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We propose a novel remote heart rate (HR) estimation method using facial images based on video analytics. Most of previous
methods have been demonstrated inwell-controlled indoor environments. In contrast, this paper proposes a practical video analytic
framework under actual driving conditions by extracting key HR inducing features. In particular, when cars are driven, effective
and stable HR estimation becomes challenging as there are many dynamic elements, such as rapid illumination changes, vibrations,
and ambient lighting that can exist in the vehicle interior. To overcome those disturbances of HR estimation, the driver face region
is first detected and cropped to the region of interest (RoI). Second, the components related to HR are extracted frommixed noisy
components using ensemble empirical mode decomposition (EEMD). Finally, the extracted signal is analyzed in frequency domain
and smoothed with temporal filtering. To verify our approach, the proposed method is compared with recent prominent methods
employing a public HCI dataset. It has been demonstrated that the proposed approach delivers superior performance under driving
conditions using Bland-Altman plots.

1. Introduction

Traffic accidents occur due to acute driver heart rate (HR) dis-
ease. These accidents can develop into dangerous situations
that threaten not only the driver but also the lives of others. If
the driver’s HR is known in advance, it is possible to prevent
the accident by judicially controlling the vehicle. Methods,
such aswired contact sensors, have beenproposed tomeasure
the driver’s HR. However, due to the invasive nature of the
in situ sensors, such methods have not gained much interest.
For less intrusive and accurate measurements of driver HR,
this research proposes a remote estimation method based on
a video analytic framework focused on capturing key HR
inducing features.

Nowadays, some systems monitor a driver’s condition
by placing a camera on the vehicle frame or the windshield
of the vehicle. Furthermore, since image based remote HR
estimation has been shown possible [1], a series of related
studies have been subsequently proposed.

Poh et al. demonstrated the HR estimation technique
by separating the observed signal into independent source
signals [2, 3]. A bandpass filter is applied to each of the signal
and the result was analyzed in frequency domain. Zhao et
al. proposed an estimation technique for respiration as well
as HR using a delay matrix [4]. Another study estimated
the pulse rate by amplifying the frequency of the signal
usingminutemovements of the face associatedwith vibration
associated with human pulses [5]. However, these methods
can be successful only if the subject is in a static state and any
changes in the environment are limited.

In [6], Li et al. proposed a new approach which made
slightly different assumptions compared to the previous stud-
ies. By assuming that light change to the face is the same as
the light change to the background area, HR can be estimated
through the difference between these two areas. Wang et
al. demonstrated a pruning architecture using CHROM that
removes pixels with values that do not correspond to skin
tones and pixels distorted by motion [7, 8]. Also based on
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CHROM, Tulyakov et al. improved on previous methods
by cropping and warping certain facial regions using a self-
adaptive matrix [9]. Similar to the assumption of [6], Xu et
al. analyzed the background region as the noise reference to
the facial region and then applied blind source separation
approach. Even though the result was shownquite impressive,
the variation of the result was large, making stable detection
difficult in a dynamic environment [10]. Cheng et al. also
applied an approach to Poh et al. by extracting unique pulse
signals through ensemble empirical mode decomposition
(EEMD) for the input signal analyzed by joint blind source
separation (JBSS) based on the same assumptions [11, 12].
On the other hand, Huan et al. analyzed the input signal
using JBSS in a similarway but exploited correlations between
them by dividing the face region into several subregions
and applied it to a learning based method [13]. However, in
the test data, obstruction caused by wires and tapes in skin
region was suggested as a challenging point and there was
no significant innovation since the authors did not consider
rapidly changing environment. In [14], a deep learning based
remote photoplethysmography (rPPG) approach that detects
skin regions using convolutional neural network (CNN) was
proposed. Although it was a unique method of applying deep
learning, there is a disadvantage that data must be learned in
a new environment every time in terms of machine learning.

These previous studies have steadily improved the tech-
nology, but most estimate pulses from a distance in an indoor
environment. In each of these papers, experiments have
used well-controlled data and been conducted in controlled
environments. Only few studies have addressed extreme illu-
mination changes and vibrations associated with automotive
environments. Although, Kuo et al. proposed an HR esti-
mation framework under driving conditions, the approach
was conventional and suffered very poor performance [15]. In
this paper, the proposed method shows stable HR estimation
results in indoors aswell as in awide range of outdoormoving
environments.

The structure of this paper is as follows. The framework
of the proposed method is shown in detail in Section 2.
In Section 3, our proposed algorithm is applied to a public
human-computer-interface (HCI) dataset to verify its validity
and the results compared with those of previous studies. The
experimental results of our driving dataset are presented by a
Bland-Altman plot. Finally, the conclusions are discussed in
Section 3.

2. Proposed Method

In this section, the proposed method can be divided into
three stages: (1) region of interest (RoI) selection, (2) pulse
signal extraction, and (3) power spectral density (PSD)
analysis and temporal filtering. The overall flow is illustrated
in Figure 1.

2.1. Region of Interest Selection. Kumar et al. demonstrated
that the color changes due to pulsation are different for each
region of the face, and as a result, the forehead and cheek
region represent the strongest PPG signal [16]. Based on

this result, the cheek region is selected as the RoI. While
the forehead region depends on hair style, the cheek region
provides robust features insensitive to facial expressions. In
order to extract the RoI, unnecessary background regions
are excluded based on the assumption that the driver’s facial
position is somewhat fixed. A total of 66 facial landmark
points are extracted for the remaining facial regions by using
discriminative response map fitting (DRMF) to extract both
cheek regions as illustrated in Figure 2 [17].

However, in the case of varying driving situations, not
only the rotation and movement of the face but also face
detection per video frame slows the processing speed,making
the camera-based method ineffective for real-time HR esti-
mation. To mitigate such problems, face tracking is applied
using a kernelized correlated filter (KCF) [18]. Therefore,
facial landmark point extraction is performed only at the first
frame, after which the detected cheek region is tracked.

Nevertheless, the tracked RoI may still be incomplete. If
the face is rotated or shaken, a background region may be
included within the tracked RoI. Furthermore, as the vehicle
runs, numerous illumination changes can cause skin region
pixel values saturated such that the HR signal disappears. To
prevent this, a skin detection scheme is employed using the
hue channel in the HSV color model as in

𝑝𝑖𝑗 = {
{
{
𝑠𝑘𝑖𝑛, ℎ < 𝜏
𝑛𝑜𝑛 − 𝑠𝑘𝑖𝑛, ℎ ≥ 𝜏, (1)

where 𝑝𝑖𝑗 denotes the pixel value in 𝑖th row and 𝑗th column
and ℎ denotes the hue channel value. In our method, we set
the threshold of 90 for the hue channel as 𝜏 and selected pixels
less than 90 as skin regions. The value was determined to be
the best choice for the set of facial image data collected and
used in this study. According to the work by [19], a value of
threshold was used for the similar purpose.

2.2. Feature Extraction and Source Separation. Assuming that
the ambient light signal has properties such as white noise
of uniform magnitude in all frequency bands, the observed
signal S from the RoI can be described as

𝑆 = 𝑆𝐻𝑅 + 𝑆𝑚𝑜𝑡𝑖𝑜𝑛 + 𝑆𝑖𝑙𝑙𝑢𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 + 𝑆𝑎𝑚𝑏𝑖𝑒𝑛𝑡, (2)

where 𝑆𝑚𝑜𝑡𝑖𝑜𝑛, 𝑆𝑖𝑙𝑙𝑢𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛, and 𝑆𝑎𝑚𝑏𝑖𝑒𝑛𝑡 are motion-induced
changes, illumination changes, and changes in the ambient
light signal, respectively. As shown in Figure 3, the frequency
of illumination changes and vibration in the automotive
driving environment appears in a fairly low frequency band
compared with HR. Thus, the noise signals caused by illu-
mination change and vibration can be significantly excluded
using bandpass filtering. However, given the assumption that
ambient light is white noise, it cannot be easily filtered out by
the bandpass filter, and so may interfere with the HR signal.
Therefore, it is necessary to extract the prominent feature
signal of the HR and to separate it into each source signal
from a feature that contains various components.

Based on the property that the signal of PPG is different
for each channel, the RoverG feature that maximizes HR can
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Figure 1: Conceptual overview of the proposed heart rate estimation method under driving environment.
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Figure 2: Extraction of facial landmark points. (a) The unique number of each of the 66 facial landmark points and the 6 selected points (4
contour points on the cheek and 2 points on the nose). (b) Detected result of the driving dataset. (c) Result of skin detection.

be obtained by taking a ratio from an RGB signal from the
RoI as

𝑅𝑜V𝑒𝑟𝐺 = 𝐺𝑛
𝑅𝑛 , (3)

where 𝐺𝑛 and 𝑅𝑛 are the normalized green and red signals
[20, 21].

However, RoverG is an unstable HR feature because it
takes a fraction of the purely observed signal without any
filtering. Therefore, this feature also includes variations due
to illumination change and motion and should be separated
into pure HR signals.

Before extracting the HR signal, a detrending method
was applied to remove the nonstationary component with the
smoothing parameter 𝜆 = 10 [22]. Then ensemble empirical
mode decomposition (EEMD) is employed to separate the
HR source signal from a number of noisy components in
RoverG [11]. EEMD is a noise assisted data analysis method
that separates the Intrinsic Mode Function (IMF) from the
data. The IMF extraction process, called sift, is accomplished
by averaging the trials with the signal plus white noise, which
is newly generated at every trial. If enough trials are carried
out andmorewhite noise is added, the components thatmake
up the observed signal can be separated. In [15], which IMF
is close to HR is determined through EEMD, and the fourth
IMF is extracted as the HR component.
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Figure 3: Frequency (in Hz) analysis of (a) illumination change and (b) vibration under automotive driving conditions.

However, since the automotive driving environment is
very dynamic, several estimated HRs are derived as candi-
dates for one estimation window for a stable HR estimation.
Thus, the RoverG feature signal conversion and EEMD
IMF extraction is iteratively performed in a window. The
𝑘th window, denoted as 𝐼𝑘, is divided into 𝑚 periods by
accumulating one second intervals from the first starting
point to 𝑝1, 𝑝2, . . . , 𝑝𝑚(= 𝐼𝑘). Then, the HR for each period
is estimated, and 𝑚 estimated HRs are derived from the
window. However, since all of the 𝑚 estimated HRs have dif-
ferent inconsistent results, Mahalanobis distance is employed
to exclude the result that is the furthest from most of the 𝑚
results as

𝑑 (𝐻𝑅𝑐𝑎𝑛𝑑, 𝜇𝑐𝑎𝑛𝑑)
= [(𝐻𝑅𝑐𝑎𝑛𝑑 − 𝜇𝑐𝑎𝑛𝑑)𝑇 𝑆−1 (𝐻𝑅𝑐𝑎𝑛𝑑 − 𝜇𝑐𝑎𝑛𝑑)]1/2 ,

(4)

where 𝐻𝑅𝑐𝑎𝑛𝑑 and 𝜇𝑐𝑎𝑛𝑑 are 𝑚 × 1 vectors consisting of
𝑚 estimated candidate results and the mean of 𝐻𝑅𝑐𝑎𝑛𝑑,
respectively, and 𝑆−1 is the covariance matrix. The candidate
estimated HRs left after this exclusion are averaged and
adopted as a result at the 𝑘 second.
2.3. Power Spectral Density Analysis and Temporal Filtering.
In order to calculate the final HR perminute, PSD is analyzed
using the Welch method [23]. The cutoff frequency is set
as (0.7, 4) HZ, corresponding to (42, 240) beats/min (bpm)
and 128-order hamming window is used as the bandpass
filter. However, the ambient light of the external noise in the
cutoff frequency band may still cause intermittent peaking of
the estimate. In order to cope with this problem, temporal
filtering is applied to smooth the estimate trend as

𝐻𝑅𝑡 = 1
𝑠
𝑡−1

∑
𝑟=𝑡−𝑠

𝐻𝑅𝑟 𝑤ℎ𝑒𝑛 𝐻𝑅𝑡 − 𝐻𝑅𝑡−1 ≥ 𝛼, (5)

where 𝐻𝑅𝑡 denotes the HR at time 𝑡. Threshold 𝛼 denotes
the allowable maximum value for the difference between
the previous HR estimate and the current estimate. The
parameter s determines the number of frames used for
smoothing. These parameters (𝛼 and s) were chosen for
optimal performance from the data set collected based
on the assumption that HR does not change substantially
in one second. The overall algorithm flow is shown in
Algorithm 1.

3. Experiments and Results

In this section, we compare the performance of the proposed
features against those presented in recent studies with the
public HCI dataset.

3.1. Comparative Analysis of Features. As mentioned in Sec-
tion 2, the green channel has the strongest PPG signal [6, 20].
On the other hand, Haan et al. proposed XminY with RoverG
and proved that XminY has the highest performance in terms
of experimental results [7]. Thus, it is necessary to determine
which of the various feature signals produces the best HR
signal.

For stable analysis, the MAHNOB-HCI dataset [24], a
public indoor environment dataset, was used to compare the
results of the five features, and the results are shown inTable 1.

Several commonly used performance indicators are
employed to compare the performance of each feature [6].𝑀𝑒
and 𝑆𝐷𝑒 are the mean and standard deviation, respectively,
of the difference between ground truth and the obtained
estimate,𝐻𝑅𝑑𝑖𝑓 = 𝐻𝑅𝑒𝑠𝑡 −𝐻𝑅𝑔𝑡. Additionally, the root mean
square error (RMSE) and 𝑀𝑒𝑅𝑎𝑡𝑒, which is the percentage of
∑𝑁𝑛=1(|𝐻𝑅𝑑𝑖𝑓(𝑛)|/𝐻𝑅𝑔𝑡(𝑛)), are employed to measure preci-
sion. Finally, r is the Pearson correlation coefficient that can
evaluate the correlation between the two values.
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Input: Image frame consist of RGB channel
Output: Estimated heart rate
Initialization: A video sequence within sliding window
For 𝑓𝑟𝑎𝑚𝑒 = 1, 2, . . ., N

If 𝑓𝑟𝑎𝑚𝑒 == 1
Detect a facial landmark points
Select 6 facial landmark points for cheek and nose

End
Track the detected region of interest
Detect skin region within region of interest
If mod(𝑓𝑟𝑎𝑚𝑒, frame rate) == 0 and 𝑓𝑟𝑎𝑚𝑒 >= length of window

For 𝑝𝑒𝑟𝑖𝑜𝑑 = 𝑝1, 𝑝2, . . . , 𝑝𝑚
RGB normalization
Calculate feature signal, 𝑅𝑜V𝑒𝑟𝐺 = 𝐺𝑛/𝑅𝑛
Extract intrinsic mode function for heart rate from 𝑅𝑜V𝑒𝑟𝐺
Power spectral density analysis

End
Filtering outlier using Mahalanobis distance, 𝑑(𝐻𝑅𝑒𝑠𝑡, 𝜇𝑒𝑠𝑡)
Obtain heart rate result𝐻𝑅𝑡𝑎V𝑟 by averaging remaining estimates
If 𝐻𝑅𝑡𝑎V𝑟 − 𝐻𝑅𝑡−1 > 𝛼

Temporal filtering with estimated result
End

End
End

Algorithm 1: Heart rate estimation algorithm.

Table 1: Comparison of heart rate estimation using different features
(best performance in bold).

Feature 𝑀𝑒(𝑆𝐷𝑒)
(bpm)

RMSE
(bpm) 𝑀𝑒𝑅𝑎𝑡𝑒 𝑟

Green -10.6(4.19) 11.3 14.22% -0.35
Green mah -10.33(10.17) 14.45 13.71% -0.20
Green mah TF -6.63(7.21) 13.68 15.84% -0.50
XminY -20.1(6.54) 21.0 27.2% -0.32
XminY mah -11.93(9.91) 15.3 16.11% 0.07
XminY mah TF -12.07(5.15) 13.22 15.11% 0.39
RoverG -2.43(7.27) 7.27 4.93% 0.59
RoverG mah -0.57(5.94) 3.26 5.58% 0.59
RoverG mah TF 0.80(3.35) 3.26 3.68% 0.75

Of the features, Green and RoverG are the signal from the
pure green channel value in the RGB image and the feature
from (2), respectively. XminY is the difference between X and
Y, which is a linear combination feature of the RGB signal as
described in (6)

X = 3𝑅𝑛 − 2𝐺𝑛
Y = 1.5𝑅𝑛 + 𝐺𝑛 − 1.5𝐵𝑛.

(6)

𝑅𝑜V𝑒𝑟𝐺 𝑚𝑎ℎ is a method of removing the peak candidate
estimation value by applying the Mahalanobis distance to the
estimated values of RoverG, and RoverG mah TF is the result
of smoothing the outlier through temporal filtering.

As shown in Table 1, of the five metrics, RoverG mah TF
shows the best performance. Although RoverG without any
postprocessing shows a considerable fluctuation in its the
result, the RoverG mah with the statistical exclusion method
of candidates has a relatively stable result. On the other
hand, XminY, which showed the highest performance in [7],
shows a lower performance than the other features with the
MAHNOB-HCI dataset.

3.2. Validation Using Public Indoor Dataset. To validate
the proposed method, its performance was compared with
the recently proposed methods using a public dataset. The
MAHNOB-HCI dataset is a publicHCI dataset captured with
several vital signals in the indoor environment. The dataset
consists of two experiments containing emotion elicitation
and implicit tagging. The subjects consist of 12 males and
15 females, each of whom was synchronized with the image
by attaching an electrocardiography (ECG) sensor to their
body.The ECG and image are recorded at 256Hz and a frame
rate of 61, respectively, and the resolution of the image is 780
by 580. Since it is of interest to estimate HR change over
time, emotion elicitation data is adopted in the experiment.
Emotion elicitation data is a data recording the vital signal
and the facial image according to the stimulus by showing
some videos (e.g., nature documentary or horror movie) to
the subject. A comparison of the performance of the related
methods on the MAHNOB-HCI dataset is shown in Table 2.
For the previous methods, while the MAHNOB-HCI dataset
was quite a challenging dataset, Li2014 and Tulyakov2016
achieved substantial accuracy with marginal improvement
thereafter. Nevertheless, our algorithm, which is proposed to
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Table 2: Comparison of the performance of related methods with
the MAHNOB-HCI dataset (best performance in bold).

Feature 𝑀𝑒(𝑆𝐷𝑒)
(bpm)

RMSE
(bpm) 𝑀𝑒𝑅𝑎𝑡𝑒 𝑟

Poh2010 -8.95(24.3) 25.9 25.0% 0.08
Poh2011 2.04(13.5) 13.6 13.2% 0.36
De Haan2013 4.62(6.50) 6.52 6.39% 0.82
Balakrishman2013 -14.4(15.2) 21.0 20.7% 0.11
Li2014 -3.30(6.88) 7.62 6.87% 0.81
Tulyakov2016 3.19(5.81) 6.23 5.93% 0.83
Ours 0.80(3.35) 3.26 3.68% 0.75

target a dynamic environment (e.g., the automobile driving
environment), shows very high accuracy performance in this
indoor environment. In terms of the Pearson correlation
coefficient, its performance is comparable to the best per-
forming previous method (e.g., Tulyakov2016). Except for
this indicator, given the residual performance results related
to the error, the estimate result of the proposed method is
shown to outperform over all previous methods.

3.3. Demonstration on Dynamic Driving Dataset. To demon-
strate the proposed method under a driving scenario, a real
driving dataset was collected under driving condition with 19
subjects in their 20s and 30s. The subjects included men and
women of different ethnic backgrounds from countries such
as Korea, China, and theMiddle East.The driving dataset was
captured by an action camera, Go-pro HERO 3+, fixed on a
windscreen recording at a 30 frames per second rate and a
resolution of 1920-by-1080. The ground truth was obtained
by attaching a contact based pulse sensor to the earlobe of
the subjects and synchronized with the captured dataset (the
MP507 model of MEK was used as the earlobe pulse sensor).
In order to securely obtain the dataset, the subject in the
passenger seat was recorded instead of the actual driver, and
they were asked to move their head up and down sometimes
during the course of the driving. The subjects were also asked
to rush up a hill before boarding the vehicle to check for pulse
rate changes. It was recorded as naturally as possible without
any additional constraints on the experiment. The driving
course included a variety of actual driving road elements such
as shade, curved sections, hills, and speed bumps.The ground
truth is recorded in synchronization with the dataset using an
earlobe attached sensor.

In order to address the stable performance of the pro-
posed method, a Bland-Altman plot is employed. A Bland-
Altman plot is a statistical plotting method that represents
the agreement between two measurements. Each coordinate
of the plot is denoted as in

𝐵𝐴 (𝑥, 𝑦) = (𝐻𝑅𝑒𝑠𝑡 + 𝐻𝑅𝑔𝑡2 ,𝐻𝑅𝑒𝑠𝑡 − 𝐻𝑅𝑔𝑡) . (7)

The agreement 𝐴 at the 95% confidence interval is shown in

𝐴 = 1
𝑁
𝑛

∑
𝑖=1

𝑎𝑖 × 100,

𝑤𝑖𝑡ℎ 𝑎𝑖 = {
{
{
1, 𝑖𝑓 𝐻𝑅𝑒𝑠𝑡 − 𝐻𝑅𝑔𝑡 > 1.96 × 𝜎
0, 𝑖𝑓 𝐻𝑅𝑒𝑠𝑡 − 𝐻𝑅𝑔𝑡 < 1.96 × 𝜎,

(8)

where𝑁 is the total number of measurements and 𝜎 denotes
the standard deviation between the two data sample sets.
Figure 4 shows the Bland-Altman plot results of our proposed
method with four randomly selected subjects from the
driving dataset. The red and green line denotes the mean
and standard deviation of the measurements, respectively.
Eachmeasurement is a combination of the estimated HR and
ground truth per second. Figure 4 shows that although the
results are applied to all four driving data sets, the mean of the
errors is substantially small and a high agreement is obtained.

In order to visualize the tendency of the estimated HR
and ground truth over time, the result is shown in Figure 5.
Although the estimated value is slightly fluctuated compared
with the ground truth, the difference is maintained within
a maximum of 3 beats per minute. Moreover, it maintains
similar stability to the normal interval even in the interval of
fluctuation caused by speed bump and the rapid illumination
change.

3.4. Performance Analysis Based on Execution Speed. Our
proposed method is applied to vehicle environment. There-
fore, fast performance is required even if some performance
degradation occurs using constrained resources. By Huang et
al. [11], the true IMF can be defined as an ensemble of many
trials as shown in

𝐸𝐸𝑀𝐷 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 = 𝑠𝑡𝑑 (𝑥)
𝑁
𝑁

∑
𝑖=1

{𝐸𝑀𝐷(𝑥 + 𝑛𝑖)} . (9)

𝑁 is the number of trials and 𝑥, 𝑛 denote the observation sig-
nal and noise, respectively. However, this approach requires a
very large 𝑁 resulting a large number of EMD calculations.
Our proposed approach here limits the number of EMD
calculations by exploiting independent identically distributed
(iid) property of thewhite noise. Self-cancellation of thewhite
noise can be accomplished by

𝐸𝐸𝑀𝐷 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 = 𝑠𝑡𝑑 (𝑥)
𝑀
𝑀

∑
𝑖=1

[𝐸𝑀𝐷{𝑥

+ (mod (𝑖, 2)) ∙ 𝑛𝑖 − (mod (𝑖, 2) − 1) ∙ 𝑛𝑖}] .
(10)

mod is a function to obtain the remainder and𝑀 denotes the
number of limited trials. However, based on the characteristic
that noise 𝑛 is iid like in theoretical EEMD, the process of
adding noise in (10) was performed only in𝑀/2 trials (𝑀 ≈
𝑀/2 ≪ 𝑁). This method and (9) are called EEMD n1 and
EEMD, respectively, and 10 and 100 trials are performed,
respectively, to compare with EEMD which is commonly
used as [12].
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Figure 4: Bland-Altman plot analyzed at a 95% confidence interval. Each agreement of plot: (a) 95.9%; (b) 93.2%; (c) 93.5%; (d) 90%.
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Figure 5: Heart rate trend between estimation and ground truth on
challenging driving course. Red box: speed bump. Yellow box: rapid
illumination change.

On the other hand, in case of RoI selection, the previously
proposed method that detects face per frame instead of face

Table 3: The time it takes to operate once for each method.

Method Operation time (second)
DRMF detection 0.86
KCF tracking 0.27
EEMD n1 0.33
EEMD 4.52

tracking takes a considerable amount of time to process. It
also presents a challenge when facial motion takes place.
The time taken to operate each module is analyzed and
shown in Table 3. While DRMF detection and KCF tracking
are performed at every frame, EEMD n1 and EEMD are
performed as many as the number of candidate occurrences
when an image frame is presented as input by the sliding
window length.

Based on the result, four approaches are constructed as
shown in Table 4, and their performance is compared to
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Table 4: Comparison of heart rate estimations using different
features (best performance in bold).

Approach Absolute mean Standard deviation RMSE
DRMF+EEMD 4.35 2.29 4.89
DRMF+EEMD n1 4.75 1.82 5.08
KCF+EEMD 3.66 2.42 4.37
KCF+EEMD n1(ours) 3.71 3.07 4.74

determine the most efficient algorithm. Overall, the perfor-
mance is betterwhenusingKCF thanwhenusingDRMF.This
is because DRMF has difficulty in detecting the correct RoI
corresponding to the cheek region when a part of the face
is occluded due to shaking or facial motion. In the case of
EEMD n1, although the operation time is greatly reduced, the
performance decline is very small.

4. Conclusions

This paper proposed a novel approach to estimating HR
remotely in actual driving environments.Most previous stud-
ies have been proposed under indoor environments, which
often lead to high implied levels of performance based on
a well-controlled practical application context. On the other
hand, the proposed method showed attaining the highest
practical applicability by demonstrating its ability under
the most challenging environment, the automotive driving
environment. Before testing the proposed method under the
automotive driving environment with various obstacles, it
was compared to othermethods using the same indoor public
dataset as previous studies and using the same performance
index to validate its effectiveness. The proposed method
was then applied to data from an actual driving situation
and a fairly stable result was obtained. For automotive
driver HR estimation, estimating the HR instantaneously is
necessary to prevent accidents. Focusing on this issue, an
appropriate approach was sought to maximize performance
while reducing operation time. Hence, the performance was
also analyzed in terms of processing time by comparing
the proposed method with the conventional algorithms and
themodified algorithm. The proposedmethod demonstrated
a considerably superior performance and yet had a short
processing time.
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