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An approach is presented to determine the most likely tour distributions and model behavior for investigating drayage truck 
movements in a coastal region. ­is was done by implementing a revised form of entropy maximization based on truck tours to 
model and better understand drayage truck tour behavior at the San Pedro Bay Ports (SPBPs) complex in Southern California. ­e 
drayage trucks at the SPBPs have features that are distinct from other commercial trucks. ­e tour-based entropy maximization model 
proposed in this paper provides an opportunity to incorporate periodically updated GPS data collected in Southern California into 
a large-scale tour-based model. With the dataset, four models were estimated by cargo movement: (1) year-based, (2) low period, 
(3) medium period, and (4) high period models. ­e �ndings were consistent with the tour patterns varying by season and by cargo 
movement. Furthermore, the medium period, which represented relatively steady cargo movement, indicated a better MAPE (mean 
absolute percent error) than did other models. ­is proposed approach provides a signi�cant advantage in that the most recent 
touring information obtained from advanced technologies could be directly applied to the tour-based model and subsequently 
used to assess various strategies.

1. Introduction

Freight truck movements are complex and distinct owing to 
the fact that their pro�ts and logistics decisions are greatly 
a�ected by the increase in the number of trips. ­e extensive 
trip-chaining behavior of freight transportation cannot be rep-
resented without considering the dependencies among the 
trips. ­is is because these dependencies are heavily linked to 
the nature of the freight transportation utility and logistics 
decisions. ­is is the reason why there is no way to re�ect a 
change in the origin of the following trip in the four-step model, 
which employs a trip-based approach. For example, let us 
assume that several trip destinations change as a result of 
changes to transportation policies. Consequently, analysis 
results using the trip-based approach represented by the four-
step model would inaccurately show changes to a subset of trips 
that make up the trip chain. In the same vein, Ferdous et al. [1] 
argued that the tour-based model performed slightly better 
than the trip-based model in regional-level comparisons.

To properly capture the trip-chaining behavior of 
commercial vehicle movements, several tour-based model 
approaches have been proposed. Tour-based models have been 
developed using an optimization concept [2–5], set of rational 
discrete choice models [6, 7], phenomenological model [8], 
and activity-based model concept [4, 5, 9, 10]. Besides 
modeling, truck trajectory-tracking research has been 
attempted with various purposes to assess the impact of truck 
operations [11, 12]. Most tour-based models are built on the 
decision-making process behind vehicle operations or 
maximizing vehicle operational utilities. Insu£cient data are 
available for models with large study boundaries because these 
models require abundant data in the form of detailed truck 
diaries that indicate the purpose and location of each truck 
stop. Furthermore, an enormous amount of computation time 
is typically required. For these reasons, elaborate analysis of 
tour-based models is di£cult to duplicate for large-scale 
studies, such as freight models for metropolitan planning 
organizations (MPOs) and state agencies.
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From another point of view, tour-based approaches at the 
network level [13–16] have been introduced to forecast urban 
freight movements based on trip-chaining characteristics and 
are more tractable because these require a smaller amount of 
data and provide faster computational time. Although many 
types of tour-based models were developed and practical 
application was attempted, none of the models were success-
fully implemented. To predict the effects of policy and plan-
ning on freight transportation and traffic flow, tour-based 
approaches need to be evaluated and updated with periodically 
observed data. Given the limited information of model tours, 
the theoretical framework of the proposed modeling in this 
study is based on an entropy-maximizing formulation. Our 
contribution lies in formulating a model that generates the 
most likely distribution of tours and represents behavior for 
investigating drayage truck movements in a coastal region. In 
other words, this study describes a tour-based entropy maxi-
mization formulation to estimate the flow of commercial vehi-
cles on each tour using trip production/attraction by each 
node, sequentially visited nodes for each tour, and tour imped-
ance from GPS data collected in the San Pedro Bay Ports 
(SPBPs) study area in Southern California. We carefully inter-
pret the parameters corresponding to tour impedance and 
some of the major freight-related facilities. �e insights and 
potential uses of a tour-based entropy maximization model of 
clean port trucks (“Clean trucks” (meeting 2007 model year 
emission standards) utilized public funds to replace older pol-
luting drayage trucks at the SPBPs.) at the SPBPs generated 
from sensitivity analysis are also discussed. Finally, the capa-
bility of forecasting demand and converting the current four-
step model for heavy-duty vehicles in Southern California to 
a tour-based model is evaluated and discussed.

�is paper is organized as follows. First, we review a vehi-
cle tour-based model, entropy maximization, and primal dual 
method for a convex optimization (PDCO) algorithm, which 
is followed by a description of SPBP clean truck GPS tour data. 
�en, the formulation of the tour-based entropy maximization 
model and calibration of the proposed model are presented. 
Finally, a potential application in freight-demand forecasting 
is discussed to conclude our paper.

2. Literature Review

In contrast with passenger transportation models, freight 
transportation models must address different types of com-
plexities in behavioral and economic features. First, through 
freight transportation demand analysis, multiple factors such 
as volume, truck type, weight, length of trip chains, and num-
ber of trips have to be thoroughly considered. Second, oppor-
tunity costs for different commodities must also be considered. 
�e difficulty is that such characteristics are not fully observ-
able by transportation planners and modelers. �erefore, truck 
models play an essential role in linking commodity-based 
models and the need in MPOs to explain truck movements in 
detail. For example, in Southern California, a special generator 
model within the four-step approach was developed by the 
Southern California Association of Governments (SCAG) for 
heavy-duty vehicles and used by transportation planners for 

assistance in quick and rational decision making [17]. It is 
capable of capturing the number of empty and loaded truck 
trips directly in and out of ports; however, the remaining trips 
within a given tour are not sufficiently estimated.

�erefore, much effort has been invested into developing 
vehicle tour-based models. Hunt and Stefan [8] applied a ran-
dom utility discrete choice model to a truck tour model using 
truck diary data with the “growing” tour construction 
approach. To be more specific, the tour-based microsimulation 
framework consists of six aspects: tour generation, purpose of 
vehicle and tour, tour start, purpose of next stop, next stop 
location, and stop duration. Each aspect of this framework is 
determined by logit choice models. Figliozzi [4] and Figliozzi 
et al. [5] used a VRP (vehicle routing problem) to analyze the 
impacts from congestion and technological changes. An inter-
esting finding was that the percentage of empty trips does not 
influence the overall efficiency of the generated tours, which 
goes against the conventional wisdom that empty trips are 
symptomatic of sub-optimal and inefficient resource allocation 
[16]. Donnelly [3] proposed a commercial vehicle tour model 
by solving the traveling salesman problem of the empty back-
haul. Wang and Holguín-Veras [18] also developed a hybrid 
micro-simulation modeling framework to generate goods-re-
lated vehicle tours that satisfy a known commodity flow O/D 
matrix in an urban freight network.

In contrast to the above-mentioned disaggregate 
approaches [3–9, 14–16, 18, 19], a few studies at the aggregate 
level have also been conducted. Maruyama and Harata [13] 
utilized a network equilibrium analysis that accounts for 
trip-chaining behavior. Although the model uses simple net-
work examples, the issues and potential applications were not 
extended in forecasting freight demand. Wang and Holguín-
Veras [20] adopted an entropy maximization method to 
develop an aggregate tour-based model for urban commercial 
vehicle movements in an inland city. By using truck travel 
diary survey data, the study demonstrated that observed tour 
sets are limited to a couple of days, and each truck has largely 
one tour each day. Using various factors related to businesses 
operations, this data from the sampled day were then expanded 
to the population. On the other hand, You and Ritchie [21] 
showed that coastal drayage trucks tended to have more than 
one tour per day, and many tours contained repetitive patterns 
that generate plenty of similar tours but not the exact same 
tour (see Figure 1). According to Ruan et al. [19], urban com-
mercial vehicles and long-haul commercial vehicles differ in 
several aspects: (1) shipment of goods versus delivery of ser-
vice, (2) distance traveled, (3) multiple stops, and (4) consol-
idated visits. However, drayage truck movements are distinct 
from both urban commercial vehicles and long-haul vehicles. 
In this study, a year of drayage truck GPS data provided a 
number of tour sets, which include enough pools and varieties 
of movement types to estimate future tour sets. �e only 
exception to this was whether new attractions and production 
locations were newly introduced.

Entropy maximization is one of the theoretical bases for 
trip-based transportation demand and has been incorporated 
into urban and regional modeling by Wilson [22]. Entropy 
maximization is also known as minimum information theory 
because it mostly provides reliable estimates in the given 
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system with limited information. Although the concept of 
entropy has been used for more than a century, the de�nition 
of entropy has o¦en changed. Ludwig Boltzmann de�ned the 
measure of thermodynamic disorder in the 19th century, 
Claude Shannon altered the de�nition to include information 
uncertainty in the 20th century, and Jonathan M. Borwein 
revamped the de�nition to address barrier functions with 
superliner growth in the 21st century [23]. As shown in 
Figure 2, Wilson [22] identi�ed three trip-related states for 
the “system of interest” as key factors: micro-, meso- (middle-
level macro), and macro- (upper-level macro) states. A 
microstate is a set of individual trip information. A mesostate 
refers to a trip distribution matrix containing the number of 
trips between O/D pairs. A macrostate corresponds to an 
exogenously given total system energy, which is identi�ed by 
the total number of trip attractions/productions and travel 
impedance. In entropy maximization, while each microstate 
is assumed to be equally probable, the most probable states 

would be elements corresponding to the greatest demand in 
the mesostate. ­erefore, the entropy maximization problem 
is solved by �nding “a state of the system”, which is an 
assignment of individual trips to a trip distribution matrix in 
accordance with any macrostate constraint. Carrillo, Murillo 
and Liedtke [24] modeled the formation of colloidal structures 
and showed possible application to the case of an intermodal 
terminal in Germany.

A¦er Wilson merged entropy maximization with the four-
step planning model, successful application of these 
components has served as the basis for the entropy 
maximization method to become one of the most important 
transportation modeling theories. In the 1980’s, count-based 
trip distribution estimation problems were widely investigated 
and formulated using the entropy maximization method. In 
terms of freight modeling, Wang and Holguín-Veras [20] 
utilized such an entropy maximization method by replacing 
the trip-based concept with a tour-based concept. In their 

Depot

…1

32

<Type A>
34.36%

<Type B>
44.17%

Si

1 2

…

Depot

<Type D>
18.35% Depot

…1

2 Si

<Type C>
3.11% Depot

Sk

Sj
Sj

Si

Figure 1: Drayage truck tour types, in which ��, ��, and �� are location indicators for the ports of Long Beach and Los Angeles, and near-dock 
and o�-dock intermodal facilities (� ̸= � ̸= �), Source: You and Ritchie (2018).
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with the use of the term node in network problems in trip 
assignment. Second, it is important to note that the objective 
of the study is to forecast tour �ows using the relationship 
between trips and tours when trip �ows are known. To 
maintain a policy-sensitive advantage, many agencies have 
developed freight demand models based upon a commodity-
based concept and, in terms of vehicle �ows, o¦en end up 
with a trip-based model. ­is study excludes the extra step 
of forecasting tour �ows that rely on continuously observed 
tours and generate tour-based models without expensive or 
time-consuming travel diary surveys. Instead, it uses currently 
developed trip-based models and GPS data, both of which 
are relatively easy to collect as input data. It is also required 
to de�ne the concepts of tour-related terms and understand 
the nature of clean drayage truck movements. As shown in 
Figure 3, a tour is de�ned as the sequence of stops (or visits) 
visited by a truck. In general, each drayage truck starts and 
ends at its depot. A tour consists of multiple trips, which is 
an individually directed vehicle movement connecting two 
consecutive stops.

As mentioned earlier, de�ning intermediate stops in a tour 
using trip attraction/production constraints in conventional 
entropy maximization would cause the tour to lose the sequen-
tial characteristics of trip chaining. ­is is because stop 
sequences are maintained by the travel impedance variables 
of the microstates. However, owing to the aggregation of indi-
vidual commercial vehicle tour records to trip attractions/
productions, the multiple trip travel impedances are summed 
into one travel impedance per tour. To capture the realistic 
and complex structure of each tour, the conventional tour-
based entropy maximization model must be expanded to be 
able to capture sequentially visited nodes. Because a trip as a 
component of each tour can be explained in a straightforward 
manner with directional information and the concept of ori-
gins and destinations, the conventional entropy maximization 
model is su£cient to be used for the trip-based distribution 
model or tour-based model with relatively simpli�ed tour sets 
throughout sample expansion.

Considering that tours of drayage trucks are unique, the 
total impedance consists of tour travel time and waiting/trans-
action time. In particular, waiting/transaction time, which is 
not considered in trip-based analysis, is as essential as travel 
time, because a drayage truck is heavily involved in the 

tour-based entropy maximization method, when enough 
information is not available, the individual �ow of commercial 
vehicles corresponded to any tour in the network and was 
expected to be equally probable by considering the constraints 
of the known aggregate information, namely, trip production 
by each node, trip attraction by each node, and travel 
impedance. Furthermore, this involved such factors as travel 
time and dwell time in each tour.

To solve the problem, the standard linear programming 
(LP) solution method could not be applied because the entropy 
maximization problem is a nonlinear problem (NP) with lin-
ear constraints. Furthermore, the linear constraints require 
the enumeration of all possible path �ows between each O–D 
pair, which is computationally prohibitive for a network of 
realistic size. To solve the count-based trip distribution esti-
mation problem using entropy maximization, Xie et al. [25] 
used the Frank-Wolfe algorithm for the entropy maximization, 
but only for a small-scale network. In recent studies, Lee and 
Fu [26] applied the entropy maximization model to population 
synthesis in an activity-based microsimulation model and 
used a quasi-Newton algorithm to solve a large number of 
dimensions. Boshnakov and Lambert-Lacroix [27] proposed 
a periodic Levinson-Durbin algorithm, the implementation 
of which was available with the R package. To solve the entropy 
maximization model, Li et al. [28] introduced a hybrid intel-
ligent algorithm that assumed (1) the travel costs per unit that 
�ows between di�erent zones are fuzzy variables, and (2) trip 
productions and attractions are random variables. Many other 
investigations into the properties of entropy formulations and 
corresponding solution algorithms for convex problems have 
been made. Although Bregman’s balancing method, a multi-
plicative algebraic reconstruction technique, and Newton’s 
method are well known, interior methods are the most useful 
solution methods for large-scale entropy models and require 
very few primal-dual iterations, even with inexact search 
directions [29–34].

A primal-dual method for optimization programs with con-
vex objectives (PDCO) is one interior method; however, there 
are several other methods such as (1) active set, (2) �rst and 
second order, (3) penalty, and (4) interior (Barrier) methods 
[35]. ­ese methods have been widely used to solve inequali-
ty-constrained convex optimization problems and are generally 
based on applying the Newton method to a sequence of equal-
ity-constrained problems or to a sequence of modi�ed versions 
of the Karush–Kuhn–Tucker (KKT) conditions [36–38]. By 
replacing nonnegativity constraints with equivalent barrier 
sub-problems, the lower and upper bounds for the decision 
variables can be set, which enables the speci�cation of the deci-
sion variable to be in realistic feasible ranges. ­e PDCO algo-
rithm has been studied by the System Optimization Laboratory 
(SOL) at Stanford University. SOL provides the MATLAB �les 
to execute PDCO, which has been updated six times since it was 
released in 2002 and is adopted in this study [34].

2.1. Tour-Based Entropy Maximization Formulations. Before 
formulating a tour-based entropy maximization problem, the 
concept of a “node” needs to be clearly de�ned in this study. 
A “node” refers to a tra£c analysis cell (TAC) or a stop in a 
trip/tour distribution. ­is concept should not be confused 
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Following Wilson (1970), the objective function can be sim-
pli�ed. Taking the natural logarithm and using the Stirling 
approximation (log�! = �ln� − �), the objective function 
becomes:

Subject to

where ��: �ow on tour �, i.e., number of trucks operating on that 
tour in the analysis period. ��� (or ���): Number of trips starting 
from node � (or ending at node �) within a given tour �. It is one 
if node � is a start node (or an end node) only once in the tour 
and zero if node � is not in the tour. It is more than one if node 

(2)

Min � =
�
∑
�=1
(��ln�� − ��), �� ≥ 0, ∀� ∈ {1, 2, 3, . . . , 
}.

(3)
�
∑
�=1
����� = ��, ∀� ∈ {1, 2, 3, . . . , �},

(4)
�
∑
�=1
����� = ��, ∀� ∈ {1, 2, 3, . . . , �},

(5)
�
∑
�=1
����� = ��, ∀� ∈ {1, 2, 3, . . . , �},

(6)
�
∑
�=1
����� = ��,

(7)
�
∑
�=1
����� = ��,

transloading process at each stop. ­e waiting/transaction time 
impedance needs to be considered as a separate constraint from 
tour travel time. ­e travel time and waiting/transaction time 
impedances are based on the average of the GPS observed times. 
­e advantage of using the observed time is to capture the 
underlying conditions, such as continuously congested routes.

­e variables for each state used in the proposed model 
are summarized as follows. ­e microstate and macrostate 
variables are fed into the tour-based entropy model to �nd the 
best feasible solution at the mesostate, i.e., number of port 
drayage truck tour �ows for a given tour j. To account for 
sequentially visited nodes in each tour, we include both the 
connectivity of nodes and a data structure, with tours and 
corresponding trips de�ned by sequential stops (see Figure 4).

With these assumptions, we revised the mathematical for-
mulation and KKT conditions of the entropy maximization 
formulations to solve the tour distribution problem of Southern 
California clean trucks. It should be noted that the drayage truck 
movements are not mutually exclusive of other commercial vehi-
cles but include the basic tour patterns. ­erefore, a revised 
entropy maximization formulation based on tours is expected 
to perform well with all types of commercial vehicles.

2.2. Tour-Based Revision of the Entropy Maximization 
Formulation. ­e coastal truck tour-based entropy 
maximization formulation contains one objective function 
and �ve constraints, as shown in Equation (1) below.

(1)

Max� = ��1� ⋅ �
�2
� ⋅ ⋅ ⋅ �

��
� =
�!
∏��=1 ��!

,

�� ≥ 0, ∀� ∈ {1, 2, 3, . . . , �}.
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Figure 4: Coastal truck tour-based entropy maximization formulation.
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the �rst-order conditions (or Karush–Kuhn–Tucker (KKT) 
conditions) and the second-order conditions (or Hessian 
matrix) are obtained for the two formulations, separately. 
­e formulation of the �rst-order condition is the Lagrange 
function shown below in Equation (8).

where ��: Lagrange multiplier associated with the i-th node 
production constraint; ��: Lagrange multiplier associated with 
the total impedance constraint.

­e partial derivative of the Lagrange functions with 
respect to the number of tours �� and the necessary conditions 
for �∗, �∗, �∗ to be optimal solutions of the model can be writ-
ten as follows (Equations (9)–(13)):

(8)

�(�, �, �) =
�
∑
�=1
(��ln�� − ��) +

�
∑
�=1
�1�(�� −

�
∑
�=1
�����)

+
�
∑
�=1
�2�(�� −

�
∑
�=1

����) +

�
∑
�=1
�3�(�� −

�
∑
�=1
�����)

+ �1(�� −
�
∑
�=1

����) + �2(�� −

�
∑
�=1

����),

(9)

��(�∗, �∗, �∗)
���

= ln�� −
�
∑
�=1
�1���� −

�
∑
�=1
�2����

−
�
∑
�=1
�3���� − �1��� − �2���,

∀� ∈ {1, 2, . . . , 	}, ∀� ∈ {1, 2, . . . , �}.

(10)�∗�
��(�∗, �∗, �∗)
���

= 0, ∀� ∈ {1, 2, . . . , �}.

(11)
��(�∗, �∗, �∗)
���

≥ 0, ∀� ∈ {1, 2, . . . , �}.

(12)

��(�∗, �∗, �∗)
���

= 0, ∀� ∈ {1, 2, . . . , �}.

� is visited more than once in tour �. ��� (or ���) = 0. �� (or ��): 
total number of departures (or arrivals) at each node �. ���: the 
number of times that an O–D pair � is included in a given tour 
� (since any tour is made up of trips between O–D pairs as links 
of a trip chain, and repeated trips are possible between an O–D 
pair). ��: Total number of truck trips between an O–D pair �. 
��� (or ���): the impedance on tour j, which is the travel time (or 
the handling time). �� (or ��): total impedance, which is the 
overall travel time (or the handling time) in the system.

Equations (1) and (2) of the coastal truck tour-based 
entropy formulation indicate the objective function to �nd the 
most feasible ways to distribute tours by maximizing “the 
system of interest”. Constraint sets (3) and (4) are equality 
constraints between the total counts of the tour �ows passing 
a node and the total number of trip attractions/productions at 
the corresponding nodes. When each tour starts from the depot 
and returns to the same location (closed tour), we can rely on 
either of the constraint sets (3) or (4) because they are the same 
for this case; otherwise, such as in the case of an open tour in 
Ref [18], we should simultaneously consider constraint sets (3) 
and (4). Constraint set (5) is added to maintain the trip 
sequences in a tour (or directional information of intermediate 
stops) and play a role in converting the trips into tours. ­is 
indicates that the numbers in the trip distribution table equal 
the summation of the corresponding trips in each tour. ­e role 
of this constraint is to di�erentiate between, for example, a tour 
with sequentially visited nodes �→ �→ �→ � and another 
tour �→ �→ �→ � (path-based concept, see Figure 5). 
Such tour details were not considered in the original tour-based 
entropy maximization model (node-based concept, see Figure 
5). Although a tour is de�ned as a node sequence, this concept 
could be easily annulled in a structure of repeated tours. 
­erefore, the tour-based model with a node-based concept 
eventually loses directional information. Constraint sets (6) and 
(7) are the tour travel and waiting/transaction impedances.

2.3. Karush–Kuhn–Tucker (KKT) Conditions of the 
Formulations. To understand the characteristics of the entropy 
maximization formulation and �nd the optimal solutions, 

D

D: Home depot
Path-based concept

D
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Figure 5: Path-based and node-based concepts.
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and destination surveys, approximately 50%–60% port dray-
age truck activity is captured in this range. Finally, regional 
drayage includes container moves at distances greater than 20 
miles from the ports.

As mentioned earlier in this paper, the SPBP clean trucks 
exhibit distinct tour behaviors. Drayage truck travel behavior 
from our GPS tour data in Southern California is relatively 
complicated because tours contain similarity in terms of stop 
locations, but the sequence and the number of visits are not 
exactly the same. As in Ref. [18], approximately 65% of observed 
tours contain repetitive patterns in a tour because drayage 
trucks o¦en visit the same stops more than once in a tour. For 
example, they present repetitive patterns between out-of-depot 
and returning-to-depot activities in each tour, such as traveling 
multiple times between the ports and near-dock rail yards.

­e other common tour type is to drop by freight facilities 
before/a¦er visiting the ports at least once. Without de�ning 
the sequential information of the intermediate stops in each 
tour, the estimated tours would not enumerate the existing 
tours properly.

3.2. Tour-Based Model Estimation and Calibration. In this 
section, we applied the revised tour-based model to a case 
study and describe the results. To calibrate the model, 545 
clean drayage truck GPS data collected by the SPBP authorities 
were selected representing 7% of in-service clean trucks, which 
travel all over California with their base at the SPBPs. For 
the year 2010, the subject trucks visited a total of 1896 tra£c 
analysis cells (TACs) in the area. ­ese TACs are smaller tra£c 
analysis areas than TAZs.

­e GPS tour data were analyzed using the analysis tool 
developed in Ref. [18]. To avoid the inconsistency of weekday 
and weekend tour patterns, we focused on tour data collected 
from weekdays. Approximately 33,000 di�erent tours were 
identi�ed, representing a total of 83,694 tours observed for 
the study year. ­e size of the tour-based entropy maximiza-
tion problem comes to approximately 57,000 × 33,000.

From the selected year’s data, we set up four analysis sce-
narios: (1) one-year period, (2) extremely busy cargo moving 
period, (3) busy period, and (4) least busy period. According 
to the annual emissions inventory report (2010) and You and 
Ritchie (2012), the period and the corresponding months are 
de�ned as follows: (1) low period: January, February, March, 
and April, (2) medium period: May, November, and December, 
and (3) high period: June, July, August, September, and October.

As discussed earlier, the PDCO algorithm was used for 
the tour-based model calibration for three reasons. First, this 
algorithm is known to be very e£cient in solving large-scale 
entropy maximization problems. Second, it allows the setting 
of lower and upper bounds for the decision variables, which 
allows for the speci�cation of feasible ranges. ­ird, ful-
ly-tested MATLAB codes for PDCO algorithm are available, 
and it is straightforward to apply our entropy maximization 
problem into the o�ered codes by generating A and b matrices, 
as shown in Figure 7.

A¦er calibration using the PDCO algorithm, we evaluate 
the accuracy of the model. In transportation modeling, the 
commonly used performance metrics are the mean square 
error (MSE), mean absolute deviation (MAD), mean percent 

From Equations (9)–(13), the optimal solution can be rewrit-
ten as Equation (14). ­is addresses the number of tours, 
which is the products from an exponential function of 
Lagrange multipliers associated with trip attraction/produc-
tion at each node, trip distribution, travel time, and waiting/
transaction time impedance along each tour.

­e Hessian of the objective function indicates whether the for-
mulation is convex. We conclude that the objective function is 
convex because the following second-order derivatives are pos-
itive de�nite, whereas the constraints are linear. ­erefore, the 
proposed formulation has a unique optimal set of solutions.

3. Case Study: Coastal Drayage Trucks in 
Southern California

3.1. Description of the SPBP Clean Truck GPS Tour Data. As 
shown in Figure 6, the SPBP is located in Southern California. 
Our tour data were generated from the SPBP clean truck 
GPS data using an analysis tool described in Ref. [18]. 
­e framework of GPS data processing consists of 8 steps: 
(1) selecting all potential O–D stops, (2) identifying truck 
depots by selecting the greatest major cluster of the last stops 
of the day, (3) geocoding O–D stops and truck depots, (4) 
identifying closed/open tours, (5) deleting false-positive stops, 
(6) condensing pairs of intra-zonal trips caused by transaction 
and queuing, (7) imposing new tours with a three-hour stop 
duration before the peak tours, and (8) deleting abnormal pairs 
of tours/trips. Basically, each coordinate of the GPS trajectory 
data has been mapped with the road network by minimizing 
the distances between each coordinate and the set of the arc.

According to our data, most tours of clean trucks at the 
SPBPs are completed within one day, and one day of travel 
behavior is not necessarily representative of any other day. ­e 
tour data for nearly all of 2010 were chosen for this study for 
several reasons: (1) to capture many di�erent types of tours, 
(2) to calibrate and validate the forecasting model, and (3) to 
compare cargo movement by season. Based on tour distances, 
clean truck tours can be grouped into three modes: (1) short-
haul drayage, (2) local drayage, and (3) regional drayage. ­e 
short-haul drayage operation involves very short container 
movements from two to six miles in length. ­ese short move-
ments consist of cargo movements between the port terminals 
and the Intermodal Container Transfer Facility (ICTF), which 
is a near-dock rail terminal, or nearby container yards. Local 
drayage consists of moves from ports to highly concentrated 
warehouse and terminals areas, and a major rail yard within 
20 miles of the ports. According to the drayage truck origin 

(13)��(�∗, �∗, �∗)
�� = 0.

(14)

�∗� = exp(
�
∑
�=1
�1���� +

�
∑
�=1
�2���� +

�
∑
�=1
�3���� + �1��� + �2���).

(15)
��2(�)
���1���2

=
1
��

for �1 = �2
0 otherwise

∀� ∈ {1, 2, ..., �}.
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­e resulting estimated tours are compared to the observed 
tours for tour travel time, tour transaction time, and total tour 
time. Frequency distributions are shown in Figure 8. Estimated 
tours show MAPE values between 2.46% and 3.39%.

As shown in Table 1, the MAPE of the estimated tour �ows 
resulting from the revised tour-based entropy maximization 
model (with directional constraints) for a year’s worth of data 
is 13.53%. Considering that their tour-based model performed 
well with the other commercial truck tours in the Denver met-
ropolitan area, drayage truck tours are more sensitive to 
sequential visits.

Besides the year-based analysis, three other models based 
on cargo movements are calibrated: (1) low period:less busy 
months, (2) medium period: busy months, and (3) high period: 

error (MPE), and mean absolute percent error (MAPE). Much 
of the literature has demonstrated the need to use absolute 
percent error as a basis for comparison to eliminate the e�ect 
of the variability observed in most transportation data sets. 
­erefore, we use the MAPE, and the results indicate a good 
match between the observed and estimated tour �ows. ­e 
MAPE can be calculated with Equation (16).

where ���: Percentage error. ��: Observed tour �ows on the �
-th tour. ��: Estimated tour �ows on the �-th tour. �: Numbers 
of the di�erent tours that are identi�ed.

(16)
����(%) = ∑

�
�=1
�������
����

� = ∑
�
�=1
����(�� − ��)/�� × 100(%)

����
� ,

Legend
Freeway
Alameda corridor

Centralized location
for intermodal facilities

Figure 6: Case study site: ports of Long Beach and Los Angeles in Southern California.
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Southern California. ­e drayage trucks at the SPBPs have 
features distinct from the other commercial trucks. Such dis-
tinct features cannot be captured well by the conventional 
trip-based four-step planning models and conventional tour-
based entropy maximization models. Even with a disaggregate 
tour-based model, it is di£cult to evaluate drayage truck 
behavior, particularly for a large-scale study.

To overcome such obstacles, the main innovations of this 
study are as follows: First, the coastal truck tour-based entropy 
maximization model proposed in this paper provides an oppor-
tunity to incorporate periodically updated GPS data collected in 
Southern California into a large-scale tour-based model. ­is 
method provides a signi�cant advantage in that the most recent 
tour information from advanced technologies could be applied 
directly to the tour-based model to be subsequently used for 
assessing various strategies. Second, the coastal truck tour-based 
entropy maximization model is capable of addressing common 
drayage truck behavior and repetitive patterns. We also found 
that the parameter corresponding to the wait/transaction time 
was negative, whereas the inland truck tour model concluded 
that, for the Denver metropolitan area, it was positive, signifying 
that longer handling time induced more travel. However, their 
interpretation could not be supported by the Southern California 
drayage trucking data because, for example, the ports of Long 
Beach and Los Angeles have continuously tried to reduce wait/
transaction time to accommodate more cargo movement. With 
the dataset, four models were estimated: (1) year-based, (2) low 
period, (3) medium period, and (4) high period models by cargo 
movement. ­e �ndings were consistent with the �ndings in 
[20] in that the tour patterns varied by season and by cargo 

busier months. ­e MAPEs range from 4.06% to 8.12% for the 
di�erent scenarios, which are better than those for the year-
based model. We found even better performance for the 
medium period than the other periods. ­is is because the cargo 
movements for the medium period are steady, while those of 
the other periods tend to be either increasing or decreasing.

­e impedance-related Lagrange multipliers associated 
with the tour time are more negative, as expected. ­is indi-
cates that the longer the tour travel time becomes; the less 
likely tour �ows will be made on that tour. Similarly, the tour 
transaction related Lagrange multipliers are negative as well. 
As shown in the table above, although the ratio of tour-trans-
action-time-related Lagrange multipliers do not dramatically 
change when compared to those of tour-travel time, the tour 
would be more likely to visit fast-processing freight facilities. 
In addition, the trip-generation/attraction-related Lagrange 
multipliers are zone-speci�c and could be either positive or 
negative. However, there are distinct patterns observed in the 
ports of Long Beach and Los Angeles, ICTF, BNSF, and 
Commerce, which represent special truck trip generation 
zones. ­e zone-speci�c Lagrange multipliers in the major 
intermodal facilities are positive.

As we know, the proposed model was estimated by several 
variables. When it comes to comparing periods, the ratio of 
Lagrange multipliers from di�erent variables is a more proper 
indicator of how sensitive the impact of variables on each 
period is.

4. Conclusions

­e objective of this paper was to introduce a revised form of 
entropy maximization based on truck tours to model and bet-
ter understand drayage truck tour behavior at the SPBPs in 
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Figure 7: Illustration of A and b matrix in the PDCO algorithm.
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Figure 8: Observed tour length distributions for a year.

Table 1: Estimated results of coastal truck tour-based entropy maximization model.

1Mean absolute percentage error (MAPE). 2 January, February, March, and April. 3 May, November, and December. 4 June, July, August, September, and October.

Estimated result Year Low period2 Medium period3 High period4

Measures of accuracy: MAPE1 with directional constraints 
(our proposed model) 13.53% 6.19% 4.06% 8.12%

Number of unique tours (total number of tours) 33,148 (83,694) 10,123 (24,224) 9,368 (19,660) 17,431 (39,810)
Tour-travel time related lagrange multipliers (�1) −0.5273 −0.4851 −0.3606 −0.5244
Tour-transaction time lagrange multipliers (�2) −0.1751 −0.1232 −0.1489 −0.1676
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rutting mitigation II: visual intervention timing based on the 
finite element simulation,” International Journal of Pavement 
Engineering, vol. 20, no. 5, pp. 573–584, 2019.

[13] � T. Maruyama and N. Harata, “Incorporating trip-chaining 
behavior into network equilibrium analysis,” Transportation 
Research Record: Journal of the Transportation Research Board, 
vol. 1921, pp. 11–18, 2005.

[14] � W. Wisetjindawat, K. Sano, S. Matsumoto, and 
P. Raothanachonkun, “Micro-simulation model for modeling 
freight agent interactions in urban freight movement,” in CD 
Proceedings, 86th Annual Meeting of the Transportation Research 
Board, Washington, DC, USA, 2007.

[15] � G. Liedtke, “Principles of micro-behavior commodity transport 
modeling,” Transportation Research Part E, vol. 45, no. 5, 
pp. 795–809, 2009.

[16] � J. Holguin-Veras and E. �orson, “Modeling commercial vehicle 
empty trips with a first order trip chain model,” Transportation 
Research Part B, vol. 37, no. 2, pp. 129–148, 2003.

[17] � Southern California Association of Governments (SCAG), SCAG 
Regional Travel Demand Model and 2008 Model Validation, 2012, 
Southern California Association of Governments (SCAG), Los 
Angeles, CA, USA, 2012.

[18] � Q. Wang and J. Holguín-Veras, “Investigation of attributes 
determining trip chaining behavior in hybrid microsimulation 
urban freight models,” Transportation Research Record: Journal 
of the Transportation Research Board, vol. 2066, no. 1, pp. 1–8, 
2008.

[19] � M. Ruan, J. J. Lin, and K. Kawamura, “Modeling urban 
commercial vehicle daily tour chaining,” Transportation 
Research Part E, vol. 48, no. 6, pp. 1169–1184, 2012.

[20] � Q. Wang and J. Holguín-Veras, “Tour-based entropy 
maximization formulations of urban freight demand,” in CD 
Proceedings, 88th Annual Meeting of the Transportation Research 
Board, Washington, DC, USA, 2009.

[21] � S. I. You and S. G. Ritchie, “A GPS data processing framework 
for analysis of drayage truck tours,” KSCE Journal of Civil 
Engineering, vol. 22, no. 4, pp. 1454–1465, 2018.

movement. Furthermore, the medium period, which represented 
relatively steady cargo movement, exhibited a better MAPE than 
those of the other models. Finally, the coastal truck tour-based 
entropy maximization model with KKT could find the optimal 
solution in an efficient way, saving exhaustive calculation and 
effort.

Along with these findings and insights regarding clean 
trucks at the SPBPs, two possible applications for freight-de-
mand forecasting were discussed, and a numerical test was 
conducted. �e first application converted an existing trip-
based forecasting model to the tour-based model forecasting 
for a future year by assuming that tour sets and travel imped-
ance were the same as the current year. Moreover, the second 
application utilized tour-based forecasting for assessing poli-
cies. Although the numerical studies show potential for use in 
freight demand forecasting and strategy evaluation, the pro-
posed model may require further studies before being applied 
to improve the current strategies for policy evaluation.
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