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Two common types of animal-vehicle collision data (reported animal-vehicle collision (AVC) data and carcass removal data) are
usually recorded by transportation management agencies. Previous studies have found that these two datasets often demonstrate
different characteristics. To accurately identify the higher-risk animal-vehicle collision sites, this study compared the differences
in hotspot identification and the effect of explanation variables between carcass removal and reported AVCs. To complete the
objective, both the Negative Binomial (NB) model and the generalized Negative Binomial (GNB) are applied in calculating the
Empirical Bayesian (EB) estimates using the animal collision data collected on ten highways in Washington State. The important
findings can be summarized as follows. (1) The explanatory variables have different effects on the occurrence of carcass removal data
and reported AVC data. (2) The ranking results from EB estimates when using carcass removal data and reported AVC data differ
significantly. (3) The results of hotspot identification are different between carcass removal data and reported AVC data. However,
the ranking results of GNB models are better than those of NB models in terms of consistency. Thus, transportation management

agencies should be cautious when using either carcass removal data or reported AVC data to identify hotspots.

1. Introduction

Animal-vehicle collisions (AVCs) have always been one of
research frontiers and hot topics. Van der Ree et al. [I]
indicated that mortality rate of AVCs is a major concern
across most of the developed countries, and it becomes more
serious in the developing countries in the next few decades.
It was estimated that the number of AVCs per year exceeded
1 million in the 1990s [2]. There are about 155-211 deaths,
13,713-29,000 injuries, and 1 billion dollars property loss per
year caused by AVCs [2-5]. The fact that the average number
of fatal AVCs was increasing year by year was inferred from
the record from the NHTSA Fatality Analysis Reporting
System (FARS) [4]. Previous studies found that the number of
wild animals decreased significantly due to AVCs [6-8], and
billions of wild animals died annually in the collision with
vehicle and other types of transportation mode [9, 10].

To implement reasonable management measures with
limited resources, hotspot identification (HSID), identifying
sites with higher collision risk as hotspots, is an important
task in the overall road safety improvement process. In recent
years, researchers have proposed various HSID methods, e.g.,
accident frequency (AF), accident rate (AR), accident reduc-
tion potential (ARP), and Empirical Bayesian (EB). Among
these methods, the EB method is adopted in this study
[11-15]. Previously, researchers have mainly investigated two
types of animal-vehicle collision data (number of carcass
removal and reported AVCs) [16, 17]. In order to reduce
the risk of AVCs and formulate effective countermeasures,
transportation safety researchers have tried various statistical
models to study the influence of quantitative explanation on
AVCs [18], such as Poisson regression [19-22], Negative Bino-
mial (NB) regression [23-27], Poisson-lognormal regression
model [28], and Gamma regression model [29, 30].
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Most previous AVCs studies considered either the
reported AVC data or the carcass removal data. For the
carcass removal data, Gkritza et al. [31] evaluated the effect
of deterministic factors on the occurrence frequency and
severity of AVCs using Poisson regression model and NB
regression model. For the reported AVC data, a stepwise
logistic regression model was used to identify the important
factors and the high risk collision points [32-34]. Seiler [35]
predicted the collision of nonincident control points through
the reported AVCs data using a multiple logistic regression
model. Researchers like Lao et al. [36] found a carcass found
on the road is likely caused by collisions with vehicles.
However, many previous studies found that the number of
the carcass removal differs from the number of the reported
AVCs [37-39]. The discrepancy of two AVC data sources is
explained as follows. First, not all the wild animals related to
the AVCs are died. Second, not all the carcasses are reported
through the media.

Meanwhile, there are several researchers focusing on the
difference and relationship between two datasets. A fuzzy
logic-based mapping algorithm is used to merge the two
incomplete datasets [36]. Lao et al. [40] developed a diagonal
inflated bivariate Poisson regression model to consider the
two datasets simultaneously. To predict AVCs risk, Visintin et
al. [41] proposed a model that considers two types of factors:
vehicles and animals.

However, few studies have compared the hotspot iden-
tification results obtained from the carcass removal and the
reported AVCs data. Thus, the primary objective of this
paper is to examine the difference in hotspot identification
and the effect of the explanation variables on the carcass
removal and the reported AVCs. To complete the objective,
both the traditional NB model and the generalized Negative
Binomial (GNB) are applied in calculating the EB estimates.
The dispersion parameter of the NB model is fixed, while
the GNB assumes the dispersion parameter varies from site
to site. This study analysed the crash data collected at ten
highways in Washington State.

The rest of the paper is organized as follows. The second
section introduces the methodology of the EB method based
on NB model and GNB model used in this study. The third
section provides the data description and preliminary data
analysis. The following section displays model results. The
reported AVC and the carcass removal are also compared by
the EB method based on the NB model and GNB model.
Finally, the model results are discussed and summarized.

2. Materials and Methods

The following two sections introduce Negative Binomial
model based and generalized Negative Binomial model based
EB methods, respectively.

2.1. Negative Binomial Model Based Empirical Bayesian
Method. The EB estimate of a site consists of two parts:
predicted number of crashes from similar sites and observed
number of crashes at the site. The prediction is usually based
on safety performance functions (SPFs), which commonly
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assume the traffic counts follow some probability distri-
butions. Until now, the NB method is the most popular
approach to estimate the EB values. And the weight factor is
determined by the dispersion parameter of the NB models.
The NB model has the model structure below. Poisson
distribution is used to assume the number of crashes during
a specific time period, which is defined by

A -1
p(yIA)= %() )

where
A = mean response of the observation.
If the Poisson rate is assumed to be gamma distributed,
the response variable follows a NB distribution. Thus, the NB
distribution can be seen as a mixture of Poisson distributions.

Hilbe [42] illustrated the whole derivation of the NB model.
The probability density function of the NB is defined below:
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where
y = response variable;
u = mean of the observation; and

« = dispersion parameter.

Compared to the Poisson distribution, the NB distribu-
tion is appropriate for handling the overdispersion (that is,
the variance is larger than the mean). For y = 0,1,2,..,, 00,
the mean of y is E[ y] = pand variance is VAR(y) = p+p’a. If
a —> 0, the variance equals the mean and the NB distribution
converges to the Poisson distribution.

The dispersion parameter « of the NB model is of great
significance in calculating the EB estimates. Thus, the EB
method is proposed to calculate the long term mean for the
site i by Hauer (1992) [43]. And the EB method is shown as
follows:

A
N AN
B =wit + (1-w;) y; G)

where
N

A
#;=predicted number of crashes per year for site i
estimated by EB method;

A
#;= predicted number of crashes per year for site i
expected by the SPF;

w; =1/(1+ oc[/)i): weight factor defined as a function

N
of #; and dispersion parameter «; and

y;=observed number of crashes per year at site i.
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TABLE 1: Data collection information.

Data Data Time Covered Date Received Providing Agency

Reported AVCs Data 2000-2006 Apr. 2008 (Jan. 2009 update) HSIS/ WSDOT

Carcass Removal Data 1999-2007 Jul. 2008 WSDOT

Roadlog Data 2002-2006 Apr. 2008 (Jan. 2009 update) HSIS

2.2. Generalized Negative Binomial Model Based Empirical
Bayesian Method. Traditionally, the NB models assume fixed
dispersion parameter « (i.e., all sites share the same disper-
sion parameter), and it is used to calculate EB estimates.
However, in recent years, some studies have found that the
dispersion parameter o is related to the explanatory vari-
ables. They also discovered that GNB model presents better
statistical adaptive performance and describes the dispersion
phenomenon better [25, 44]. That is to say, the varying
dispersion parameter has an impact on the EB estimates and
may potentially improve the EB estimates [45]. For the GNB
model, the difference of the EB estimates between the carcass
removal and the reported AVCs is shown in this section.

When estimating the EB value, the weight factor will
be influenced by the selection of the functional form. As
discussed in a previous study [46], we considered several dif-
ferent functional forms to calculate the dispersion parameter
«. The functional forms representing dispersion parameter of
GNB model are shown as follows:

Model 1: «; = y,L; (4)
Y

Model 2: a; = I (5)

Model 3: a; = y,L" (6)

where
o;= the dispersion parameter at segment i;
L; = the segment length in miles for segment i; and

y = (yoo 1) = coefficients to be estimated.

3. Data Description and Preliminary
Data Analysis

The collision dataset used in this study was collected at ten
highways (190, US2, SR8, SR20, US97, US101, US395, SR525,
US12, and SR970) in Washington State. This dataset includes
the reported AVC and the carcass removal data over a five-
year period from 2002 to 2006 [40]. In our study, 10475
road segments are chosen as the research targets. That is,
the number of the count is 10475. According to specific
road characteristics (i.e., median width, lane width, and
shoulder type), the highway is divided into road segments
with different length. Table 1 shows the data acquisition
time covered by the three main datasets used in this study.
Reported AVCs dataset is collected from traffic collision
records of Washington State Department of Transportation
(WSDOT) and Highway Safety Information System (HSIS).

TABLE 2: Frequency distribution of reported AVCs and carcass
removal in the Washington data.

Crashes Observed frequency of ~ Observed frequency of
reported AVCs carcass removal

0 9168 8558
1 840 705
2 235 329
3 101 201
4 57 120
5 27 92
6 20 69
7 10 46
8 9 47
9 3 34
10 2 25
11 0 29
12 1 21
13 0 27
14 0 11
15 1 14
16 0 8
17 0 15
18 0 13
19 0 12
20 0 7
21-25 1 33
26-30 0 23
31-40 0 15
40+ 0 21

Carcass removal dataset is gathered from the maintenance
files recorded by the maintenance workers of WSDOT.

However, compared with the actual number of colli-
sions, two datasets are both underreported. The reason is
described as follows. (1) For reported AVCs dataset, collision
is recorded only when its cost is larger than a threshold.
Moreover, due to human factors of drivers, not every collision
is reported to police officers. (2) For carcass removal dataset,
some carcasses are hidden in roadside facilities and difficult
to find. Another cause is that not each carcass is removed
by professional maintenance workers. Thus, although two
datasets overlap in some extent, there is a great discrepancy
shown in Table 2 between two datasets.



4
100% Distribution of Binary Variables
6 . . . . . .
90%
80% - . - .
70% - . . .
60% -
50% -
40% -
30% -
10%
0% -
o"‘o . CACE
S Q_o @x & ¢ A
< & fzr‘ @0
O& @O 2
Ao ¥
m Yes
No

FIGURE 1: The distribution of binary variables in the defined
segments.

Table 3 provides the summary statistics of characteristics
for reported AVCs and carcasses in the Washington data.
Apparently, the reported AVCs and carcass removal datasets
differ significantly. And the number of carcass removal
records is typically more than the numbers of reported AVCs
data. Table 3 also describes the explanatory variables used in
the models. Some variables (restrictive access control, rural
or urban and terrain type, etc.) are binary variables. The
percentage for binary variables is 43.75%. Figure 1 describes
the distribution of binary variables in the defined segments.
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Annual average daily traffic (AADT) is scaled into thousands
of vehicles. The model also takes three animal habitats into
consideration. These three kinds of habitats include the
white-tailed deer habitat, mule deer habitat, and elk habitat,
since the deer and the elk are the most common animals in
the AVC researches in Washington State.

Table 3 also shows the mean, maximum, minimum, and
standard deviation (SD) of each variable. And the distribution
of zero observations is provided in Table 4. It can be observed
from Tables 3 and 4 that both the number of reported AVCs
and the number of carcasses per section of a highway are
overdispersed.

4. Results and Discussion

The modelling results for the carcass removal data and
reported AVC data are provided in this section. This section
is divided into two parts. In the first part, the NB model
with fixed dispersion parameter was utilized to compare the
difference between the carcass removal and the reported AVC
data when estimating the number of crashes for a specific site.
In the second part, the difference is analysed using the GNB
model (i.e., NB model with a varying dispersion parameter).

4.1. Comparison of the Reported AVC and the Carcass Removal
Data Using the NB Model with Fixed Dispersion Parameter. In
the NB model, the mean functional form is shown below:

/30L ~Fﬁ1 eﬁz # AC;+ B3 #SLi+ Py # TP+ Ps# NL;+ e TR+ P75 T M+ By # LW+ Po+ LSW+ 1o % RSWit By # Wit By # By 135 M+ By 4 AT+ 15+ MW 7)
it

where

u;= predicted numbers of collisions at segment i per
year;

L;=roadway length in miles for segment i;

F; =flow (annual average daily traffic over five years)
on segment i;

AC; =restrictive access control for segment i;
SL; =posted speed limit for segment i;
TP, = truck percentage for segment i;

NL; =total number of lanes for both directions for
segment i;

TR, =terrain type of rolling for segment i;

TM,
LW,

LSW; =left shoulder width in feet for segment i;

; =terrain type of mountain for segment i;

=lane width in feet for segment i;

RSW; = right shoulder width in feet for segment i;
W, =white-tailed deer habitat for segment i;

E; =elk habitat for segment i;
M; =mule deer habitat for segment i;
AT, = area type (rural or urban) for segment i;

MW, = median width for segment i; and,

ﬁ (ﬁO’ ﬁl’ /32’ ﬁS’ ﬁ4’ /35’ /36’ ﬁ7’ ﬁS’ /39’ ﬁlO’ ﬁll’ﬁlZ’

Bis> Bias Brs) | are coefficients to be estimated.

Tables 5 and 6 show the NB modelling results without
insignificant variables for carcass removal and reported
AVCs, respectively. For the carcass removal data, the insignif-
icant variables are truck percentage, terrain type of mountain
and right shoulder width. However, for the reported AVCs,
terrain type of rolling, right shoulder width, and rural or
urban type are insignificant. In summary, these insignificant
variables should be eliminated when obtaining the EB esti-
mates by NB model. On the other hand, restrictive access
control is the most significant variable of reported AVCs,
while the white-tailed deer habitat is the most significant
variable of carcass removal.

For the possibility of the reported AVCs, AADT, speed
limit, left shoulder width, white-tailed deer habitat, elk
habitat, and mule deer habitat have a positive effect. And
AADT, speed limit, terrain type of rolling, lane width, left
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TABLE 3: Summary statistics of characteristics for reported AVCs and carcasses in the Washington data.

Variable code Variable Minimum Maximum Mean SD'
x? Number of reported AVCs per segment* 0 22 0.24 0.81
Y Number of carcasses per segment® 0 95 0.94 3.88
z1 Annual average daily traffic (in thousands) 0.31 148.8 13.85 19.76
z2 Restrictive access control (Yes: 1; No: 0) - - 0.24 -
73 Posted speed limit (mph) 20 70 52.76 10.79
74 Truck percentage (%) 0 52.28 14.05 8.29
75 Total number of lanes for both directions ¢ 9 2.79 1.24
26 Roadway length (mile) 0.01 6.99 0.22 0.4
27 Terrain type (rolling: 1; otherwise: 0) - - 0.720 -
z8 Terrain type (mountainous: 1; otherwise: 0) - - 0.096 -
79 Lane width (feet) 10 20 12.5 1.88
z10 Left shoulder width (feet) 18 2.44 2.04
zI11 Right shoulder width (feet) 0 20 4.03 3.52
712 White-tailed deer habitat (yes: 1; no: 0) - - 0.31 -
713 Mule deer habitat (yes: 1; no: 0) - - 0.51 -
z14 Elk habitat (yes: I; no: 0) - - 0.31 -
z15 Median width (feet) 0 60 7.9 15.62
716 Rural or Urban (urban: 0; rural: 1) - - 0.758 -

Note."SD = Standard Deviation.
*Reported AVC data record.

®Carcass removal data record.
“Dependent variable.

4Six out 0f 10,475 segments have only one lane.

- = not applicable.
TaBLE 4: The distribution of zero observations in the defined segments.
Data Number of the count Number of zero observations Percentage of zero observations (%)
Collision Report Data 10475 9168 8752
Carcass Removal Data 10475 8558 81.69

shoulder width, white-tailed deer habitat, and elk habitat have
a positive effect on the possibility of the carcass removal.
AADT is found to increase the likelihood of both carcass
removal and reported AVCs. The exposure between traffics
and animals is main cause of animal-vehicle collisions. As
mentioned above, it is more significant for reported AVCs
than carcass removal. The cause of this is described as follows:
if there is a heavier traffic flow, it is more likely that the AVCs
can be reported timely since more people can notice the AVC
occurrence. The coefficient of speed limit is positive, and it
is less significant for reported AVCs than carcass removal.
Under the condition of high speed limit, drivers prefer to
choose a higher speed, and the drivers need a longer stopping
distance. Thus, the driver is unlikely to stop at a safe distance
to avoid a collision with an animal. As the truck percentage
increases, the number of collisions will decrease. First, when
a truck is traveling, it may cause a lot of noise to drive away
the surrounding animals. Second, compared to smaller cars,
trucks have a wider view. Moreover, drivers are likely to drive
more carefully when more trucks appear. Consequently, the
number of crashes will decline. Restrictive access control has
a decreasing effect on the possibility of the carcass removal

and the reported AVCs. The number of crashes may be
smaller on the road with restrictive access control. This is
because that the restrictive access control limits the animal
activities. Thus, it is difficult for animals to cross the road. Asa
result, the number of collisions will decrease. Moreover, it is of
greater significance for reported AVCs than carcass removal.

Total number of lanes is found to decrease the likelihood
of both carcass removal and reported AVCs. It is more
significant for carcass removal than reported AVCs. This may
be because the road with more lanes is more difficult for
animals to cross. And the more lanes, the easier it is to find
carcass removal. Left shoulder width is found to increase
the likelihood of both carcass removal and reported AVCs
and the effect of left shoulder width is similar for carcass
removal and reported AVCs. White-tailed deer habitat and
elk habitat both have increasing effects on the possibility
of the carcass removal and the reported AVCs. The finding
demonstrates that collisions are prone to happen in the site
with more animals. In addition, white-tailed deer habitat is
less significant for reported AVCs than carcass removal, while
elk habitat is of greater significance for reported AVCs than
carcass removal.



TABLE 5: Modelling results of carcass removal for NB models with
the Washington data.
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TaBLE 7: Differences in ranking between the carcass removal and the
reported AVC using the NB-based EB estimates.

Estimates Coef. SE = Differences in ranking Difference and percentage
Intercept In(3)) -7.065 0.501 Non-identical ranking 10,465(99.90%)
In(Average daily traffic) 3 0.419 0.044 ﬁ)aonkm%[ .dlfference beyond 9,824 (93.78%)
Restrictive access control f3, -0.689 0.108 positions

Posted speed limit f3; 0.051 0.003
boh drecrams o049 0o
Terrain type of rolling 0.251 0.067
Lane width 0.067 0.017
Left shoulder width 3, 0.105 0.017
White-tailed deer habitat 1271 0.061
Bu

Elk habitat f;, 0.351 0.061
Mule deer habitat f,; -0.140 0.062
Rural or Urban f3;, -0.421 0.063
Median width f; -0.014 0.001
fo4 1.158 0.038
AIC 15714.700

BIC 15816.290

Note.x SE = standard error.

TABLE 6: Modelling results of reported AVCs for NB models with
the Washington data.

Estimates Coef. SEx

Intercept In(f3,) -7.810 0.641
In(Average daily traffic) f3, 0.668 0.049
Restrictive access control f3, -1.088 0.111
Posted speed limit f3; 0.031 0.004
Truck percentage 3, -0.037 0.004
Pt s o
Terrain type of mountain -0.486 0116
B

Lane width -0.080 0.029
Left shoulder width 3, 0.123 0.016
White-tailed deer habitat 0360 0.063
By

Elk habitat f;, 0.639 0.060
Mule deer habitat f3,, 0.125 0.062
Median width f; -0.014 0.001
o4 0.024 0.083
AIC 8454.307

BIC 8555.890

Note.x SE = standard error.

Terrain type of rolling has an increasing effect on the car-
cass removal, while terrain type of mountain has a decreasing

Ranking difference beyond

0,
500 positions 7,591 (72.46%)

Ranking difference beyond

0,
1,000 positions 5189 (49.53%)

Note. There are 10,475 road segments in the Washington data.

effect on the reported AVCs. The cause of this phenomenon
is shown as follows: in roll or mountain area, there are more
animals than in level terrain. Another cause is that collision
location is likely to be hidden and difficult to find in roll or
mountain area [47]. Rural or urban type has a decreasing
effect on the carcass removal. This may because that the
carcass in urban area is more likely to be found. Median
width decreases the likelihood of both carcass removal and
reported AVCs and the effect is similar for carcass removal
and reported AVCs. With wider median, animal activities are
limited and the likelihood of crashes may decrease on the
road.

Figure 2 shows the comparison of EB estimates between
carcass removal and the reported AVCs. As demonstrated
in Figures 2(a) and 2(b), for carcass removal and reported
AVCs data, the expected number of collision and the weight
factor show a similar association pattern. And the expected
number of collision is inversely proportional to the weight
factor. That is, smaller weight parameter is related to larger
expected number of collision. In addition, since the disper-
sion parameter o estimated from carcass removal data is
greater than the dispersion parameter o estimated from the
reported AVC data, the weight parameter for reported AVC
data is generally larger than the weight parameter for carcass
removal data. Consequently, the EB estimates from carcass
removal data will put more weight on the observed number of
carcass removal data than the EB estimates from the reported
AVC data.

Figure 3 shows the difference in EB estimate ranking
results between the carcass removal and the reported AVC
data. Smaller values of the reported AVCs ranking or the
carcass removal ranking mean that the site is more dangerous.
If both the carcass removal data and the reported AVC data
have the similar effect on predicting the number of crashes,
the distribution of the scatter in Figure 3 will be concentrated
to the red line (i.e., y = x). It can be easily seen from the figure
that when using the carcass removal data and the reported
AVCs data to identify the hotspots, respectively, the results
are very different. Further ranking comparison results are
provided in Table 7. Notable difference is that the ranking
differs significantly. For example, 49.53% of the results have
a ranking difference beyond 1,000 positions between the
carcass removal data and the reported AVCs data (note that
the number of road segments in the Washington data is
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10,475). On the whole, the type of the data will influence the ~ 4.11. Test I. Data Consistency Test. The number of the same

identification of dangerous sites. sites identified as hotspots using the carcass removal data and
In order to further measure the differences between the  the reported AVC data is used to evaluate the performance of

carcass removal and the reported AVC data in identifying the ~ two types of data. The number mentioned above is defined in

hotspot, two evaluation tests are used, which are similar to

the tests proposed by Cheng and Washington [48]. T; = {kp—en Kpecns 1> - -

: kn } carcass



TaBLE 8: The number of the same sites identified as hotspots using
the carcass removal data and the reported AVCs data.
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TaBLE 9: The total ranking difference of the hotspots identified using
the carcass removal data and the reported AVCs data.

Threshold level a Number and percentage

Threshold level ¢ Sum

The top 1% of the hotspots(105) 32(30.48%) c=1% using the carcass removal data 67,875
The top 5% of the hotspots(524) 219 (41.79%) c=1% using the reported AVCs data 51,543
The top 10% of the hotspots(1,047) 538 (51.38%) ¢=5% using the carcass removal data 406,430
Note.There are 10,475 road segments in the Washington data. c=5% using the reported AVCs data 407,258
¢=10% using the carcass removal data 989,728
=100 1
A { kn_m’ kn—cn+1’ o kn}reported c=10% using the reported AVCs data 797,760

(8)
where

T; is the number of the same sites identified as
hotspots using the carcass removal data and the
reported AVC data;

n is the total number of sites;
¢ is the threshold of hotspots; and
k is the site ID.

The test process includes comparison across two types of
AVC datasets, and we consider three cases in terms of the
number of hotspots selected. The three cases correspond to
considering 1%, 5%, and 10% of all sites as hotspots (i.e., ¢
=[0.01,0.05,0.10]). For example, in this study, when ¢ =0.01,
a total of approximately 105 sites (i.e., about 1% of the 10,475
sites) will be considered as hotspots.

Table 8 shows the result of test I in EB estimate ranking
results between the carcass removal and the reported AVC
data. If the EB estimates from the carcass removal data and
the reported AVC data yield similar HSID results, the number
of hotspots will be equal to the threshold and the percentage
will be concentrated to 100% (note that the number of road
segments in the Washington data is 10,475). It can be easily
seen from the table that when using the carcass removal
data and the reported AVCs data to identify the hotspots,
respectively, the results are different significantly.

4.1.2. Test II. Total Rank Differences Test. Taking the ranking
difference into account, test II calculates the total ranking
difference of the hotspots identified using the carcass removal
data and the reported AVC data. Note that only ¢ xn hotspots
are considered. The test statistic for test IT is shown in

n

TI = Z (5'R (kcarcass) -R (kreported)) 9)

k=n—cn
where

T; is the total test statistic;

R (Koareass) 15 the rank of site k obtained using the
carcass removal data;

R (K eportea) is the rank of site k obtained using the
reported AVC data; and,

k is the site ID.

Note. There are 10,475 road segments in the Washington data.

The total ranking difference of the hotspots identified
using the carcass removal data and the reported AVC data
for different threshold levels c is provided in Table 9. For
example, the sum of difference in ranks is up to 989,728 for
threshold level 10% using the carcass removal data to identify
the hotspots. The sum of difference in ranks using the carcass
removal data is larger than that using the reported AVCs
data when c= [0.01,0.1]. Moreover, when ¢ =0.05, there is
a slight difference between the two datasets. On the whole,
the analysis in this part indicates that the result will be one-
sided and inaccurate if we identify the hotspots only using
the carcass removal data or the reported AVCs data. As a
result, the type of the data will influence the identification of
dangerous sites.

4.2. Comparison of the Carcass Removal and the Reported
AVC by EB Method Based on the GNB Model. With the
approach described in previous sections, the two datasets
were analysed using GNB-based EB method with three
models (i.e., (4)-(6)). Tables 10 and 11 show the modelling
results with taking out insignificant variables for GNB model
with the carcass removal data and the reported AVCs data,
respectively. As can be seen from Tables 10 and 11, Model
3 outperforms the other two models, since Model 3 has
the lowest Akaike information criterion (AIC) and Bayesian
information criterion (BIC) values.

The GNB-based EB estimates for carcass removal and the
reported AVCs are also compared. As observed in Figures
4(a) and 4(b), the two datasets have similar associations
between the modelling values and the weight factor. In other
words, the shape of the scatter distribution in the figure
is approximately similar. When the modelling value E(y;)
is fixed, the weight factor of the carcass removal is lower
than that of the reported AVCs. We can find that a varying
dispersion parameter will influence the weight factor for the
crash prediction model. In addition, when adding a varying
dispersion parameter to the NB model, there will be a similar
influence on both the reported AVCs data and the carcass
removal data.

Figure 5 presents the comparing results of hotspot iden-
tification between the reported AVC data and the carcass
removal data by EB method based on the GNB model. The
depth of the color in the figure represents the density of the
point. As shown in Figure 5, the link between the two kinds of
databased on the GNB model is more positive than that based
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TABLE 10: Modelling results for the GNB model using the carcass removal data.

Model 1 Model 2 Model 3

Estimates Value SE Value SE Value SE
Intercept In(f3,) -5.994 0.483 -8.842 0.538 -8.416 0.529
In(Average daily traffic) 3, 0.299 0.042 0.652 0.041 0.587 0.044
Restrictive access control 3, -0.837 0.097 -0.721 0.112 -0.702 0.112
Posted speed limit 3, 0.053 0.003 0.051 0.004 0.051 0.004
Truck percentage f3, -0.009 0.003 - - - -
Total number of lanes f3; -0.413 0.036 -0.497 0.042 -0.491 0.042
Terrain type of rolling 0.292 0.060 0.200 0.064 0.211 0.066
Lane width S 0.064 0.014 0.074 0.026 0.074 0.023
Left shoulder width 3, 0.087 0.014 0.104 0.019 0.109 0.018
White-tailed deer habitat f3;, 1.252 0.053 1173 0.056 1.212 0.059
Elk habitat f3,, 0.305 0.053 0.320 0.057 0.341 0.060
Mule deer habitat f,, -0.123 0.055 - - - -
Rural or Urban f3;, -0.360 0.054 -0.745 0.060 -0.641 0.064
Median width f3;5 -0.014 0.001 -0.010 0.001 -0.012 0.001
Intercept In(y,) 1.970 0.047 0.082 0.035 0.407 0.049
Segment Length y, - - - - -0.702 0.030
AIC 17,334.400 15,343.670 15,250.650
BIC 17,443.240 15,437.990 15,352.240
Note. - = not applicable.

TABLE 11: Modelling results for the GNB model using the reported AVCs data.

Model 1 Model 2 Model 3

Estimates Value SE Value SE Value SE
Intercept In(f3,) -7.710 0.625 -7.419 0.619 -7.795 0.641
In(Average daily traffic) 3 0.663 0.047 0.690 0.046 0.666 0.049
Restrictive access control f3, -L115 0.105 -1.041 0.106 -1.092 0.111
Posted speed limit 3, 0.031 0.004 0.028 0.004 0.031 0.004
Truck percentage 3, -0.037 0.004 -0.038 0.004 -0.037 0.004
Total number of lanes 35 -0.141 0.035 -0.167 0.036 -0.154 0.037
Terrain type of rolling 34 - - -0.239 0.071 - -
Terrain type of mountain f3, -0.537 0.112 -0.651 0.122 -0.492 0.116
Lane width S -0.086 0.028 -0.086 0.029 -0.081 0.028
Left shoulder width 3, 0.127 0.015 0.111 0.017 0.123 0.016
White-tailed deer habitat f3; 0.327 0.059 0.422 0.056 0.354 0.063
Elk habitat 3, 0.638 0.057 0.616 0.056 0.639 0.060
Mule deer habitat f3,, 0.162 0.059 - - 0.132 0.062
Rural or Urban S, - - -0.138 0.063 - -
Median width f3;5 -0.016 0.001 -0.011 0.001 -0.014 0.001
Intercept In(y,) 0.194 0.104 -1.135 0.093 0.088 0.095
Segment Length y, - - - - 0.125 0.096
AIC 8,507.420 8,621.486 8,454.546
BIC 8,609.002 8,730.324 8,563.385

Note. - = not applicable.
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FIGURE 4: Weight factors produced by GNB model.
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F1GURE 5: Comparison in HSID ranking by the carcass removal and the reported AVC using GNB model.

on the NB model. Moreover, the comparing results provided Similar to the NB model, two methods mentioned above
in Table 12 indicate that there is significant difference in the = are used to measure the differences between the carcass
ranking between the reported AVCs and the carcass removal. ~ removal and the reported AVC data in identifying the
Overall, the gap between the two kinds of data is narrowing  hotspot. Table 13 presents the comparison results of hotspot
when using the GNB model. identification between the reported AVC data and the carcass
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TaBLE 12: Differences in ranking between the reported AVC and the
carcass removal using the GNB-based EB estimates.

Differences in ranking Difference and percentage

10,458 (99.83%)

Non-identical ranking

Ranking difference beyond

0,
100 positions 9,328 (89.05%)

Ranking difference beyond

0y
500 positions 6,403 (61.12%)

Ranking difference beyond

0
1,000 positions 3,868 (36.92%)

Note. There are 10,475 road segments in the Washington data.

TaBLE 13: The number of hotspots identified by both the carcass
removal data and the reported AVCs data using the GNB-based EB
estimates.

Threshold level «

The top 1% of the hotspots (105)
The top 5% of the hotspots (524) 438 (83.58%)
The top 10% of the hotspots (1,047) 863 (82.42%)
Note. There are 10,475 road segments in the Washington data.

Number and percentage
82 (78.09%)

TABLE 14: The sum of difference in ranks over all identified sites for
threshold level o using the carcass removal data and the reported
AVC data using the GNB-based EB estimates.

Threshold level ¢ Sum
c=1% using the carcass removal data 2,335
c=1% using the reported AVCs data 1,426
c=5% using the carcass removal data 45,029
¢=5% using the reported AVCs data 20,914
c=10% using the carcass removal data 218,068
c=10% using the reported AVCs data 88,179

Note. There are 10,475 road segments in the Washington data.

removal data by the EB method based on the GNB model. As
shown in Table 13, the percentage based on the GNB model
is greater than that based on the NB model; that is, the link
between the two kinds of data based on the GNB model is
more positive. Moreover, the comparing results provided in
Table 14 indicate that there is a significant difference in the
ranking between the reported AVCs and the carcass removal.
Furthermore, the sum of difference in ranks using the carcass
removal data is different from the sum of difference in ranks
using the reported AVCs data. Overall, the gap between the
two kinds of data is narrowing when using the GNB model.

5. Conclusions

This paper has examined the difference between the reported
AVCs data and the carcass removal data in identifying
hotspots and the influence of explanatory variables. To
accomplish the objectives of this study, the EB method based
on the NB model and GNB model, separately, is used to
model the animal crash data collected in Washington State.
The important conclusions can be summarized as follows.
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(1) Some explanatory variables have different effects on the
occurrence of carcass removal data and reported AVC data.
(2) Based on the modelling results from NB and GNB models,
the ranking results from EB estimates when using the carcass
removal data and reported AVC data differ significantly. (3)
The results of hotspot identification are significantly different
between the carcass removal data and the reported AVC data.
However, the ranking results with GNB models are relatively
more consistent than that of NB models. Thus, transportation
management agencies should be cautious when analysing the
carcass removal data or reported AVC data to identify AVC-
prone sites.

In this study, the EB method based on the NB model and
GNB model is applied to compare the HSID results using
the carcass removal and the reported AVCs data collected at
ten highways in Washington State. In the future, the AVC
datasets with more variables (i.e., road classification, etc.)
from other sites will be collected to validate the findings
from this study. In addition, spatial models should also be
developed to analyse the carcass removal and the reported
AVCs data [49].
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