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Understanding the travel patterns of public transit commuters was important to the efforts towards improving the service quality,
promoting public transit use, and better planning the public transit system. Smartcard data, with its wide coverage and relative
abundance, could provide new opportunities to study public transit riders’ behaviors and travel patterns with much less cost than
conventional data source. However, the major limitation of smartcard data is the absence of social attributes of the cardholders, so
that it cannot clearly extract public transit commuters and explain the mechanism of their travel behaviors.This study employed a
machine learning approach calledNaiveBayesianClassifier (NBC) to identify public transit commuters basedonboth the smartcard
data and survey data, demonstrated inXiamen, China. Comparedwith existingmethodswhichwere plagued by the validation of the
accuracy of the identification results, the adopted approach was a machine learning algorithm with functions of accuracy checking.
The classifier was trained and tested by survey data obtained from 532 valid questionnaires. The accuracy rate for identification of
public transit commuters was 92% in the test instances. Then, under a low calculation load, it identified the objectives in smartcard
data without requiring travel regularity assumptions of public transit commuters. Nearly 290,000 cardholders were classified as
public transit commuters. Statistics such as average first boarding time and travel frequency of workdays during peak hours were
obtained. Finally, the smartcard data were fused with bus location data to reveal the spatial distributions of the home and work
locations of these public transit commuters, which could be utilized to improve public transit planning and operations.

1. Introduction

Public transit systems have long been regarded as an effective
way to mitigate the growing urban congestion, exhaust
emissions, and energy consumption caused by the excessive
use of private automobiles [1, 2]. The effect is very significant
especially in China where the level of car ownership has
developed rapidly in the past decade [3, 4]. In order to
unceasingly improve the performance and promote public
transit use, the authorities in metropolises of China have
been working for years to obtain a better understanding
of passengers’ travel characteristics [5–7]. In this context,
mining the travel patterns of public transit commuters has
received much attention of researchers [1, 4, 8–11]. It results

from the fact that the commuters not only represent the
frequent public transit users, but also represent the ones who
comprise themajor component of travel demand during peak
hours. The accurate knowledge of their demands and travel
patterns may help the agencies adjust route plans, provide
appropriate policies to retain the loyal riders and enhance
the attractiveness of public transit systems [10]. However,
acquiring the precise travel information of public transit
commuters used to be challenging. The traditional way to
analyze the public transit demand largely depended on travel
diary surveys, which was often plagued by its high cost, low
data accuracy, low response rates, and also privacy concern.
Fortunately, Automatic Fare Collection (AFC) systems have
been widely implemented in China as a more efficient way of
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managing fare over the manual collection method [12]. At the
same time, smartcard data can provide more abundant and
higher quality travel data with less cost, through which travel
patterns could be analyzed based on precise observations of
individuals’ smartcard usage in a time period [10, 13–18].

Nevertheless, the archived smartcard data collected from
AFC systems also have its limitations [19]. For instance,
smartcards are usually anonymous in China. Thus, social-
demographic attributes of the cardholders were absent, such
as gender, age, education, and trip purpose.Therefore, identi-
fying public transit commuters from smartcard data was not
a straightforward task [5]. To this end, spatial and temporal
regularities of recurring trips on the public transit networks
were usually incorporated to determine the public transit
commuters among the cardholders [4, 6, 9], while, even if
the spatial and temporal characteristics of each cardholder
could be mined from the smartcard data, how the identified
spatiotemporal travel pattern tied to a real commuter was
still not clear [5]. To demonstrate it, a case study in Xiamen,
China was given, where the smartcard dataset harvested
from 1st to 26th June, 2015 was employed. Specifically, for
each cardholder, we calculated the number of workdays
where he/she swiped cards during both the morning peak
and the evening peak (on a maximum of 20 workdays).
Then, we obtained the distribution diagram of cardholders
according to the calculated number of workdays, as illustrated
in Figure 1. In this context, a large number of related
works usually adopted a hypothetical threshold or clustering
methods to segment the commuters and noncommuters
(e.g., cardholders traveling for at least a number of days are
identified as transit commuters) [4, 12, 20]. However, there
seemed to be no obvious fluctuation between the number
of cardholders corresponding to “9 workdays” and the sub-
sequent counterparts. Thus, it was really hard and confused
to determine an exact threshold value for the identification
according to the statistics in Figure 1. Moreover, even if a
threshold value could be set up, it was still challenging to
test the accuracy of results without any further circumstantial
evidence. Therefore, in the case study of Xiamen, it was
difficult to identify the commuters among cardholders by
using the traditional approaches derived from the literature.

To this end, an originalmachine learning algorithmcalled
Naı̈ve Bayesian Classifier (NBC) was adopted in this paper to
identify public transit commuters based on both the smart-
card data and survey data. Compared with existing methods
which were plagued by the validation of the accuracy of the
identification results, the employed approach was a machine
learning algorithm with functions of accuracy checking. The
rest of the paper was organized as follows. In Section 2, a
review of literature on smartcard data application was drawn,
and the existing approaches of identifying commuters in
smartcard data were discussed. Then, the Naı̈ve Bayesian
Classifier was introduced, and the classifier was built, trained,
and tested in Section 3. Subsequently, the attribute of “com-
muter or not” for each cardholder was estimated based on
the tested classifier, and travel characteristics and regularities
of the identified commuters were analyzed in Sections 4 and
5. In the end, conclusions were drawn, and future directions
were under discussion.

2. Literature Review

In recent years, the application of smartcard data mining in
the planning and management of public transit systems has
received much research attention. The previous works can
be grouped into three categories, which can be, respectively,
described as tactical-level studies, operational-level studies,
and strategic-level studies [10].

In the tactical level, the trip pattern analysis and mar-
ket segment were frequently addressed, contributing to the
operational adjustment in public transit [14, 15]. Zhao et al.
[21] developed a methodology to detect individuals’ travel
pattern changes by using smartcard data from London, UK,
over two years. They specified one distribution for each
of the three dimensions of travel behavior, and a Bayesian
method was developed to identify significant change points
in travel patterns. The results show that, compared to the
traditional generalized likelihood ratio (GLR) approach, the
Bayesian method required less predefined parameters and
was more robust. Ma et al. [6] employed a Density-Based
Scanning Algorithm with Noise (DBSCAN) to segment the
smartcard data by analyzing different travel patterns. Then,
spatial and temporal regularity of each cluster was derived
through a continuous long-term observation period. The
original DBSCAN method was improved by Kieu et al. [8, 9]
and then applied to divide the passengers under amuch lower
calculation complexity. The heterogeneity of public transit
riders was analyzed by Langlois et al. [22] through four-week
smartcard data, and 11 travel patterns were generated. Legara
and Monterola [16] developed a new classification method
with promising accuracy by using the concept of eigentravel
matrices which captured a commuter's characteristic travel
routine, while, in operational-level studies, precise perfor-
mance indicators such as schedule adherence, the number of
transfers, and vehicle-kilometers on a public transit network
were discussed [1, 10, 13]. Among them, the study of origin-
destination (OD) and interchange inference was a hot topic
and received much research attention. Trepanier et al. [23]
and Ma et al. [24] combined AFC data and AVL data to infer
boarding locations. For the alighting location estimation,
Munizaga and Palma [7] set up a disutility function which
took account of time and distance and then bus destinations
were inferred byminimizing the generalized cost of the func-
tion. Sanchez-Martinez [17] extended the disutility function
approach to rail networks, and a dynamic programming
algorithm was designed to infer destinations. Wang et al. [25]
applied the trip-chaining to infer bus passenger OD from
AFC and AVL data, while Carrel et al. [26] inferred OD
matrices by using smartphone and AVL data.

Regarding the applications on the strategic side, although
previous researches have adopted smartcard data for the
assessment and planning of public transit systems, however,
the data source was somehow fragmentary for the behavior
analysis [19]. For example, most of the previous literature
on the analysis of cardholders’ commuting characteristics
oversimplified the definition of a public transit commuter [5].
In this context, Kusakabe and Asakura [19] developed a data
fusion method based on the Näıve Bayesian Classifier (NBC)
by integrating the smartcard data with the personal travel
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Figure 1: Basic statistics of smartcard data in Xiamen, China.

Table 1: Examples of smartcard transaction records.

Card id Date Transaction Time Bus Route Bus Plate Number
326352926 2015/6/22 09:43:47 Bus Route 815 D3789
154380354 2015/6/23 06:40:50 Bus Route 301 D3775
323446469 2015/6/23 20:40:13 Bus Route 713 D9342
051397471 2015/6/24 11:40:23 Bus Route 301 D3764
360122282 2015/6/24 08:42:30 Bus Route 512 D6453

survey data. The approach was intended to estimate absent
attributes of trip purpose in smartcard data and enhance
the understanding of travelers’ behavior. Nevertheless, their
study was implemented at only one railway station run by
a private company, and the proportion of cardholders only
accounted for about 10% of the total ridership. Thus, the
applicability, portability, and representativeness of the pro-
posed approachmay be affected by the sample size.Moreover,
other than estimating the travel purpose for each trip, it
was also not clear whether the data fusion method could be
applied to infer the attribute of cardholders. Since achieving
the identification of public transit commuters in smartcard
data was not an easy task in most metropolis of China,
this paper extended the application of NBC approach and
employed themethod to estimate the attribute of cardholders
instead of trip purpose. Besides, as an extension to the work
of Kusakabe and Asakura [19], the approach was adopted
and applied to the whole public transit network in Xiamen,
China, with 85% of the transactions completed through
smartcards.The spatial distribution of commuters’ home and
work locations in the case study were also revealed by fusing
together smartcard and Automatic Vehicle Location (AVL)
data.

3. The Smartcard Data

3.1. A Brief Introduction of Xiamen, China. Xiamen is admin-
istered as a subprovincial city of Fujian province with an area

of 1,699.39 square kilometers. The population in Xiamen was
nearly 3.5 million according to the Census in 2014. Regular
bus systems and the Bus Rapid Transit (BRT) are the principal
public transportation modes for local residents. There are
nearly 320 regular bus routes and 5 BRT lines currently in
service in Xiamen.

3.2. Data Preparation. “E-Tong Card” is the only contact-
less smartcard used for electronic payments in the public
transportation system of Xiamen, China, and it started to
come into use in 2006. Through the smartcards, passengers
can access all the bus routes and BRT lines. Until 2015,
the circulation of E-Tong cards has exceeded 6 million,
and over 85% of the transactions in the public transit
network were completed through the automated fare system.
Thus, it provides a good opportunity for researchers to
obtain the users’ travel activities through smartcard data
mining.

The smartcard data analyzed in this paper were harvested
from the archived data in the AFC system of “E-Tong Card”.
The original dataset contained whole transaction records on
the public transit network, collected from 22nd to 26th June,
2015 (except elder cards and student cards; 5 consecutive
workdays were covered). Since the pricing of the bus system
was not distance-based in Xiamen, the passenger only swiped
the card once when boarding. Each record included the
information of card id, date, transaction time, and bus route
as well as plate number, as shown in Table 1.



4 Journal of Advanced Transportation

4. Methods

4.1. The Naı̈ve Bayesian Classifier. The Naı̈ve Bayes classifier
was a machine learning technique efficiently utilized for
classification/identification applications in data mining envi-
ronment. The reliability in predicting and decision-making
constructed the statistical nature of the NBC. In practice,
NBC could estimate the absent attributes of the data by
predicting probabilities of class membership. To classify
a new instance, the algorithm used the Bayesian rule to
calculate the conditional probability of each class value and
took the class with the maximum probability as the identified
class. The collected survey data were usually split into two
parts: training part and test part. The algorithm used the
training data to build the classifier and then estimated the
required probability values in the test data to test the accuracy
of the built classifier.

Let vector F = {𝑓
1
, 𝑓
2
, . . . , 𝑓

𝑁
} be a set of behavioral

attributes/features, as shown in Figure 2. Each element of vec-
tor F represented a common attribute or travel characteristic
which existed in both survey and smartcard data, such as
travel frequency or boarding time. Let C be a variable of the
absent classification item in the smartcard data but could be
measured by survey data [19]. It was assumed that elements of
vector F were conditionally independent when C was given.
In this study, classification item C and elements of vector F
were treated as discrete variables. Then, 𝑝(𝐶 | F) could be
trained through Bayes’ theorem by using the survey data.

𝑝 (𝐶 | F) = 1
𝑝 (F)
𝑝 (𝐶) 𝑝 (F | 𝐶)

= 1
𝑝 (F)
𝑝 (𝐶)

𝑁


∏
𝑁=1

𝑝 (𝑓
𝑁
| 𝐶)

(1)

In (1), 𝑝(𝐶), 𝑝(F), and 𝑝(𝑓
𝑁
| 𝐶) could be esti-

mated by survey data. Specifically, 𝑝(𝐶) and 𝑝(F) were the
probabilities derived from the proportion of interviewees
having classification item C and vector F, respectively. The
conditional probability distribution 𝑝(𝑓

𝑁
| 𝐶) represented

the composition rate of interviewees having attribute 𝑓
𝑁

corresponding to classification item C.
The attribute vector F could also be measured for each

cardholder in the smartcard dataset, since it was shared in
both of the two data sources.Then, the trained classifier could
be adopted to estimate the absent attribute C of cardholders.
It could be expressed as the following equation:

∧𝑐 (F) = argmax
𝑐∈𝐶

𝑝 (𝑐 | F) , 𝐶 = {𝑐1, 𝑐2, . . . , 𝑐𝑀} (2)

where c was one item of the classification attribute C.

4.2. Survey Design. The flow chart of the employed NBC
method was illustrated in Figure 3. The core of machine
learning in this study was to estimate absent elements
of smartcard data by using the survey data to train and
test the classifier. The survey was designed as shown in
Figure 3. The classification item C could only be observed
in the survey data, and it could be measured through the

interviewees’ response to “whether the bus service is your first
choice when commute”. The attribute vector F represented
behavioral attributes that could be observed by both of the
two data sources. In this study, the vector F contained three
independent attributes, and it was relatively easy to measure
them by using any one of the two datasets: (𝑓

1
) “average first

boarding time on the workdays in last week”; (𝑓
2
) “average

last boarding time on the workdays in last week”; and (𝑓
3
)

“the number of workdays where commuting by bus in the last
week”, which represented the number of workdays where the
cardholders swiped cards during both of the two peak-hours
in the last week.

5. Experimental Analysis

5.1. The Trained and Tested NBC. The NBC model was built
and tested by the use of survey data harvested from Xiamen,
China. The research area in this paper was not broad with
about 150 square kilometers; it can be assumed that the char-
acteristics of public transit users were homogenous all over
the city. The survey was implemented in the major industrial
parks, software parks, and CBDs of Xiamen on 29th, June,
2015. Since these areas nearly provided more than 70% of job
positions in Xiamen [27], the samples could be used to serve
as the representative of typical commuters in Xiamen. The
interviewees were selected at their workplaces with random
sampling bymeeting the conditions: (1) permanent staff with
smartcards and (2) usually commute between home and their
workplaces. Thus, the definition of public transit commuters
as well as its response indicator “whether the bus service is
your first choicewhen commute” in the survey could be better
understood by the selected interviewees in a standard way.
The survey was designed as above mentioned, through which
the three independent attributes and the classification item
could bemeasured. A total of 900 questionnaires were issued.
Eventually, 532 valid samples were collected with 62% (330)
of which stated themselves as public transit commuters. The
reliability of the survey data was acceptable, since the value of
Cronbach's Alpha was greater than 0.8.

Regarding the descriptive statistics of the valid samples
(Table 2), 54.1% of the interviewees were female correspond-
ing with 45.9% of which were male. It was in line with
the census data of Xiamen in 2014. The age of the valid
interviewees mostly fell in the range between 18 and 60.
Almost half of the passengers were between 21 and 30 years
old (49.6%). Thus, it was also consistent with the charac-
teristics of commuters and meet the feature of smartcard
dataset excluding student cards and elder cards. Statistics
related to the occupation and incomeof the intervieweeswere
also calculated. It indicated that company employees (46.7%)
accounted for almost half of the samples. Correspondingly,
more than half of the interviewees earned less than 4500 yuan
(RMB) per month, whereas there was still 38.6% of the ones
had a monthly income of less than 3,000 yuan (RMB). The
average monthly salary of Xiamen in 2015 was 3,508 yuan
(RMB), according to the salary report of employees in 2016.
Thus, it implied that there was no potential bias from the
selected interviewees regarding the income.
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Figure 2: Basic structure of the NBC.

Smartcard Data

Card ID
Ave. first boarding time 
in workdays of last week

Ave. last boarding time 
in workdays of last week

Bus travel frequency of 
workdays in last week

95281803 08: 00-08: 30 19: 30-20: 00 4

95281978 07: 00-07: 30 11: 30-12: 00 5

Attributes vector F
which included in both
smartcard data and survey data

Survey Data

No.
Ave. first boarding time 
in workdays of last week

Ave. last boarding time 
in workdays of last week

Bus travel frequency of 
workdays in last week

Transit 
commuters?

312 07:00-07:30 17:30-18:00 5 Yes

553 09: 00-09: 30 13: 30-14: 00 3 No

Attributes vector F
Classification attribute C

Classification 
attribute C

Bayes probabilistic model
P ( C | F )

Naïve Bayesian Classifier
absent classification attribute c for each Card ID 
smartcard data is estimated by P ( C|F )

Figure 3: Flow chart of NBC for identifying commuters in smartcard data.

Then, the survey data were divided into two datasets: a
training dataset and a testing dataset. Each dataset contained
266 valid samples, respectively, 165 of which were stated
public transit commuters. By using the training dataset, the
conditional probability distribution 𝑝(𝑓

𝑁
| 𝐶) could be

derived from the proportion of interviewees having attribute
𝑓
𝑁
(N = 1, 2, 3) corresponding to each classification C (pub-

lic transit commuters or not), shown in Figures 4(a), 4(b), and
4(c). Since 𝑃(F) did not depend on C, it could be regarded
as a constant value when F was given. The distribution 𝑃(𝐶)
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Table 2: Descriptive statistics of valid samples.

Attributes Statistics
Gender Male (45.9%), female (54.1%)

Age (years) <=20 (1.2%), 21-30 (49.7%), 31-40 (24.0%),
41-50 (11.7%), 51-60 (11.9%), ≥60 (1.5%)

Occupation Company employees (46.7%), civil servant (6.8%), educator and researcher (8.8%), service worker (20.7%),
self-employed worker (14.6%), other (2.4%)

Monthly income
(Unit: RMB) <=3000 (38.6%), 3001-4500 (20.1%), 4501-6000 (25.6%), >6000 (15.7%)

Table 3: Test Results of the trained model.

Transit Commuters (165 samples) Non-Transit Commuters (101 samples)
Correctly estimated 151 87
Failure number 14 14
Accuracy Rate 92% 86%

could also be easily derived from the training data, which was
calculated here as follows: 𝑃(𝐶

𝑐𝑜𝑚𝑚𝑢𝑡𝑒𝑟
) = 62%.

Based on (1) and (2), when a new attribute vector F was
given, the conditional probability of each classification item
could be calculated. The item with the maximum probability
could be considered as the identified class. For example, the
probability of an interviewee being a public transit commuter
could be calculated as 𝑝(𝐶

𝑐𝑜𝑚𝑚𝑢𝑡𝑒𝑟
| F) = 97.4%, if his/her

attribute vector could be denoted as

F = {𝑓
1
= 07 : 00 : 00 − 07 : 30 : 00, 𝑓

2
= 16 : 30 : 00

− 17 : 00 : 00, 𝑓
3
= 5}

(3)

Then, the trained NBC model was tested by using
the testing dataset. Firstly, only the attribute vector F of
each interviewee was utilized in the NBC model to predict
their class values. Then the accuracy would be checked
by comparing the estimated class membership with the
actual classification of the interviewee [19]. Test results were
reported in Table 3.

For a total of 266 samples in the testing dataset,
the average accuracy rate could be calculated as [1-
(14+14)/266]∗100%=90%, including 14 failures in each of
classification items. Specifically, 92.0% of public transit
commuters (151 samples) and 86.0% of nonpublic transit
commuters (87 samples) were correctly identified. Since the
RootMean Square Error for the identification of public transit
commuters was less than 0.3 (0.291), the accuracy rate of the
trained NBC could be considered acceptable. Regarding a
smartcard dataset which containedM cardholders, when P of
themwere identified as commuters by using the NBC (P<M),
then the actual number of public transit commuters among
cardholders could be calculated according to (4), taking the
accuracy rate into account.

Actual Number = [𝑃 ∗ 0.92 + (𝑀 − 𝑃) ∗ 0.14] (4)

5.2. Results and Discussions. The NBC was employed to
identify the commuters in the smartcard dataset, which was
trained and tested by using survey data. The identification

results and some other statistics were listed in Table 4.
Eventually, nearly 290,000 cardholders (41.94% of the total)
were identified as public transit commuters. According to
the error analysis based on test instances in the last section,
the accuracy rate for this result of commuter-identification
should be around 92%, corresponding with the Root Mean
Square Error of 0.291. Regarding the identified commuters,
the statistics reflected that they averagely began their trips at
7:30-8:00 and swiped cards for their last-boarding at 17:30-
18:00, 87% of which swiped cards twice in a typical workday.
This was likely to represent a typical commuting trip chain,
where public transit riders took a bus from home to their
workplaces in the morning and then returned home in the
evening [6].

Then, in order to better improve and test the accuracy of
results, we cross-checked the bus route information of each
identified commuter who swiped cards twice per workday.
Due to the bus routes overlap, the demand of cardholders’
first travel may be fulfilled by different bus routes in a
period time. Nevertheless, during the 5-workday period, the
statistical results indicated that the bus routes corresponding
to commuters’ first boarding were stable, more than 93%
of which depended on the same bus route. In addition,
we also examined whether the bus route corresponding to
each commuter’s last trip per workday was contained in
his/her bus route dataset of first boarding. Since a typical
commuting chain reflected a home-work-home journey, the
bus route/metro line used in commuter’s last trip on the
workday should have a strong correlation with the ones of
his/her first boarding. The results indicated that 96% of the
assumed home-work-home journeys (2 trips per workday)
satisfied the above conditions.Thus, the primary ODdemand
of public transit commuters can be obtained by connecting
the first-boarding locations with the last-boarding locations
of the identified commuters who swiped cards twice per
workday. Since 87%of the identified commuters swiped cards
twice per workday, it implied that the planning and the
network structure of bus lines in Xiamen were really well
to fulfill the demand of commuters. However, the average
bus line overlap factor in Xiamen was 5.15 [27]. Thus, in
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Table 4: Identification results of the NBC model.

Transit Commuters Number of cards Ave. first-boarding time Ave. last-boarding time Travel frequency of workdays in a week
288153 7:30-8:00 17:30-18:00 4.2 days
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contrast, the above results also reflected that the existing bus
overlap lines have not played an effective role in supporting
the majority of commuting activities, which may lead to
an extreme crowding of bus routes on main public transit
corridors.

As for the analysis of primary OD demand of public
transit commuters, however, the AFC systemwas not initially
integrated with AVL system in Xiamen, China. Thus, the
boarding-location should be estimated by integrating the
two separate databases. In this paper, we employed the
estimation method of boarding location proposed in the
literature of Ma et al. [6]. It matched the transaction time
of smartcard data with the time of GPS data generated from
the bus with the same plate number and then inferred the
location where he/she got on board. Finally, it obtained the
station information by minimizing the distance between the
boarding-location and bus stations on the same direction of
the route. About 94% of the transaction records were finally
matchedwith theGPS data byminimizing the time difference
and then obtained the boarding-location information. Then,
based on the boarding-location information, the distribution
of commuters’ origins and destinations of commuting trips
could be obtained, shown in Figure 5. It was likely to depict
a whole picture of the distributions of their residence and
workplaces. Specifically, the results indicated that the spatial
distribution of public transit commuters’ origins was disperse
when compared with the distribution of their destinations.
Most of the public transit commuters lived in several core res-
idential communities. However, workplaces of public transit
commutersweremore concentrated in downtown and several
development zones. For instance, a large proportion of public
transit commuters worked at the downtown area near the
train station as well as the SM Square which was the CBD of
Xiamen. Another two concentration areas of employees were
located in the economic development zone in the northwest
and the Hi-Tech parks in the east of Xiamen.

6. Conclusion and Future Researches

This paper employed the Naı̈ve Bayesian Classifier to identify
public transit commuters based on both the smartcard data
and the survey data. A case studywas given inXiamen, China,
and the classifier was trained and tested by related survey data
collected from 532 valid samples. Then, it was applied to the
smartcard cardholders for the identification of public transit
commuters. The results indicated the following:

(i) The success rate of the identification of public transit
commuters was 92% in the test case. Nearly 290,000
cardholders were classified as public transit com-
muters. However, considering the error of the NBC
for identification of commuters, the actual number of
public transit commuters with smartcards in Xiamen
should be around 323,000.

(ii) Regarding the identified commuters, the statistics
reflected that they averagely began their trips at 7:30-
8:00 and swiped cards for their last-boarding at 17:30-
18:00, 87% of which swiped cards twice in a typical
workday.

(iii) The travel pattern reflected by the commuters who
swiped cards twice in a typical workday was likely
to represent a typical commuting trip chain, where
public transit riders took a bus from home to their
workplaces in the morning and then returned home
in the evening.

(iv) Through few transfers, bus lines inXiamenwere really
well to fulfill the demand of commuters. Conversely,
it also reflected that the existing bus overlap lines
have not played an effective role in supporting the
majority of commuting activities, which may lead to
an extreme crowding of bus routes on main public
transit corridors.

(v) The primary OD demand of public transit commuters
was obtained. It was found that home locations of
public transit commuters were more disperse than
their work locations in Xiamen. Most of the public
transit commuters lived in several core residential
communities. However, workplaces of public transit
commuters were more concentrated in downtown
and several development zones.

Nevertheless, based on the identified public transit com-
muters, travel pattern analysis of commuting activities could
be conducted in further studies. More and more smartcard
data related challenges may need to be addressed when
researching on deep analysis of public transit rider’s travel
behavior or fusion method with other data sources.
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