
Research Article
PULSim: User-Based Adaptable Simulation Tool for
Railway Planning and Operations

Yong Cui ,1 Ullrich Martin ,1 and Jiajian Liang 2

1 Institut fuer Eisenbahn- und Verkehrswesen der Universitaet Stuttgart, Pfaffenwaldring 7, 70569 Stuttgart, Germany
2China Academy of Railway Sciences, Daliushu Road 2, Haidian District, Beijing 100081, China

Correspondence should be addressed to Yong Cui; yong.cui@ievvwi.uni-stuttgart.de

Received 13 October 2017; Revised 12 January 2018; Accepted 5 February 2018; Published 22 April 2018

Academic Editor: Lingyun Meng

Copyright © 2018 Yong Cui et al.This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Simulation methods are widely used in the field of railway planning and operations. Currently, several commercial software tools
are available that not only provide functionality for railway simulation but also enable further evaluation and optimisation of the
network for scheduling, dispatching, and capacity research. However, the various tools are all lacking with respect to the standards
they utilise as well as their published interfaces. For an end-user, the basic mechanism and the assumptions built into a simulation
tool are unknown, which means that the true potential of these software tools is limited. One of the most critical issues is the lack
of the ability of users to define a sophisticated workflow, integrated in several rounds of simulation with adjustable parameters and
settings. This paper develops and describes a user-based, customisable platform. As the preconditions of the platform, the design
aspects for modelling the components of a railway system and building the workflow of railway simulation are elaborated in detail.
Based on the model and the workflow, an integrated simulation platform with open interfaces is developed. Users and researchers
gain the ability to rapidly develop their own algorithms, supported by the tailored simulation process in a flexible manner. The
productivity of using simulation tools for further evaluation and optimisation will be significantly improved through the user-
adaptable open interfaces.

1. Introduction

In order to improve the efficiency and effectiveness of railway
planning and operations, the relationships between the crit-
ical components of railway systems and the behaviour of the
studied system must be investigated. A specific investigated
problem usually presents many possible alternatives for
design. In order to enable evaluation and comparison among
the various possible alternatives, their respective effects and
outputs will be predicted through experiments. However, it
is not practical to examine a design alternative directly based
upon an actual system, because either such a system is not
existing or experimentation upon it is prohibitively expen-
sive.

For a simple railway network with a limited number of
train runs, an analytical approach is practical in order to
evaluate the output of a design alternative and even to find
an optimal solution in a closed-form expression. For a large-
scale network with a high density of train movements,

the computational complexity of such an analytical model
becomes considerably high. In this case, the simulation
approach is often applied.

Several simulation tools are available for railway plan-
ning and operations purposes. The application of personal
computer based simulation approaches for railway systems
began in the 1990s, at which time most tools were originally
developed as laboratory versions. Along with continuous
development and applications, these tools have been widely
accepted for research and commercial purposes. Meanwhile,
a large number of data and models of railway systems have
become available. In this paper, the existing simulation tools
and applications will be presented in Section 2.

However, the potential of simulation approaches has not
yet been sufficiently utilised. The limits of the current sim-
ulation tools, especially their lack of capability for extension
and customisation, are discussed in Section 2. To overcome
these limits, a user-based, adaptable simulation tool called
PULSim has been developed in recent years. In Section 3,

Hindawi
Journal of Advanced Transportation
Volume 2018, Article ID 7284815, 11 pages
https://doi.org/10.1155/2018/7284815

http://orcid.org/0000-0003-0330-1637
http://orcid.org/0000-0001-6627-0204
http://orcid.org/0000-0002-7757-4016
https://doi.org/10.1155/2018/7284815

2 Journal of Advanced Transportation

the model, the workflow, and the main features of PULSim
are introduced.The software’s capability to provide users and
third-party applications with an open interface for dynamic
interaction and flexible extension is presented in Section 4,
along with several use cases and scenarios. Finally, the
perspective of further development is discussed in Section 6.

2. Applications of Railway Simulation and the
Limitations of Existing Simulation Tools

For railway planning and operations, simulation approaches
have been widely used by researchers, railway infrastructure
companies, and railway operating companies. In German-
speaking countries and Europe in general, the simulation
software RailSys (developed by Rail Management Consul-
tants GmbH, [1]), OpenTrack (from OpenTrack Railway
Technology Ltd., [2]), and LUKS (by VIA Consulting & De-
velopmentGmbH, [3]) are very practical for railway planning
and operations.

The potential areas of application of simulation tools
include technical feasibility studies, determination of con-
flicts, evaluation of the quality of a timetable, capacity
research, and dispatching. Simulation tools can be used, for
example, to build a test environment for the evaluation of the
technical feasibility and the benefits of using the European
Train Control System (ETCS) [4]. To investigate potential
conflicts, a timetable simulation can be carried out, and the
resulting waiting time can be determined as well [5, 6]. In cer-
tain situations, various optimisation functions can be added
to a timetable simulation in order to reduce hindrances and
waiting time of train runs. As a deterministic process in
principle, the possible influence and variances during railway
operations are not considered in a timetable simulation. If
the robustness and stability of a timetable are matters of
concern, a so-called operational simulation can be carried
out, in which stochastic influences will be introduced. The
robustness and stability of the investigated timetable can
be derived according to statistical indicators, which are cal-
culated based on the outputs of several rounds of simula-
tion with different randomly generated influences [7, 8]. In
the area of capacity research, system performance can be
evaluated through simulating randomly generated timetables
for a certain operating program, a process which can, in
addition, identify bottlenecks and determine the quality of
an operating program [9]. The approach of capacity research
is implemented in the software tool PULEIV, developed by
the IEV (Institut für Eisenbahn- und Verkehrswesen der
Universitaet Stuttgart) for flexible analysis, evaluations and
reports [10]. Simulation approaches can not only be used to
identify conflicts, but also to generate a feasible dispatching
timetable to resolve conflicts [11, 12], as well as to study the
relationship between systems performance and dispatching
measurements [13, 14].

At the beginning of development of a certain simulation
tool, its further possible applications are often unknown
by its developers. Therefore, it is difficult to foresee and
to provide specifically desired functions and outputs, even
if the simulation tool would theoretically able to fulfil
said requirements. Hence, an open interface that enables

customisation for user-based, adaptable simulation processes
is a vital factor for the success of a simulation tool. Unfortu-
nately, currently available simulation tools for railway plan-
ning and operations lack, in large part, transparent standards
and open interfaces. Some internal workflows, such as the
applied dispatching algorithm and the implementation of
signalling systems, are not sufficiently documented for users
and third party individuals and, as such, it is difficult for the
end-user to understand the internal assumptions and sim-
plifications made within these tools. The outputs of various
simulation tools are insufficient and not standardised with
insufficient documentation, which prevents users from car-
rying out further evaluation and optimisation. In addition, it
is almost impossible to organise user-defined workflows and
to integrate new functions into the existing simulation tools,
which leads to constraints in their usability and applicability.
The high efforts required for further evaluation decrease the
efficiency and effectiveness of these simulation approaches. In
addition, somewell-known issues, such as deadlock problems
in synchronous simulations, have not been addressed suf-
ficiently. Once deadlocks take place, the simulation process
must be cancelled or be solved manually, which greatly limits
the usability of the simulation tool as well.

A user-based, adaptable simulation tool, PULSim, has
been developed in recent years. In [15, 16], the tool was known
as DoSim. The name has been changed to PULSim in order
to conform to the naming convention of software tools in the
IEV. PULSim provides a platform for railway simulation with
a unifiedmodel, a transparent workflow, and open interfaces.
Critically, PULSim provides the possibility for third-party
applications to be flexibly integrated into the software. The
functionality of PULSim can be extended thanks to its open
interface, and the software has been tested with several
railway networks in Germany. At the moment, the software
is available for download from GitHub (https://github.com/
herrcui/RailView/wiki), with the instructions for installing
and using it provided with demo data. The user manual and
the open interfaces are planned to be comprehensively doc-
umented and published in further development. The Con-
tinuous Integration (CI) for open access and updates will be
implemented as well. In this paper, the model, the workflow,
and the Graphical User Interface (GUI) are presented. Three
special features of PULSim are outlined in particular:

(i) Dispatching mechanism
(ii) Deadlock avoidance
(iii) Open interfaces for user-based adaptable simulation.

An introduction of the model, the workflow, and the GUI of
PULSim is provided in Section 3.1. In Sections 3.2 and 3.3, the
design of the dispatchingmechanismanddeadlock avoidance
are explained. The open interface for user-based adaptable
simulation and its applications are introduced in Sections 4
and 5.

3. Introduction of Simulation Tool PULSim

3.1. The Model, the Workflow, and the GUI of PULSim.
In PULSim, the infrastructure, rolling stocks, and railway

https://github.com/herrcui/RailView/wiki
https://github.com/herrcui/RailView/wiki

Journal of Advanced Transportation 3

Ve
lo

ci
ty

 (k
m

/h
)

A B C
S1 S2 S3 S4 Sn

One section for scheduling events and calculation of running dynamics
Event

Figure 1: An example of event scheduling and calculation of running dynamics.

operations are modelled as components of railway systems.
Attributes are used to describe the static and the dynamic
information. The static information refers to the invariant
values of the railway systems, for example, the length of
a track, the configuration of a train, and the scheduled
departure time of a train run. The dynamic information will
vary along the duration of the simulation. For example, the
aspect of a signal, the running dynamics of a train, and
the occupancy situation of a track are updated continuously
during the simulation. The model applied in PULSim pro-
vides a basis for multiscale simulation on the microscopic,
mesoscopic, and macroscopic levels [17].

An internal class model of railway systems comes built-
in with PULSim. This model is the further development and
extension from the IEV core model [18]. The publication of
the detailed design of this model, and its workflow, is planned
for 2018. It will also consist of the details of the open interfaces
for interacting with the model along with the software.
Particularly, the basic structures and the path components
based on the infrastructure element model are developed in
the core model, so that the macroscopic, mesoscopic, and the
microscopic models are fully integrated (the infrastructure
element model is a microscopic model to model the basic
infrastructure elements including tracks, turnouts, crossings,
and single and double slips. A basic structure is defined
as a basic occupancy element in which all parts should be
equally occupied, regardless of the design of the operating
program. A path component is a directed edge inside a
block section used for train runs, which can be released
separately as a directed occupancy element. Basic structures
and path components are modelled for themesoscopic level).
This model can be used for various purposes, including
capacity research, bottleneck analysis, and train dispatching
[19]. It is independent of a concrete data format, which
allows users to concentrate on the workflow and the business
logic of railway planning and operations without requiring
knowledge relating to a certain data format. Additional
parsers are required to convert different data formats into the
class model. At the moment, the data format used by RailSys

[1] is supported by PULSim. The development of the parser
to support railML [20] is in progress.

The workflow for an event-driven simulation is applied
in PULSim. An event is defined as an occurrence that may
change the attributes of the system at a certain point in time.
During the simulation process, a series of time points for
the occurrence of an event are identified and continuously
updated. The system evolves over the series of time points.
During a simulation process, the attributes (dynamic infor-
mation) of the system (e.g., the position of a train) may
be changed continuously. In PULSim, only that change of
attribute, which causes interactions between two or more
components or triggers another event, is considered a discrete
event. Otherwise, the changes of the running dynamics, for
example, the continuous variation of train velocity, will be
handled at each discrete time point by the train itself, without
requiring an explicit event. Hence, the event-driven process
in PULSim can be organised efficiently with a limited number
of events.

During the simulation process, a running time calcula-
tion is carried out for each individual train run. The change
of position and velocity of each train will not be treated as an
event. Instead, the events will be scheduledwith respect to the
signalling system. An example of organising an event-driven
simulation is shown in Figure 1. After a train has received a
Movement Authority (MA) at point A, the complete speed
profile will be calculated until the End of Authority (EOA)
at main signal S2. The corresponding events from point A to
EOA S2 are scheduled. At point B, a newMA ending at main
signal S3 is granted.The train movement from B to S3 will be
calculated. Meanwhile, the events already scheduled between
B and S2 will be discarded, since the running dynamics from
B to S2 will be updated with the newly calculated speed
profile. The events from B to S3 will be rescheduled and
updated again.

Once a request of infrastructure resources is sent, the cur-
rent operational situation will be observed by the dispatching
module. The requested infrastructure resources can only be
granted at a conflict-free and deadlock-free situation.

4 Journal of Advanced Transportation

Navigator

Train without hindrances
Hindered by occupancy conflict

Status barControl button Hindered by deadlocks (unsafe)

Figure 2: Screenshot of “Network/Train Run” view in PULSim.

A simple First Come First Served (FCFS) algorithm is
provided by PULSim as a default module to solve occupancy
conflicts. It can be replaced with a customised dispatching
module provided by the user (see Section 3.2). A standard
solution for deadlock avoidance, combinedwith the approach
of searching for feasible resources to reduce false-positive
situations, is provided in PULSim as well (see Section 3.3).

The design of the GUI in PULSim aims to provide
the user with an insightful view during the process of
railway simulation and to support efficient user interaction.
Therefore, the concepts of visualisation and interaction are
considered critical areas of focus. Various user interfaces are
organised in different views. The movement of train runs in
the railway network (the view of “Network/Train Run”), the
information behind the scenes (“Analyse and Evaluation”),
and the interaction between the simulation tool and users
(“Open Interface”) are provided.

In Figure 2, the screenshot of the “Network/Train Run”
view is presented. This is a standard function provided by
almost all railway simulation tools. A control panel can start,
pause, or stop a simulation. Trains are marked in green, red,
or yellow, which represent a train without hindrances, with
hindrances due to occupancy conflicts, or with hindrances
due to deadlocks, respectively. In order to enable a quick
switch among different views, a floating navigator is set on
top of the screen.

The function of tracing the occurrence of events is
provided by PULSim.Within this view, users can observe the
entire workflow of the simulation within the diagram of the
blocking time stairway and running dynamics for each train
run (Figure 3). Other evaluation views for the illustration of
occupancy and hindrance of the running simulation are also
provided. In addition, an “Open Interface” view to achieve
a user-based, adaptable simulation is built into PULSim (see
Section 4).

3.2. Dispatching Mechanism of PULSIM. With conventional
dispatching approaches [21], the dispatching algorithm is
activated once one or more potential conflicts are identified.
However, it might be too late to start train dispatching at the

Figure 3: Screenshot of tracing events and train run.

time of the occurrence of conflicts. Furthermore, it is neces-
sary to check for potential conflicts within the conventional
dispatching systems periodically. The timing for identifica-
tion of conflicts is critical. On one hand, some conflicts may
be overlooked using a long time interval between two rounds
of checks; on the other hand, overly frequent checks might
lead to performance issues.

In PULSim, a new conflict identification/resolution
mechanism is implemented. In contrast with other conven-
tional dispatching approaches, the activation of a designed
algorithm for train dispatching is not initiated at the time of
facing conflicts, but at an earlier time, at which a train has
the chance to occupy the requested infrastructure resources.
For example, if the action to occupy the requested resources
would produce significant hindrances on other trains, the
train will give up the chance of occupancy. Therefore, poten-
tial conflicts from potential hindrances can be prevented
in advance. In addition, this mechanism suits the work-
flow of event-driven simulation. A periodical examination
of conflicts in a fixed time interval is not necessary; any
potential conflicts can be identified and resolved at the time
a Movement Authority is able to be granted.

In order to better illustrate this phenomenon, Figure 4
provides an example of giving up the opportunity of occu-
pancy [15]. Within it, Train T1 is requesting occupancy of the
route from signals S1 to S3. This route is not currently occu-
pied by other trains (conflict-free), and its occupancy will not
cause deadlocks (deadlock-free). Deadlocks may, indeed, be
regarded as a type of conflict in train dispatching. In order to
differentiate between occupancy conflicts and deadlocks, the
term conflict-free and deadlock-free are used in this paper.
There is a train T0 occupying the route from S3 to S5. Its
occupancy time along this route is assumed to be very high
due to a technical failure of train T0. If train T1 occupies the
route fromS1 to S3, trains T2 andT3, whichwill take the route
from S2 to S4, must wait until the technical failure of T0 has
been resolved. It would be more efficient if train T1 were to
give up the chance of occupancy and wait before signal S2.
Therefore, potential hindrances and conflicts can be reduced
or avoided in advance.

The workflow of the dispatching mechanism is shown
in Figure 5. As usual, a request will be pended in case of
conflicts or deadlocks. A special feature for train dispatching

Journal of Advanced Transportation 5

T1

T2T3
S1

S2

T0
S3 S5

S4
Failure

Figure 4: Example of giving up of occupancy [15].

Initial

Request for next
infrastructure resources

Is it conflict-free and deadlock-free to occupy
the requested infrastructure resources?

No

No

No

Yes

Yes

Yes

Do dispatching

Apply alternative
routes?

Pend the
request

Give up the chance
of occupancy?

Occupy the
infrastructure
resources

Apply
alternative
routes

Figure 5: The dispatching mechanism in PULSim.

is designed when a request for infrastructure resources is
conflict-free and deadlock-free. In this case, the train still has
to evaluate the operational situation before it occupies the
requested infrastructure resources. The decision of whether
or not to give up the chance of occupancy depends on
the applied dispatching algorithm, which is illustrated as
the activity “do dispatching” (see Figure 5). On the basis
of a FCFS strategy, the train will always take the chance
to occupy the requested infrastructure resources. The FCFS
strategy is implemented in PULSim by default, and if a
dispatching strategy other than FCFS is applied, the train
may give up the chance of occupancy according to certain
dispatching objectives (e.g., to reduce total hindrances). The
request will be then pended for the next round of dispatching.
In addition, the dispatching mechanism also supports the
implementation of applying alternative routes.

Although FCFS is currently the only strategy imple-
mented in PULSim, users can customise and integrate their
own dispatching algorithms into the dispatching process.
This is achieved through the open interface and a standard
workflow (see Section 4). Inside the workflow, users can
define their own implementation to calculate the predicted
effects for all possible dispatching actions (to occupy, to give
up, or to choose an alternative route).The actionwith the best
effects (e.g., with the minimal waiting time) will be chosen as
the dispatching decision.

An example of using user-customised dispatching algo-
rithms is published on GitHub (https://github.com/herrcui/
RailView/blob/master/PULSimReleases/scripts/railapp.dis-
patching.services.ExternalDispatchingService.py). Within
this example, the delays experienced by conflicting trains

are retrieved from the simulation model by comparing the
current departure/arrival times with the scheduled depar-
ture/arrival times.The example utilises a simple form of logic
in order to illustrate the usage of the open interface. That
is, the train experiencing the longest delay will receive the
highest priority.

A Java interface is defined for users to provide customised
train dispatching. Through the interface, a list of resulting
states according to the generated possible actions will be
given from PULSim as input. A state is a multidimensional
list, which represents the resulting occupancy situation of
an action for each train. The predicted occupancy situation
includes the lists of the occupied infrastructure resources,
as well as the start and end of the blocking time for each
infrastructure resource. It should be noted that a state is not
conflict-free. Users can implement their own algorithm to
identify and to resolve conflicts. As a basis, all trains predict
their further occupancy situation as if other trains do not
exist. The predicted occupancy situation will then be shifted
or changed according to a certain action. For the action to
occupy the requested infrastructure resources by a train T,
the blocking time of the infrastructure resources for other
trains should be shifted until the infrastructure resources
are released the train T. Similarly, if a train T gives up the
chance of occupancy towait for another train T󸀠, the blocking
time of other related trains should also be shifted, until
the infrastructure resources are released by T󸀠. Hence, the
current operational situation and the action to be taken are
represented in the form of the resulting states.

Users can implement the method “determineAction” to
determine a dispatching action. The method returns an

https://github.com/herrcui/RailView/blob/master/PULSimReleases/scripts/railapp.dispatching.services.ExternalDispatchingService.py
https://github.com/herrcui/RailView/blob/master/PULSimReleases/scripts/railapp.dispatching.services.ExternalDispatchingService.py
https://github.com/herrcui/RailView/blob/master/PULSimReleases/scripts/railapp.dispatching.services.ExternalDispatchingService.py

6 Journal of Advanced Transportation

Current
requested
resources

Current
requested
resources

Current
requested
resources

Applying
the Banker’s
algorithm

Deadlock Deadlock

Unsafe
Unsafe

Safe

Safe

(deadlock avoidance)
Safe

(deadlock avoidance)

Applying
Feasible

Resources

Feasible
resources

(deadlock prevention)

Figure 6: Searching feasible resources to reduce false-positive situations with the Banker’s algorithm [15].

index of the given actions, which indicates the chosen
action according to a specific dispatching objective (e.g.,
with minimal waiting time). At the moment, an algorithm
based on reinforcement learning for train dispatching is being
developed. A preliminary investigation to evaluate the effects
for a certain state and a given action is described in Section 5.

3.3. Deadlock Avoidance Based on Banker’s Algorithm. Dead-
lock problems [22] arewell-known in the area of synchronous
simulation. Some approaches of deadlock avoidance are
proposed in [23–26]. PULSim applies a method based on
the Banker’s algorithm [27], which was initially used for the
purposes of railway simulation in [11]. Once a train requests
to occupy one or several infrastructure resources, a deadlock-
free test will be carried out based on the Banker’s algorithm.
The workflow of this deadlock-free test is straightforward;
if all the required infrastructure resources along the path
of a train are available (in other words, not occupied by
other trains), the train will be identified as a passed train.
All the resources occupied by the passed train will be
then returned to the system. The deadlock-free test will
be executed iteratively for every train, until all trains have
been identified as passed trains. In this case, a deadlock-free
situation can be always guaranteed, since the feasibility of
resource allocation has been proven.

If there are some trains remaining, whose required
infrastructure resources are not available, the situation will
be regarded as being in an unsafe state. It should be noted
that an unsafe state does not necessarily result in a deadlock
situation. A false-positive situation is defined in [11] as a
deadlock-free test result that is read as positive but is actually
negative. False-positive situations should be reduced to avoid
unnecessary waiting time due to the overly strict rules in
deadlock-free tests.

A method to search for feasible resources for reducing
false-positive situations with the Banker’s algorithm is imple-
mented in PULSim (Figure 6). Feasible resources are defined
as one or more connected and not yet granted infrastructure
resources in the further path of a train. If the train occupies
the feasible resources, a circular wait situation should not
take place. The circular wait situation is one of the necessary
conditions for deadlocks [25].Once the circularwait situation
is eliminated, the feasible resources can be granted to the

train without deadlocks, even if the train has not passed the
deadlock-free test through the Banker’s algorithm. In [15], the
approaches to identify feasible tracks as well as the effects of
reducing false-positive situations are presented in detail.

In this method, a request for infrastructure resources will
be at first analysed in accordancewith the Banker’s algorithm.
Upon passing this test, the requested infrastructure resources
can be safely granted to the requesting train. In case a request
fails to pass the test with the Banker’s algorithm, the method
of searching for feasible resources will commence. If feasible
resources are indeed available, the train’s request may still be
approved.

The aforementioned combination of the Banker’s algo-
rithm and the method of searching for feasible resources
can ensure a high applicability and efficiency for deadlock
avoidance. This method has been proven in PULSIM for
several practical applications and case studies. For example, a
real railway network in Germany is used for the case studies,
consisting of 129 stations, including a large terminus station,
and 2,388 train runs. Even with randomly shuffled departure
times of train runs, deadlocks can be successfully avoided.
Another extreme example is also available on GitHub. For a
highly congested network with a high potential of deadlocks,
the software PULSim is still able to simulate all the train runs
without deadlocks.

4. User-Based Adaptable Simulation

4.1. Open Interface of Railway Simulation Tools. A simulation
tool serves as the basis for further investigations into railway
planning and operations, in which the output of a simulation
can be used as the input of other applications. Evaluation of
the simulation output is the most popular use case of these
applications. Therefore, the interaction between a simulation
tool and other applications for evaluation of simulation
output should be enabled.

The interactions for evaluation can be categorised as
either offline or online evaluations. In the case of offline
evaluation, the data generated by the simulation tool will be
initially stored and will be analysed afterwards. This process
is suitable for a middle-term or long-term evaluation with a
very large amount of data.The saved log files can be reused in
the future for other purposes of evaluation without requiring

Journal of Advanced Transportation 7

an additional run of simulation. With an online evaluation,
the evaluation between a simulation tool and third-party
applications can be achieved efficiently through exchanging
real-time data. A built-in package in the simulation tool or
an open interface supporting direct data access is required for
online evaluation. Sometimes, the output of the third-party
applications will be fed back to the simulation tool. In order
to exchange information for further evaluation and analysis,
open interfaces between a simulation tool and other third-
party applications are provided in PULSim.

When conducting offline evaluation, it is very common
to define the format and the schematic structure of the saved
log files as an open interface. Popular formats of the log files
include Extensible Markup Language (XML) files, Comma
Separated Values (CSV), files or plain text files. As an open
interface, the format and the schematic definition of the
output files should be provided and published in advance.
At the time that a simulation tool is developed, its possible
usage cases may still be unknown. Therefore, it is a challenge
to ensure that the tool provides open interfaces for further
possible applications at an early stage. Currently, an open and
standardised interface for the output of railway simulation
is not available, with each simulation tool possessing its
own definition for the output of simulation. Attempts to
unify various outputs generated from different simulation
tools require considerable effort. Certain simulation tools
output log files without a published interface, which can
be used in internal testing for various special purposes. It
is not recommended to use these data due to the lack of
documentation and support, although the information may
be inferred from the contents of the files.

For online evaluation, the output of simulation can be
retrieved and analysed directly through an open interface.
The process of railway planning and operations can be
evaluated and optimised by tuning the parameters of the
simulation tools in real time. The open interface can be
provided either from an open Application Programming
Interface (API) or in the form of a scripting language.

An open API enables a dynamic data exchange via
directly accessing the simulation tool from other third-party
applications. In the simulation tool OpenTrack, the open API
is provided in the form of web services [28], from which a
third-party application can send messages as commands to
OpenTrack and retrieve the output as status messages back
to the application. The commands and the status messages
are transferred in a machine readable format, according to
the Simple Object Access Protocol (SOAP) over Hypertext
Transfer Protocol (HTTP). An example use case of using the
OpenTrack API for train dispatching is presented in [28].
New dispatching algorithms and prototypes are tested in a
simulation environment, in which the realistic situation is
replaced by the simulation tool OpenTrack. The commands
and status messages in the same format used in reality are
exchanged between the dispatching software andOpenTrack.
Hence, the newly developed dispatching algorithms can be
evaluated in an inexpensive experimental environment.

The system performance and efforts required for the
development and maintenance of an open API solution
should be considered.The amount of data in railway planning

and operations is usually very large. Taking the example of
using a web service with SOAP, the enveloped and transferred
messages via XML data will cause a high overhead for
communication, which will impact the performance of the
system. Large software vendors and tools are often required
for the implementation and development of web service solu-
tions, which makes such a situation infeasible for researchers
and institutes who are interested in rapid development with
lightweight solutions. In addition, the complexity of learning
the web service-based system and the induced efforts for
debugging, testing, and maintaining the entire system are
considerable.

Another option for an open interface is to use scripting
language, which can combine the advantages of both offline
evaluation and online evaluation. A scripting language is a
programming language in the form of a series of imperative
commands, which are executed in a certain run-time envi-
ronment. These commands are interpreted during the run-
time without needing to be compiled. Hence, sophisticated
processes can be customised by users in an adaptable way.
With scripting languages, the output of simulation can be
either exported as log files for offline evaluation, or be
accessed online via the provided interfaces (commands).
Upon the demands and the required system performance, a
user can flexibly decide the mode of interaction. A scripting
language hides the internal structure and the implementation
details of a complex system, which enables the user to
concentrate on the core functions and the integration of the
functions. The complexity of learning the system and the
efforts for development, deployment, and maintenance are
therefore significantly reduced.

Using open interfaceswith scripting language can provide
additional advantages in balancing the requirements of trans-
parency and the complexity in development. It is important
for users to understand the mechanism and the assumptions
of a simulation tool. The open-source method would be
an option to promote transparency and open collaboration.
However, an excessive amount of implementation details of
the complete source code will increase the complexity in
comprehension. It should be noted that most users of railway
simulation tools are interested principally in the domain
logics related to railway planning and operations. Therefore,
open interfaces will provide a moderate level of details for
researchers to enable rapid development and integration of
their own algorithm. As a precondition, the mechanism of
the simulation tool should be published, so that users can
customise their own logic based on the utilised mechanism.
Hence, the internal assumptions and mechanism can be
naturally understood by users according to the well-specified
open interfaces. For example, the internal mechanism of
dispatching systems should be specified in advance (see
Section 3.2). As long as a customised dispatching algorithm
is implemented, the mechanism of train dispatching is
understood by users as well. In the future, the mechanism
of running time calculations and signalling systems will be
published in the form of open interfaces to users as well.

Other simulation tools also provide some open access
to their internals. For example, the parameters used in
RailSys andOpenTrack can be viewed and set through system

8 Journal of Advanced Transportation

Py4J

GatewayServer JavaGateway

PULSim Entry
point

Java Python

Python program

Figure 7: Py2J: accessing Java objects and services from Python.

Py4J

Java Python

Python script
PULSim

(Java)
Listener

(entry point)

ClientServer

Figure 8: J2Py: accessing Python script from Java.

configuration. Users can also interact with OpenTrack
through web services. PULSim provides additional support
for customised simulation workflow and integration of their
own algorithm. In Sections 4.2 and 5, the implementation
of an open interface with scripting language and the appli-
cations of using the open interface provided by PULSim are
presented.

4.2. The PULSim Implementation. In PULSim, a user-based
adaptable interface for the simulation, evaluation, and opti-
misation for different applications is built using scripting
language. Scripting languages can be categorised as either
domain-specific languages or general-purpose languages. A
domain-specific language is specifically designed for a certain
application and platform, and an external parser is needed
to interpret its commands. Additional efforts are required for
users to learn the language. With general-purpose languages,
and plenty of support, libraries and documentation are
available, which usually allows users to obtain sufficient
knowledge of general-purpose languages with lower learning
efforts. In addition, most general-purpose languages are
easily extended for certain special purposes.

Popular general-purpose scripting languages include
Python, Perl, and Ruby. Among others, Python has been
widely used for rapid and efficient development with plenty
of extensions. Particularly, most implementations of machine
learning in recent years have been written in Python.
Therefore, Python is utilised as the scripting language in
PULSim, and the open-source framework Py4J [29] is inte-
grated within the software. Py4J enables Java programs to
access Python code and also provides interfaces for Python

programs to access Java objects. It works in a client-server
mode for both directions.

In order to access Java objects from a Python program,
the class GatewayServer should be at first initiated and started
in Java code, taking an entry class as an entry point. The
Python program will call the methods provided by the entry
point through JavaGateway. Thereby, the Python program
can access Java objects and services provided by PULSim.
The mechanism of accessing Java objects and services from
Python (Py2J) is shown in Figure 7.

To enable the Java code running in PULSim to access a
Python script, a ClientServer class is initialised to start the
Python script, which implements a listener interface defined
in PULSim. Hence, the listener will be used as an entry point
for Java code to access the functions provided by Python.The
mechanism of accessing Python script from Java (J2Py) is
shown in Figure 8.

The examples and the applications of using this bidirec-
tional communication for user-based, adaptable simulation
are described in Section 5.

5. Applications of User-Based
Adaptable Simulation

A very common requirement for user-based, adaptable simu-
lation is the ability to organise and customise several rounds
of simulation as well as the desired output of simulation.
For this purpose, PULSim provides an open interface for
timetable simulation for Python. A simulator for timetable
simulation can be obtained through the interface, in which
users can designate the investigated data of infrastructure,

Journal of Advanced Transportation 9

Figure 9: User interface for accessing Java services from Python in
PULSim (Py2J).

rolling stocks, and the timetable in the Python environment.
Other configurations, for example, the time period of the
simulation, can also be optionally specified for the simulator.
With a few lines of code, a timetable simulation can be carried
out in the Py2J mode (Figure 7).

The results of the simulation can be further analysed.
For example, the occupancy and hindrance values during the
simulation are matters of interest for purposes of capacity
research. In Figure 9, the user interface for a timetable
simulation with the outputs of occupancy and hindrance is
shown.The editor for the Python program, the Py4J libraries,
and the output window of the running Python program are
integrated into PULSim as well.

In addition to being saved in log files for an offline evalu-
ation, the output can also be directly retrieved by the Python
program for further calculation and online evaluation. This
is especially useful in order to customise a complicated
workflow with many rounds of simulation. For example, to
derive the recommended area of traffic flow within the scope
of capacity research (source [10]) automatically, it is necessary
to seamlessly integrate the software for capacity research with
the simulation tools. Otherwise users would have to shift
between different software tools manually to simulate several
densified timetable variants.The advantage of the user-based,
adaptable simulation can also be gained in the process of
calibration of the parameters for operational simulation. In
[16], an automatic process for calibration is implemented by
the authors using PULSim. It is possible in this case, since the
developers for the calibration system are also the developers
of the simulation tool. However, if developers from a third
party want to implement the calibration process, it is difficult
if they do not have access and understanding of the source
code of the simulation tools. A Py2J interface can provide
the developer with the opportunity to adapt the disturbance
parameters through many rounds of operational simulation
iteratively, without the additional effort of interactingwith the
simulation tool.

Another advantage of user-based, adaptable simulation
is the enhancement of the capabilities of the simulation tool
through third-party software and algorithms. Today,machine

Figure 10: Prediction of total waiting time with TensorFlow (J2Py).

learning plays an increasingly important role in learning and
making predictions about data. Nowadays, many software
packages for machine learning are implemented in Python,
for example, Scikit-Learn [30], Theano [31], and Google
TensorFlow [32]. PULSim is able to access these available
Python-based software tools and to perform a learning pro-
cess through J2Py communication (Figure 8). The desired
functions formachine learning can be initially defined in a lis-
tener in PULSim. A Python script will implement the listener
interface in order to carry out the learning process. PULSim
will provide the training data for the Python-based software
tools, which enables the learning process to be carried out
either offline or online.

The authors are carrying out a case study, which integrates
Google TensorFlow with PULSim to predict the total waiting
time of a dispatching action. The case study is taken from a
real railway network in Germany with 71 stations. There are
in total 1350 trains running in the entire investigated day.The
simulated timetable is not conflict-free; a dispatching action
has to be taken for a certain state with occupancy conflicts.
For a given state, there are several possible dispatching actions
to be taken.The task of the dispatching system is to decide on
a certain action as the dispatching decision, which results in
the minimum possible waiting time. Therefore, the resulting
total waiting time for a given state and a certain action has to
be predicted exactly.This can be achieved through supervised
learning. The object of learning is to minimise the Mean
Squared Error (MSE) between the real waiting time and the
predicted waiting time. During the simulation process, the
states and the actions to be taken are recorded in the form of
resulting states by PULSim as input (see Section 3.2), and the
resulting total waiting time are learned as output. The total
waiting time is learned and predicted by the Python script
within the framework of TensorFlow.

With the case study, 12,000 resulting states and the total
waiting time are fed into a Convolutional Neural Network
(CNN) as training data, and 1,000 resulting states and the
total waiting time are used as validation data. The CNN is at
first trained with the training data and then validated with
the validation data. The average value of the real waiting
time for the training and validation data is 44.63 minutes.
In Figure 10, the results are shown in Google TensorBoard,
which is a tool provided for the visualisation of the learning
process. The training curve represents the change of MSE
for the training data along iterations, and the validation
curve represents the MSE for the validation data along

10 Journal of Advanced Transportation

iterations. After ten iterations of training on batch data, an
epoch of validation is carried out. Hence, the iterations for
training are ten times the iterations of validation. At the
moment, the mean error of the predicted total waiting time
from the training data is around 1 to 2 minutes, and the
mean error of the predicted total waiting time from the
validation data is around 8 minutes. The accuracy should be
further improved through tuning the hyperparameter of the
model.

6. Conclusion and Perspectives

In this paper, a user-based, adaptable simulation tool PULSim
for railway planning and operations is presented. Supported
by its open interface, users and researchers can rapidly
develop their own algorithms to be integrated with PULSim.
The productivity of using simulation tools for evaluation
and optimisation of railway planning and operations will be
improved significantly.

More interfaces will be provided in the further develop-
ments of PULSim. Special focus will be placed on the inte-
gration of varied signalling systems, dispatching algorithms,
and the flexible configuration of operational simulation. The
further developed interfaces will be built according to the
demands and the feedback from users of the software. For
example, in order to find an optimised setting of block sec-
tions, an interface to allow flexible placement of signals can be
provided.Theposition of signals can be adjusted dynamically,
so that the effects for different variants can be evaluated and
optimised by the user-defined optimisation algorithm. In fur-
ther development, additional dispatching actions, including
the extension or shortening of train paths, along with the
reordering or cancellation of train runs, should be integrated
into PULSim for both railway simulation and real operations
control.

Having the large amount of data generated by PULSim,
various machine learning algorithms can be further applied
to reveal and predict the systembehaviour of complex railway
systems. PULSim enables a simple integration of the simula-
tion platform and popular machine learning software. Fur-
thermore, it is a growing trend to carry out machine learning
combined with the technology of big data. Since PULSim is
developed in Java, it can be naturally integrated with Apache
Hadoop [33], which is a Java-based software framework
for managing and processing large amounts of data. The
efficiency and the effectiveness of railway planning and oper-
ations will be continuously improved through integrating
cutting-edge technologies with PULSim.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

During thework,Mr. Kai Chenmade his contribution toGUI
programming. The text and the English have been proofread
and improved by Mr. Syed Murtaza Hasan.

References

[1] RMCON, “RailSys 7 User Manual. Preparations for Multiple
Simulation,” 2010.

[2] D. Hürlimann, Open Track Betriebssimulation von Eisenbahn-
netzen, Zürich, Switzerland, 1.6 edition, 2010.

[3] VIA Con, LUKS Handbuch Version 2.1, 2011.
[4] B. Kogel, N. Nießen, and T. Büker, Influence of the European

Train Control Sys-tem (ETCS) on the Capacity of Nodes, Inter-
national Union of Railways, Paris, France, 2010.

[5] M. Luethi, D. Huerlimann, and A. Nash, “Understanding the
timetable planning process as a closed control loop,” in Pro-
ceedings of the 1st International Seminar on Railway Operations
Modelling and Analysis, I. A. Hansen, F. M. Dekking, R. M.
P. Goverde, B. Heidergott, and L. E. Meester, Eds., Delft,
Netherlands, 2005.

[6] A. Radtke, EDV-Verfahren zur Modellierung des Eisenbahnbe-
triebs, vol. 64, Eurailpress Tetzlaff-Hestra (Wissenschaftliche
Arbeiten für den Schienenver-kehr, 64), Hamburg, Germany,
2005.

[7] A. Radtke and J. Bendfeldt, “Handling of railway operation
problems with RailSys,” in Proceedings of the 5thWorld Congress
on Rail Research, Cologne, Germany, 2001.

[8] F. Corman, A. D’Ariano, and I. A. Hansen, “Evaluating dis-
turbance robustness of railway schedules,” Journal of Intelligent
Transportation Systems: Technology, Planning, and Operations,
vol. 18, no. 1, pp. 106–120, 2014.

[9] U. Martin, Y. Cui, F. Hantsch, Z. Chu, and X. Li, “Knotenka-
pazität - Bewertungs-verfahren für das Mikroskopische Leis-
tungsverhalten und die Engpasserkennung im Spurgeführten
Verkehr (RePlan),” in VWI Neues verkehrswissenschaftliches
Journal – Band 8, Books on Demand GmbH Norderstedt,
Norderstedt, Deutschland, 2014.

[10] U. Martin, C. Schmidt, and Z. Chu, “PULEIV Anwendungsleit-
faden zur PULEIV-Version 2.1,” Anleitung zur Ermittlung des
Leistungsverhaltens von Eisenbahninfra-struktur mithilfe von
Simulationsprogrammen, 2011.

[11] Y. Cui, “Simulation-Based Hybrid Model for a Partially-Auto-
matic Dispatching of Railway Operation,” Norderstedt: Books
onDemandGmbH (Neues verkehrswissenschaftliches Journal, 4),
2010.

[12] A. D’Ariano, M. Pranzo, and I. A. Hansen, “Conflict resolution
and train speed coordination for solving real-time timetable
perturbations,” IEEE Transactions on Intelligent Transportation
Systems, vol. 8, no. 2, pp. 208–222, 2007.

[13] I. A. Hansen and J. Pachl, Railway Timetabling & Operations:
Analysis - Modelling - Optimisation - Simulation - Performance
Evaluation, DWMedia Group, Hamburg, Germany, 2014.

[14] J. Liang, Metaheuristic-based Dispatching Optimization Inte-
grated in Multi-scale Simulation Model of Railway Operation,
Institut für Eisenbahn- und Verkehrswesen der Universität
Stuttgart, Stuttgart, Germany, 2017.

[15] Y. Cui, U. Martin, and J. Liang, “Searching feasible resources to
reduce false-positive situations for resolving deadlocks with
the Banker’s algorithm in railway simulation,” Journal of Rail
Transport Planning and Management, vol. 7, no. 1-2, pp. 50–61,
2017.

[16] Y. Cui, U. Martin, and W. Zhao, “Calibration of disturbance
parameters in railway operational simulation based on rein-
forcement learning,” Journal of Rail Transport Planning &
Management, vol. 6, no. 1, pp. 1–12, 2016.

Journal of Advanced Transportation 11

[17] Y. Cui and U. Martin, “Multi-scale Simulation in Railway Plan-
ning and Operation,” PROMET - Traffic & Transportation, vol.
23, no. 6, 2011.

[18] M. Wörner and Y. Cui, Begriffslexikon - Datenmodell, Institut
für Eisenbahn- und Verkehrswesen der Universität Stuttgart,
Stuttgart, Germany, 2008.

[19] U. Martin and J. Liang, “The Influence of Dispatching on the
Relationship between Capacity and Operation Quality of Rail-
way Systems (DFG Research Project MA 2326/15-1),” in VWI
Neues verkehrswissenschaftliches Journal – Band 20, Books on
Demand GmbH, Norderstedt, Deutschland, 2017.

[20] A. Nash, D. Huerlimann, J. Schütte, and V. P. Krauss, “RailML
A Standard Data Interface for Railroad Applications,” WIT
Transactions on The Built Environment, vol. 74, 2004.

[21] W. Fang, S. Yang, and X. Yao, “A Survey on ProblemModels and
Solution Approaches to Rescheduling in Railway Networks,”
IEEE Transactions on Intelligent Transportation Systems, vol. 16,
no. 6, pp. 2997–3016, 2015.

[22] E. G. Coffman, M. Elphick, and A. Shoshani, “System Dead-
locks,” ACM Computing Surveys, vol. 3, no. 2, pp. 67–78, 1971.

[23] G. Mills and P. Pudney, “The Effects of Deadlock Avoidance on
Rail Network Capacity and Performance,” in Proceedings of the
2003Mathematics-in-Industry StudyGroup, Brisbane,Australia,
2003.

[24] E. R. Petersen and A. J. Taylor, “Line block prevention in rail
line dispatch and simulation models,” Information Systems and
Operations Research, vol. 21, no. 1, pp. 46–51, 1983.

[25] J. Pachl, “Deadlock Avoidance in Railroad Operations Simula-
tions,” in Proceedings of the 90th Annual Meeting of Transporta-
tion Research Board, Washington, DC, USA, 2011.

[26] R. Mittermayr, J. Blieberger, and A. Schöbel, “Kronecker
algebra-based deadlock analysis for railway systems,” Promet -
Traffic - Traffico, vol. 24, no. 5, pp. 359–369, 2012.

[27] E. W. Dijkstra, “The mathematics behind the Banker’s algo-
rithm,” in Selected Writings on Computing: A Personal Perspec-
tive, pp. 308–312, Springer-Verlag, New York, NY, USA, 1982.

[28] B. Seybold andD.Huerlimann, “OpenTrack - Simulation of rail-
way systems. Presentation of the OpenTrack API. OpenTrack,”
http://www.opentrack.ch/opentrack/downloads/OpenTrack
.API.pdf 2016.

[29] Py4J, “Py4J – A Bridge between Python and Java,” https://www
.py4j.org/, 2007.

[30] F. Pedregosa, G. Varoquaux, and A. Gramfort, “Scikit-learn:
machine learning in Python,” Journal of Machine Learning
Research, vol. 12, pp. 2825–2830, 2011.

[31] J. Bergstra, O. Breuleux, P. Lamblin et al., “Theano: Deep learn-
ing on gpus with python,” inNIPS 2011, Big LearningWorkshop,
vol. 3, Granada, Spain, 2011.

[32] M. Abadi, A. Agarwal, P. Barham et al., “Tensorflow: Large-
scale machine learning on heterogeneous distributed systems,”
https://arxiv.org/abs/1603.04467, 2016.

[33] J. Nandimath, E. Banerjee, A. Patil, P. Kakade, and S. Vaidya,
“Big data analysis using Apache Hadoop,” in Proceedings of the
2013 IEEE 14th International Conference on Information Reuse
and Integration, IEEE IRI 2013, pp. 700–703, San Francisco, CA,
USA, August 2013.

http://www.opentrack.ch/opentrack/downloads/OpenTrack.API.pdf
http://www.opentrack.ch/opentrack/downloads/OpenTrack.API.pdf
https://www.py4j.org/
https://www.py4j.org/
https://arxiv.org/abs/1603.04467

International Journal of

Aerospace
Engineering
Hindawi
www.hindawi.com Volume 2018

Robotics
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

 Active and Passive
Electronic Components

VLSI Design

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Shock and Vibration

Hindawi
www.hindawi.com Volume 2018

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi
www.hindawi.com

Volume 2018

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific
World Journal

Volume 2018

Control Science
and Engineering

Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

 Journal ofEngineering
Volume 2018

Sensors
Journal of

Hindawi
www.hindawi.com Volume 2018

International Journal of

Rotating
Machinery

Hindawi
www.hindawi.com Volume 2018

Modelling &
Simulation
in Engineering
Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Navigation and
 Observation

International Journal of

Hindawi

www.hindawi.com Volume 2018

 Advances in

Multimedia

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/ijae/
https://www.hindawi.com/journals/jr/
https://www.hindawi.com/journals/apec/
https://www.hindawi.com/journals/vlsi/
https://www.hindawi.com/journals/sv/
https://www.hindawi.com/journals/ace/
https://www.hindawi.com/journals/aav/
https://www.hindawi.com/journals/jece/
https://www.hindawi.com/journals/aoe/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/jcse/
https://www.hindawi.com/journals/je/
https://www.hindawi.com/journals/js/
https://www.hindawi.com/journals/ijrm/
https://www.hindawi.com/journals/mse/
https://www.hindawi.com/journals/ijce/
https://www.hindawi.com/journals/ijap/
https://www.hindawi.com/journals/ijno/
https://www.hindawi.com/journals/am/
https://www.hindawi.com/
https://www.hindawi.com/

