of the proposed bottleneckmodelwith stochastic capacity
drop are discussed, including monotonicity of travel cost
and departure rate, and the relationship between dispersion
degree and length of peak period. In addition, the other two
possible departure patterns associated with the capacity drop
are given.

Furthermore, two types of toll pricing schemes are also
proposed to avoid the capacity drop, including time-varying
toll scheme and step toll scheme. Specifically, the time-
varying toll could eliminate the queue completely.The result-
ing equilibrium flowpattern is the same as that when capacity
drop could not happen. To seek more practical approaches
to enhance the efficiency of the commuting system, step toll
pricing scheme is proposed and discussed. For any given
critical queue length, multistep toll with least number of steps
could be designed to achieve the optimal efficiency of the
bottleneck under the step toll schemes.

In addition, numerical results are also presented to
demonstrate the impact of capacity drop. It is shown that the
capacity drop phenomenon would increase the mean travel
cost, and it is helpful to reduce the critical queue length to
enhance the efficiency of the system by using approaches for
regulating the traffic flow.

Appendix

A. Notations

𝑁: Number of commuters
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𝑠: Bottleneck capacity
𝑡𝑓𝑟𝑒𝑒: Free flow travel time
𝑡∗: Preferred arrival time
𝑡0: Earliest departure time
𝑡𝑡: Departure time at which an individual arrives at
the CBD on time 𝑡∗
𝑡𝑒: Ending time of the rush hour
𝑟(∙): Departure rate
𝑅(∙): Cumulative departures
𝑄(𝑡): Queue length at time 𝑡
𝑇(𝑡): Queuing time at time 𝑡
𝐶(𝑡): Total cost at time 𝑡
𝐶: Travel cost at equilibrium
𝛼: Values of travel time
𝛽: Values of schedule delay early
𝛾: Values of schedule delay late
𝑞0: Longest queue length at equilibrium
𝑞𝑐: Critical point of queue length for capacity drop
𝑠: Full capacity of the bottleneck
𝑠: Upper bound of the dropped capacity
𝜆: Parameter to characterizing the capacity drop, as𝑠 = 𝜆𝑠
𝜃: Parameter to characterizing the lower bound of
dropped capacity
𝑡1: The time point at which the queue length reaches𝑞𝑐
𝑡2: The time point at which the capacity drops
𝑡3: The time point at which separate commuters
“always arrive early” and “can arrive early or late”
𝑡4: The time point at which separate commuters
“arrive early or late” and “always arrive late and incur
a queuing delay”
𝑡5: The time point at which separate commuters
“always arrive late and incur a queuing delay” and
“always arrive late and, depending on capacity, may
or may not incur a queuing delay”
𝑡01: Earliest departure time in case 1
𝑡11: The time point in case 1 at which the queue length
reaches 𝑞𝑐𝑡51: The time point in case 1 at which separate
commuters “always arrive late and incur a queuing
delay” and “always arrive late and, depending on
capacity, may or may not incur a queuing delay”
𝑡𝑒1: Ending time of the rush hour in case 1
𝑡󸀠1: The departure time in case 2 for which an individ-
ual arrives at work on time
𝑁1: Cumulative number of departures by time 𝑡1
𝑓(𝑡): Toll pricing matches the marginal cost

𝑚: Numbers of toll levels
𝑡+𝑖 : Start time point of the tolling period at level 𝑖
𝑡−𝑖 : End time point of the tolling period at level 𝑖
𝜌𝑖: Toll at level 𝑖
𝑚∗: Least number of step toll levels
𝑞∗: Longest queue length with least number of step
toll levels.
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