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Crash prediction of the sharp horizontal curve segment of freeway is a key method in analyzing safety situation of freeway horizontal
alignment. The target of this paper is to improve predicting accuracy after considering the elastic influence of explanatory variables
and interaction of explanatory variables on crash rate prediction. In the paper, flexibility and elasticity are defined to express the
elastic influence of explanatory variables and interaction of explanatory variables on crash rate prediction. Thus, we proposed 6
types of models to predict crash frequency. These 6 types of models include 2 NB models (models 1 and 2), 2 GNB models (models
3 and 4), one NB model (model 5), and one GNB model (model 6) with flexibility and variable elasticity considered. The alignment
and crash report data of 88 sharp horizontal curve segments from different institutions were surveyed to build the crash models.
Traffic volume, highway horizontal radius, and curve length have been assigned as explanatory variables. Subsequently, statistical
analysis is performed to determine the model parameters and conducted sensitivity analysis by AIC, BIC, and Pseudo R’. The
results demonstrated the effective use of flexibility and elasticity in analyzing explanatory variables and in predicting freeway sharp
horizontal curve segments. In six models, the result of model 6 is much better than those of the other models by fitting rules. We
also compared the actual results from crashes of 88 sharp horizontal curve segments with those predicted by models 1, 3, and 6.

Results demonstrate that model 6 is much more reasonable than the others.

1. Introduction

Accidents, and specifically highway-vehicle accidents, cost
the lives of roughly one and a quarter million people
worldwide every year. In addition, highway-traffic injuries
are globally the leading cause of death among people 15 to
29 years old with over 300,000 deaths [1]. Compared with
other highways, a freeway is often designed with relatively
good driving environment characterized with high alignment
indexes, good pavement, total enclosure, absence of pedestri-
ans, no low speed interference, perfect traffic safety devices,
and so on. Thus, the crash rate and death toll of freeways
average 30%-51% and 43%-76%, respectively, compared with
those of ordinary highways in developed countries. In China

however, the average crash number, death toll, injury toll, and
the direct loss of property are 3.2, 8.4, 7.2, and 24.3 times
more than those of the ordinary highways [2]. Therefore, it
is important to determine the real law of crash occurring in
freeways and how the different types of freeway environment
influence the crash number based on reliable databases.
Opver the past several decades, historical surveys covering
the features and frequencies of crashes in freeways have
been actively pursued [3, 4]. Researchers mainly focus on
investigating the observed factors that affect the number of
crashes for roadway segments or intersections over some
fixed time periods [5]. However, in terms of freeway crashes
within China, specialized crash databases and highway
design databases are not available at present. Similarly,
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investigations that could clarify China’s current situation have
not been performed. Thus, Liande et al. [6], Zhuanglin [7],
and other researchers developed a crash prediction model
with a relatively small number of samples. To improve on
this effort, this paper attempts to establish a model with huge
samples.

Mathematical statistics and regression analyses are com-
mon methods to predict highway crashes. Other methods,
such as fuzzy mathematics, grey theory, nerve cell method,
and clustering analysis, have also been used to establish
the prediction models. American HSM2010 is an established
prediction model based on statistical regression. IHSDM
made a good simulation of the American two-lane highway
crash prediction (U.S. federal highway data). Chengcheng
[8] carried out two-lane highway crash prediction model
research, which focused on low-grade highways in China.

The abovementioned methods have explained how a
single factor influences the crashes. However, road crashes
are complex events that involve a large variety of factors
with multifaceted interactions, making it challenging to fully
understand them. Advancing improved methodologies for
road safety analysis and applying them to crash analysis
continue to be investigated [9].

Many statistical models are applied to crash frequency
analysis. Improved NB and GNB models were successfully
used to predict the crash rate of freeway basic segment,
tunnel entrance and exit, and so on [10, 11]. However most
of these models with fixed parameters fail to reveal the true
interrelationship between explanatory variables. Flexibility
and elasticity are concepts introduced to analyze the degree
of interaction between variables when the translog function
is extended to the field of traffic accident prediction. In
our research, flexibility and elasticity have been introduced
to express the elastic influence of explanatory variables
and interaction of explanatory variables on crash rate. To
demonstrate the effective use of flexibility and elasticity in
predicting freeway SHCS, we conducted sensitivity analysis
by AIC, BIC, and Pseudo R? and compared our proposed
models to traditional NB and GNB models. The results of
the proposed prediction models were also compared with
observed data.

Our research on the crash prediction models divided the
freeway into several segments, namely, basic segment, general
segment, and special segment. Since we have discussed the
crash prediction model of the basic segments in the paper
published in Journal of Southeast University (Wang et al.
2014), we take the freeway sharp horizontal curve segment
(SHCS) as the research object in this paper. In the crash
prediction model, segment length, curve radius, and traffic
volume are assigned as explanatory variables and crash
amount per year is determined as the dependent variable.

In the next section, relevant literature was reviewed. In
Section 3, we presented the data and the glossaries as well
as the basic model formulated and the discussion on the
variables. In Section 4, we discussed the statistical analysis
used to determine the model parameters and the sensitivity
analysis. We also compared the actual crashes with the
predicted ones. Moreover, we presented the final results in
this section. In Section 5, we presented theconclusions.
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2. Literature Review

A wide variety of advanced statistical count models are
applied to crash frequency analysis over the past years, and
the strengths and weaknesses were well summarized by Lord
and Mannering [5], Mannering and Bhat [12], and Mannering
et al. [13]. Mohammadi et al. [14] refined a good summary of
prediction models based on several representative references
(Gomes and Vieira, 2013; Ukkusuri et al., 2012; Hadayeghi
et al., 2007; Kim et al., 2006; Qadeer Memon, 2006; Maher
and Summersgill, 1996; Daniels et al., 2010; Lord et al., 2010,
2007, 2005). “Different formulations were used based on the
purpose of study and nature of available data. When the
data are overdispersed, the Negative Binomial (NB) model
structure with a log-link function is the most favored. When
the data are not overdispersed, the Poisson structure is the
most favored” [14]. Then, they developed a series of aggregate
crash prediction models that relate to the modal split step
of the conventional four-step demand models [14]. Yajie
(2014) investigated the effect of different functional forms
on the estimation of the weight parameter as well as the
group classification of the finite mixture of NB regression
models, using crash data collected on rural roadway sections
in Indiana.

The above review shows the general linear model or
logarithm linear model by logarithmic transformation into
linear equation is one of the most commonly used meth-
ods of building a highway traffic crash prediction model.
Although there are several limitations [15], many of the crash
prediction models of Highway Safety Manual 2010 are based
on logarithm linear models and turned to be reliable to a
certain degree. The conventional NB or GNB model with
fixed parameters may fail to capture the possible variability
of the individual effects associated with the variables across
observations, which may lead to biased parameter estimation
and incorrect inferences [16].

Analysis of the common traffic crash prediction models
has resulted in the observation that, in the process of building
the model, the basic assumption that all explanatory variables
that are relatively independent are common does not consider
the influence of each variable. This observation results in a
situation where the relationship between explanatory vari-
ables and the traffic crash is not fully in accordance with the
actual situation. Although a considerable number of recent
highway safety studies [17-19] considered the interaction
among explanatory variables, most are based on the analysis
of the relationship between driver, vehicle, highway [20],
and environment [21]. The results of these studies show the
different dangers when driving in highways and the effect
of division on the traffic flow, among others. Moreover, the
results show that when the lengths of segments analyzed
are different, the traffic flow prediction for the crash is also
different.

Thus, we can find that the traditional log-linear model
has two limitations when used to analyze and predict the fre-
quency of road traffic crashes. Firstly, the assumption that the
elastic coeflicient is constant is not compatible with common
logic [22]. Secondly, exploratory variables are simplified or
idealized as independent variables, which is hard to reveal
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TABLE 1: Sample source and size.
Source observation period Freeway length (Km) Accident
MCGP 2008-2012 2200.779 135498
NSG freeway TPD & FAMC 2008-2012 72.00 1428
GZJC freeway TPD & FAMC 2008-2012 50.74 3115
JZN freeway TPD & FAMC 2006-2012 109.84 11209
GH freeway TPD & FAMC 2008-2012 155.306 3441
KY freeway TPD & FAMC 2008-2012 125.20 2351
GZBH freeway TPD & FAMC 2007-2012 21.652 12850
SM freeway TPD & FAMC 2008-2011 58.361 719
TABLE 2: Crash data.
Name of variable Mean value Standard deviation MIN MAX
Crash amount (/km/year) 3.307 8.814 0 15
AADT (10thansands pcu) 0.714 1.037 0.25 4.78
Length of segment (km) 0.860 0.017 0.56 118
Radius of segment (km) 0.624 0.041 0.31 1
Operation Time (years) 8.020 2.251 3 14

the true interrelationship between variables [22]. Thus, the
idea of flexibility has been introduced in our models to
overcome the above limitations. Flexibility is often used in the
manufacturing industry to explain the variation environment
or the probabilistic ability from the variation. Cobb-Douglas
production function, linear production function, Leontief
production function, Variable Elasticity of Substitution (VES)
production function, and translog production function are
often used to analyze flexibility. Among these methods, the
translog production function is the most popularly used
to analyze traffic problems [11]. Wei Huang (2007) and Li
Li (2011) studied the generalized beyond the logistic cost
function (GTCF). Anténio (2011), Lurong Wu (2010), Juan
Zeng [23], Rong Li (2013), and Xiang Liu [24] introduced
the translog function to analyze the traffic crash of loss and
frequency. Using the logarithmic function NB model, Xiang
Liu [24] and Rong Li (2013) established the frequency forecast
model of the highway traffic crash in Ontario, Canada.
Compared with the log-linear NB model, it was proven to
be more credible. Other results also show that the above
limitation can be well overcome [22, 25, 26].

3. Materials and Methods

3.1. Materials. To acquire enough samples for a meaningful
statistical analysis, four major sources were used: National
Statistics Annual Report of Highway Traffic Crashes (NSAR-
RTA, 2013), Statistical Bulletin of Transportation Industry
Development (SBTID, 2013), Trafic Management Committee
of Guangdong Province (MCGP), different Traffic Police
Detachments (TPD, 7 freeways, 593.099 km total), different
Freeway Administration and Maintenance Centers (FAMC,
7 freeways, 593.099 km total), and additional results provided
by other scholars. Table 1 presents the sample size.

In paper, 88 SHCSs from eight four-lane highways of
Guangdong Province covering the period from 2008 to 2012

and their crash data of five years were selected for analysis.
The statistics are shown in Table 2.

3.2. Definition. In the study, the following segments are
defined as sharp horizontal curve prediction segments:

(1) Radius of horizontal curve: less than 1000 m

(2) Lane number: two-way 4-lane

(3) Lane width: 3.75m

(4) Hard shoulder: on both sides

(5) Median: yes

(6) Crash barrier: on both sides

(7) Lighting: none

(8) AADT (two directions):
(10* pcu/day)

(9) Open to traffic duration: no less than 2 years and no
reconstruction in 2 years

no more than 5.76

3.3. Modeling Method. When building a road traffic accident
frequency prediction model, in order to keep the model
stable (that is, to keep variance as low as possible), model
transformation is performed to the NB, which is commonly
used method. Thus, NB model will be transferred into log-
linear model. Equations (1)~(5) and all NB models in this
paper are results of transformation. Thus, it looks to be not a
common NB formulation of the form Y = exp(a + Zixi). In
the paper, we still name these formulations as NB regression
models or GNB models.

The basic expression form of the translog function model
is as shown in formula (1) [27, 28].

InY = a, + o InK + o InL + o, (In K)* + oy (In L)*

+oyInKInL
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TABLE 3: Models and statistics parameters.

Model The basic function form of model Estimated parameters *
iNB) Iny =y + a; In(T;) + oy In (L;) + o3 In(R;) s B
5 21 Iny; = oy + o« In(T) + &, In(L;) + In(R;)
(NB) 22 Iny; = &y + &, In(T}) +In(L;) + &, In(R;) %3 B

2.3 Iny; = oy +In(T;) + o, In(L;) + o5 In(R;)
3 Iny; = oy + a; In(T;) + oy In (L;) + 3 In(R;) s
(GNB) Bi= o+t In(Vi) Aot

Bi= eotAr In(Vi)

4 4.1 Iny; = oy + o In(T)) + o, In(L;) + In(R;) Qs
(GNB) 42 Iny, = ay + o, In(T}) +In(L,) + a; In(R,) Aot

43 Iny; = ay +In(T;) + o, In(L;) + a3 In(R))
5 2 2

Iny; = oy + o, In(T;) + &, In(L;) + o5 In(R;) + o, [In(T;)]” + a5 [In(L;)]" +
ﬁf;{;ﬁ;l)‘)g ag[In(R)]? + o, In(T) In(L,) + g In(T)) In(R.) + ty In(L,) In(R,) %90 B
6 Ing = oy + 0y In(T,) + o, In (L) + a In (R,) + e, [In (T})]” + s [In (L,)]° +
&

(GNB +translog o [In (Ri)]2 +a; I (T;) In(L;) + a5 In (T;) In (R;) + e In (L;) In (R;) Aoojl
+ﬂexibility) ﬁi _ e(;\w—h In(V7))

*B: overdispersion parameter. The higher f3 is, the more scattered the distribution is. V; represent T, L, R, TR, TL, RL, and TRL of segment i. The determining

method is discussed in Section 4.

where Y is the dependent variable, K and L are the explana-
tory variables, and «, oy, &, g, &, oy are the estimated
parameters.

All the basic formulas are formulated based on formula
(1) by introducing second cross variables and using trans
logarithmic (TCF) cost function form to extend NB and the
Poisson model. Consequently, the interaction between the
variables can be reflected. Couto et al. [25] established the
logarithmic function model based on AADT, segment length,
density of access, and time trend variables. The logarithmic
functional formula is expressed as

Inp;, = By + By In(F,) + B, In(Leng,) + BsIntDen;
+1n (y) TimeT, + B, [In (F,)]’
+ s [In (Lengi)]2 + fBs (IntDen,-)2 + 3, (2)
x In (F;)1n (Leng,) + s In (F;) IntDen;

+ By In (Leng;) IntDen;

where y;, is the average accidents per year, F;,, Leng;, Den;,
and T, are the explanatory variables, which are referred to
as AADT, segment length, density of access, and time trend
variables, and 3, (k = 0 ~ 9) and y are the estimated
parameters.

In our paper, the freeway crash prediction model is
built by selecting AADT, length of sharp horizontal curve
segments, and curve radius as explanatory variables. The

NB crash prediction model is set up based on the constant
elasticity and flexibility of variables; see formulas (3) and (4).

Iny; = ay+a; In(T;) + o, In(L;) + a3 In (R;) (3)

Iny; = ay+a,; In(T;) + o, In(L;) + a3 In (R;)
+ ot [In (T;)]* + a5 [In (L,)]?

, (4)

+ag [In(R;)]" + o In (T;) In (L;)

+agln(T;)In(R;) + a9 In (L;) In (R;)

where y; is the estimate of crash amount for a specific year of
segment i, T; is AADT for a specific year of segment i, R; is
radius of the curve i, L; is the length of segment 7, and &, (k =
0,1,2,...5) is estimated parameter.

Then, flexibility and elasticity are defined to express the
elastic influence of explanatory variables and interaction of
explanatory variables on crash rate. Totally, we proposed
6 types of models to predict crash frequency; see Table 3.
These 6 types of models include 2NB models (models 1
and 2), 2GNB models (models 3 and 4), one NB model
(model 5), and one GNB model (model 6) with flexibility and
variable elasticity considered. As discussed above (literature
review), there are 2 main limitations of NB or GNB. Translog
transformation and variables flexibility are expected to solve
the limitations. Thus, first 4 models (2 NB models and 2
GNB models) are used as comparisons to check whether
translog transformation and variables flexibility can improve
the prediction. Akaike Information Criteria (AIC criterion),
Bayesian Information Criteria (BIC) rule, and Pseudo R2 test
were used as criteria to evaluate the imitative effect of the
crash CPM of SHCS.
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For NB distribution, the overdispersion parameter is
a constant greater than zero. The higher the value is, the
more dispersed the observations are. GNB distribution also
follows this rule but allows the overdispersion parameter to
change with other variables. The overdispersion parameter
was selected and its expression equation was determined by
analyzing the fit goodness of overdispersion parameter of
different parameters. Then, we compared the fit goodness of
the six models below and ultimately determined the CPM of
SHCS. The corresponding forms of each model and estimated
parameters are shown in Table 3.

4. Statistical Analysis

4.1. Overdispersion Parameter. The difference between the
NB model and the GNB model is whether overdispersion
parameter f3 is a constant or not.

The first 2 types are NB models and the overdispersion
parameter is a constant greater than zero. The difference of
models 2.1, 2.2, and 2.3 is variables’ coefficients. In model 2.1,
we set a fixed value 1 to Ri as relative coefficient to find the
relative influence of Ti and Li on Ri. Purposes are similar in
models 2.2, 2.3, and 4.1~4.3. The comparison gives us a clear
understanding about relationship between 3 variables. This
method has also been applied in some other literatures [10,
).

Overdispersion parameter 3 of GNB is not a constant
value. We separately tried T, L, R, TR, TL, RL, and TR as
explanatory variables of f. Thus, each GNB model has 7
specific models.

AIC, BIC, and Pseudo R* are used to select the best
specific model for each of the six main models with the best
goodness of fit. The overdispersion parameter of each model
and its AIC, BIC, and Pseudo R? coefficient are listed in
Table 4.

The following standards are used to examine and verify
the goodness of fit of parameters of f3:

(1) The Pseudo R? statistical magnitude should be used
to test the goodness of fit of the models. The bigger it is, the
better the model is.

(2) AIC is used to evaluate whether the model is useful or
not. The smaller it is, the better the model is.

(3) BIC states that any given problem can find the smallest
error probability by the likelihood ratio test of decision rules.
Thus, the smaller it is, the better the model is.

As shown in Table 4, among 3 NB models, overdispersion
parameter of model 5 has relatively small AIC and BIC and
big Pseudo R2. It proves that flexibility and elasticity are
beneficial to improve the models’ overdispersion parameter.
Then, among 3GNB models, although the value of the
models is quite close for some models, when T is selected as
explanatory variable of 3, the AIC and BIC values of models
tend to be smaller, and the Pseudo R? value tends to be
larger than the others. The results indicate that the fitting
effect of these models is better than those of others. Thus,
we determined T as explanatory variable of 3. That is, 3; =

e(/\o"'/\l In(T})) .

4.2. Model Result. Based on the collected data mentioned
in Section 2, we calibrated the estimated parameters of the
six main models and the specific models cited above. The
goodness of fit was also calculated. The results are shown in
Table 5.

Table 5 indicates the obvious interactive influence
between two variables. Model 5 and model 6, which take the
interactive influence into consideration, have a good fitting
effect, particularly when compared to models 2 and 4. Thus,
we ignored models 2 and 4 directly. According to 3 evaluation
criteria, model 6 is better than model 5. By contrast, we found
that the Pseudo R2 of model 6 is larger than those of models
1 and 3, indicating that model 6 is much better than models 1
and 3.

Based on the above analysis, we determined model 6 as
CPM and expressed it as follows:

N = o(318+0.601n(T)~11.70In(L;)+7.85 In(R) +0.015[In(T;)I*+8.49[In(L,)I* ~241[In(R,)]*+0.64 In(T;) In(L;)~1.09 In(T}) In(R;)~5.80 In(L,) In(Ry) (5)

The overdispersion parameter is

ﬁi _ e[1.17—6.351n('1",-)] (6)

where N is estimate of crash amount for every year of SHCS,
T, is the basic segment of the annual average daily traffic, L;
is the length of the SHCS, and R; is the radius of the SHCS.

4.3. Prediction Analysis. To demonstrate the effectiveness of
the prediction, we performed prediction of a certain freeway
with model 1, model 3, and model 6. Then, we compared
the results with the real crash data we collected from the
institutions. See Table 6.

As shown in Table 6, the crash averages of the 3 models
are all close to the real crash value. However, there are some

differences when referring to standard deviation as shown in
Table 6. Due to overfitting through the translog specification
and the large number of interactions, the result of model 6
is much closer to the statistics value of the real cash data
than those of the other two models. For the maximum and
minimum values, the forecast range of model 6 is very close
to the actual situation. Based on the above discussion, model
6 is the best among the six models.

5. Conclusion and Discussions

The traditional log-linear model has two limitations when
used to analyze and predict the frequency of road traffic
crashes. One is the constant elastic coefficient and the other is
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TABLE 4: AIC, BIC, and Pseudo R2 of 6 main models and their specific models.
Model Explanatory Variable of 3 AIC BIC Pseudo-R’s
1 -- 401.12 413.51 0.03
21 406.32 416.23 0.02
2.2 -- 407.63 41753 0.02
2.3 -- 431.79 441.70 0.01
3 T 398.47 413.33 0.04
3 RT 400.33 417.68 0.04
3 LT 400.34 417.68 0.04
3 LTR 402.18 422.00 0.04
3 L 402.71 41757 0.03
3 R 402.96 417.82 0.03
3 LR 404.38 421.72 0.03
4.1 T 409.23 421.61 0.02
41 R 409.34 421.73 0.02
41 L 409.61 422.00 0.01
41 RT 410.37 425.23 0.02
4.1 LT 411.19 426.05 0.01
4.1 LR 411.32 426.19 0.01
4.1 LTR 412.29 429.63 0.01
4.2 L 408.08 420.46 0.02
4.2 T 408.12 420.508 0.02
4.2 R 408.30 420.68 0.02
4.2 LT 410.04 42491 0.02
4.2 LR 410.08 42494 0.02
4.2 RT 410.10 424.96 0.02
4.2 LTR 412.04 429.38 0.01
4.3 T 402.32 414.71 0.04
43 R 402.49 414.87 0.04
43 L 402.55 414.94 0.05
4.3 RT 404.30 419.17 0.03
4.3 LT 404.32 419.18 0.03
4.3 LR 404.49 419.35 0.03
4.3 LTR 406.30 423.64 0.03
5 -- 400.71 427.96 0.06
6 T 393.99 423.72 0.08
6 RT 395.49 427.70 0.08
6 LT 395.99 428.20 0.08
6 LTR 397.49 432.18 0.08
6 L 402.34 432.06 0.06
6 R 402.71 432.44 0.06
6 LR 404.22 436.43 0.06

independent relationship between variables. Translog trans-
formation and the idea of flexibility have been introduced
in our models to overcome the above limitations. Flexibility
and elasticity are defined to express the elastic influence of
explanatory variables and interaction of explanatory variables
on crash rate. The analysis sheds light on crash prediction
effect of SHCS of freeways. Thus, totally six types of models, a
total of 10 models, were proposed to predict the crash. These 6
types of models include 2 NB models (models 1and 2), 2GNB
models (models 3 and 4), one NB model (model 5), and one

GNB model (model 6) with flexibility and variable elasticity
considered. Among the models, model 6 is much better than
the other models. All parameter estimates in Table 5 satisty
the models with a confidence of more than 1%. Through the
detailed analysis and study, the following conclusions have
been drawn:

(1) Among 3 NB models, with flexibility and elasticity
considered in the model, model 5 has relatively small
AIC and BIC and big Pseudo R2. It demonstrated that
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TABLE 5: Estimated and statistics parameters.
Estimated parameter ~ Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
2.1 2.2 23 4.1 4.2 4.3
o 1.93 1.37 0.56 1.59 2.96 1.58 0.48 1.42 5.00 3.81
o 0.29 0.17 0.30 1.00 0.31 0.15 0.33 1.00 0.78 0.60
a -0.77 -1.10 1.00 -0.23 -1.60 133 1.00 -0.72 -14.05 -11.70
a -0.001 1.00 -0.76 -1.41 -0.001 1.00 -0.65 -0.73 6.62 7.85
a, — — — — — — — — 0.003 0.015
a — — — — — — — — 9.29 8.49
o — — — — — — — — 279 241
a, — — — — — — — — 0.38 0.64
o — — — — — — — — -0.001 1.09
a — — — — — — — — -0.004 -5.80
Ao — — — — 2.06 -0.63 -0.93 -0.82 — 117
M — — — — 822 -0.18 0.12 -0.15 — 635
B 0.36 0.46 0.45 0.811 — — — — 0.23 —
AlIC 401.13 407.63 406.32 431.79 398.47 409.22 408.12 431.79 400.71 393.99
BIC 413.51 417.54 416.23 441.70 413.33 421.61 420.50 441.70 42796 423.72
Pseudo R2 0.03 0.02 0.02 0.01 0.04 0.016 0.023 0.039 0.059 0.080
LR chi2 11.13 6.12 9.38 4.57 15.76 6.52 9.41 15.96 23.54 32.24
TABLE 6: Statistics values of predicted and real crashes.
Obs Average Std. Dev Min Max
(the sample number)

The real crashes 88 3.31 2.87 0 15
Prediction result of model 1 88 3.30 L1 2.38 7.39
Prediction result of model 3 88 3.60 1.44 2.16 10.73
Prediction result of model 6 88 3.38 1.82 2.16 15.13

flexibility and elasticity help to improve the models’
overdispersion parameter.

(2) When T is selected as the overdispersion parameter
in GNB models, the AIC and BIC values of models
tend to be smaller, and the Pseudo R2 value tends to
be larger than the others. The results indicate that the
fitting effect of these models is better than those of
others.

(3) With sufficient samples and data, the effective use of
the GNB model in analyzing the interactive influence
of explanatory variables and predicting freeway basic
segments can be demonstrated. The prediction results
with relatively good models (model 1, model 3, and
model 6) have also been compared to that of real
data. The results show model 6 has the best prediction
effect.

In summary, the results show suitable length of circle (Li)
allows drivers to adapt to the driving environment. Long
sharp curve and high traffic volume Ti result in high crash
rate. However, when Ti is low (e.g., free flow), the influence
of Li on crash rate will decrease. Sharp curve with high traffic
volume Ti results in high crash rate. When Ti is low (e.g., free
flow), the influence of Ri on crash rate will decrease. Long

sharp curves with really small Ri are difficult for drivers to
handle the steering wheel. Drivers are also nervous driving
along sharp curves. There must be an interaction between
them.

Thus, the findings of this study can help enhance under-
standing of the relationship among traffic volume, highway
horizontal radius, and curve length. Such understanding can
help to develop crash prevention strategies for specific con-
ditions. For example, the findings can provide an important
guide for designers when applying the horizontal radius and
curve length. Moreover, the results could be used as basis
to implement a variable traffic speed limit on curves to
reduce crash risk while traveling on a hazardous roadway
segment.

However, further efforts should be made to demonstrate
the differences between the NB and GNB models. The
experimental data were limited. Thus, the model fitting
effect is slightly far from ideal. What the impact degree of
variable interaction on prediction accuracy is, is also our
future research topic. With flexibility and elasticity defined
to express the elastic influence of explanatory variables and
interaction of explanatory variables on crash rate, GNB
model 6 is proved to have good fittingness, which offers a
certain reference value for crash prediction in general.
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