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Increasing the efficiency of bus transit remains to be a challenge of urban transportation. Since the optimization of bus routes
and their frequencies is significant for transit efficiency, this study aims to develop two data envelopment analysis (DEA) models
using network epsilon-based measures (NEBMs). The first NEBM model adopts twelve indicators to evaluate the rationality of
the route network design; the second NEBM model uses nine indicators to evaluate the efficiency of the frequency setting. Both
NEBM models can simultaneously consider radial and nonradial inputs and outputs and dig into details of the “input/output
transformation box.” Finally, the bus transit system of Nanjing in China is used as a case study. Results show that the overall
efficiency of network route design is higher than that of frequency setting. According to comparisons between descriptive statistics
of the top and bottom performers, inefficiency causes of bottom performers are identified and corresponding improvement
measures are suggested. The proposed models are helpful for the development of bus transit systems and can be applied on a
yearly/monthly basis.

1. Introduction

Ahigh-quality bus transit systemwill attract urban citizens to
use, which furthermore helps to alleviate traffic congestion,
reduce air pollution, and promote social fairness. Given
growing needs and limited funding, regular assessment of bus
transit systems is significant for transit agencies to identify
best practices and underperforming routes. Actions can thus
be taken to amend inefficient routes, thereby improving the
whole transit system.

Besides, China’s large cities are experiencing rapid
growth. Urban land use and travel patterns are changing
every day. A large number of urban rail transit systems have
been put into operation, serving more and more residents.
The development of bus transit system in China is facing
enormous challenges. According to Statistical Bulletin of
China Ministry of Transport, the number of bus passengers
has been declining for three consecutive years. Bus passengers

decreased by 3% in 2017, although the number of buses
increased by 7% and the operating mileage increased by 9%
[1]. Transit agencies are gradually aware of the importance of
improving bus networks to accommodate new travel patterns
and coordinate with urban rail transit. However, most bus
networks evolve based on historical development and rarely
undergo major changes for decades. Lack of clear-cut and
comprehensive methods to evaluate the “goodness” of bus
routes is also hinderance to changes of bus routes.

Hence, this study proposed two data envelopment anal-
ysis (DEA) models using network epsilon-based measures
(NEBMs) to evaluate bus route design and frequency setting.
Following the introductory section, Section 2 illustrates the
NEBM model. Section 3 introduces the evaluation frame-
works and indicators. Section 4 presents the application in
Nanjing of China. Conclusions and future work are offered
in Section 5.
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1.1. Literature Review. A cost-effective transit planning pro-
cess is comprised of five efficient components: (1) route
network designing, (2) frequency setting, (3) timetabling, (4)
vehicle scheduling, and (5) crew scheduling and rostering
[2]. The first two, usually termed strategic planning, are
most complicated and significant for transit efficiency [3]. In
theory, the search for optimum bus routes and frequencies
should be carried out by formulating the definition of routes
and frequencies as a mathematical programming problem
and solved by simulation [4] or heuristics algorithms [5].
While in practice, bus routes and frequencies are usually
designed using manual approaches, relying on transporta-
tion planners’ local knowledge, experience, and intuition.
However, both methods cannot fully meet the needs of bus
transit planning. Mathematical programming methods are
too complicated in application; manual approaches usually
fail to provide a systematic view. Hence, combining manual
approaches with indicator-based evaluations is one method
to address the complexity of bus networks. Indicator-based
evaluations can provide a systematic view of bus networks
and are much easier to use than mathematical programming
approaches.

Key performance indicator (KPI) analysis and compos-
ite score analysis are two main indicator-based evaluation
approaches. KPI analysis establishes goals or thresholds for
indicators; composite score analysis normalizes and weights
indicators to get a composite score. Bothmethods are used in
many practical transit planning circumstances. For example,
the TCRP report “elements needed to create high ridership
transit systems” summarized various route-level and system-
level measures and benchmarks, including design measures
such as coverage, span of service, frequency of service, and
travel time, and performance measures such as productivity,
crowding, and reliability [6]. Sun and Guan used indicators
such as weighted average path length and weighted global
efficiency to measure vulnerability of the urban metro net-
work from the operation perspective [7]. Deng used seven
indicators including residential area coverage, nonresidential
area coverage, and land use mix to identify improvable bus
route groups based on cluster analysis [8]. However, in KPI
analysis and composite score analysis, the thresholds and
weights are always determined subjectively.

Other studies adoptedmodern benchmarking tools, such
as data envelopment analysis (DEA). DEA is a nonparametric
technique using linear programming to evaluate the relative
efficiency of a set of peer units called decision-making units
(DMUs) [9]. Each DMU uses resources (inputs) to produce
its goods or services (outputs). DEA does not assume a
functional form relating inputs to outputs but establishes a
linear production frontier tomonitor the conversion of inputs
to outputs. Each DMU’s relative efficiency is calculated by
comparing its performance with the estimated production
frontier—the “best practice” of a peer or a combination of
peers. DEA has been widely used to evaluate organizations’
work in the same industry, for example, schools, banks, fac-
tories, and utilities. In the field of public transit, the majority
of existing research focused on evaluating transit operators
or transit systems frommanagement perspectives [10, 11]. For
bus routes, most studies focused on operational performance

evaluation, as shown in Table 1. Zhu et al. proposed a three-
stage DEA approach to incorporate operating environment
effects and statistical noise into the efficiency measurement
framework [12]. Li et al. adopted a bootstrap super-data-
envelopment analysis (SDEA) model for route-level transit
operational efficiency assessment [13]. Zhang et al. used a
mixed data envelopment analysis-stochastic frontier analysis
(DEA-SFA) model to evaluate the operational efficiency of
an urban bus transit system at different periods and tried
to explore better operating strategies [14]. Jin-Seok et al.
proposed a network DEA model to evaluate bus service by
considering desirable outputs such as total riders and service
satisfaction scores as well as undesirable outputs such as
CO2 emissions [15]. Few studies combined operational per-
formance evaluation with structural performance evaluation
to make the model more suitable for bus route planning.
Lao and Liu used two DEA models to examine operational
efficiency and spatial effectiveness of bus routes [16]. Zhang et
al. adopted super-efficient DEA model to evaluate bus routes
from three aspects, that is, planning, operation, and service
[17]. Ran et al. assessed operational efficiency and access
equity via a combination of DEA and multiobjective spatial
optimization techniques [18]. A wide variability exists in the
selection of DEA inputs and outputs in existing studies.

1.2. Objectives and Contributions. Although many indicator-
based methods, especially DEA models, have been imple-
mented in the field of transit planning, there are several
limitations in the evaluation framework, methodology, and
indicator design aspects. For evaluation framework, previous
studies mainly focused on transit operation but rarely con-
sidered network route design. The efficiencies of route and
frequency design are both critical to the well-being of bus
routes. Evaluating them holistically can provide a compre-
hensive assessment for bus routes. For methodology, existing
studies mostly used conventional DEA models, which had
some shortcomings in evaluating bus route efficiency. First,
conventional DEA models are radial models that consider
the radial measures of efficiency but neglect nonradial slacks.
Bus routes cannot be identified as completely efficient when
the efficiency is 1 but the slacks are nonzero. Second, the
inputs or outputs can only change proportionally in con-
ventional DEA models. Meanwhile, for bus route evaluation,
radial and nonradial inputs and outputs should be con-
sidered simultaneously, because the inputs and outputs not
necessarily change proportionally. Third, conventional DEA
models pay little attention on details of the “input to output
transformation box,” which hinders deep understanding of
the transformation process.

Hence, the NEBMmodel is used in this paper to evaluate
bus routes, which could combine the radial and nonradial
measures of efficiency into a unified framework and examine
the inner workings of the production process. For indicator
design, previous studies treated each bus route indepen-
dently. We design connectivity and overlapping indicators
to consider the transfer and interdependence between bus
routes and between bus routes and metro lines. In addition,
Baidu heat map data are used to solve the problem of lacking
detailed residential and employment data.
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Table 1: Summary of DEA models in existing studies.

Authors Inputs Outputs Model
Zhu
et al. [12] labour, fuel, vehicles operating revenue, average operating

speed, average punctuality rate three-stage DEA

Li
et al. [13]

operating cost, total capacity, vehicle mileage,
frequency, 1/directness, operational speed

passenger volume, load factor at peak
load point, satisfaction bootstrap SDEA

Zhang
et al. [14]

corrected fares, waiting time cost, reliability
penalty cost, in-vehicle time cost passenger-kilometres, total income mixed DEA-SFA

Hahn
et al. [15]

possession and operating costs, ratio of median
bus stops, overlapped route lengths

total riders, service satisfaction scores,
CO2 emissions network DEA

Lao and Liu
[16]

operational input: operation time, round-trip
distance, number of bus stops

spatial input: commuters using buses, population
65 and older, persons with disabilities

operational output: total number of
passengers

spatial input: total number of
passengers

DEA

Sun
et al. [17]

planning input: dispatching frequency, total
number of stops, demand detour coefficient,

average minimum transfer time
operation input: dispatching frequency, total

number of stops, bus arrival state rate
service input: dispatching frequency, total number
of stops, peak hour maximum standing rate, peak

hour delay rate

planning output: 500-m travel demand
coverage, 500-m transfer rate
operation output: average route
operation speed, average on-road

operation speed, on time arrival rate
service output: transit ridership

super-efficient DEA

Wei
et al. [18]

operational input: operating mileage, operation
time, number of operating buses

operational output: average daily
ridership

DEA and multi-objective
spatial optimization

2. Methodology

2.1. EBMModel. DEA is a nonparametricmethod to evaluate
the relative efficiencies of a set of comparable DMUs with
multiple inputs and outputs. Two of the conventional DEA
models are the CCR model developed by Charnes, Cooper,
and Rhodes in 1978 and the BCC model developed by
Banker, Charnes, and Cooper in 1984 [9]. Both models are
named after their developers. Bothmodels consider the radial
measures of efficiency, where the inputs or outputs change
proportionally. A main difference between two models is
that CCR model assumes constant returns to scale (CRS)
in its production possibility set, while BCC model takes the
variable returns to scale (VRS) assumption, whichmeans that
efficiency may increase or decrease with a change of size in
input or output.

Assume that the data set is (Y, X). Y and X denote the𝑠×𝑛matrix of outputs and𝑚×𝑛matrix of inputs, respectively.𝑌 = {𝑦𝑖𝑗}𝑠×𝑛;𝑋 = {𝑥𝑖𝑗}𝑚×𝑛.n, s, andm represent the number of
DMUs, outputs, and inputs, respectively. The input-oriented
CCR model can get the efficiency 𝜃∗ of DMU0 by solving the
following linear programming:

𝜃∗ = min 𝜃 (1)

𝑠.𝑡. 𝜃𝑥𝑖0 = 𝑛∑
𝑗=1

𝜆𝑗𝑥𝑖𝑗 + 𝑆−𝑖 𝑖 = 1, 2, . . . , 𝑚
𝑦𝑟0 ≤ 𝑛∑

𝑗=1

𝜆𝑗𝑦𝑟𝑗 𝑟 = 1, 2, . . . , 𝑠
𝜆 ≥ 0, 𝑆−𝑖 ≥ 0

(2)

where xij and yrj stand for the ith input and the rth output
of the jth DMU. S- is the input slacks and 𝜆 is the input

weight. The subscript “0” signifies the DMU which is under
evaluation. If the efficiency ofDMU0 is 1, DMU0 is technically
efficient; if its efficiency is less than 1, it is technically
inefficient.

The input-oriented CCR model is based on proportional
reduction of inputs. In order to observe slacks of DMUs,
the Slacks-Based Measure (SBM) model was proposed by
Tone [19]. SBMmodel relaxes the proportionality and allows
independent changes of associated slacks in inputs or outputs.
The efficiency 𝜏∗ of the input-oriented SBM is calculated by
the following model:

𝜏∗ = min 1 − 1𝑚
𝑚∑
𝑖=1

𝑠−𝑖𝑥𝑖0 (3)

𝑠.𝑡. 𝑥𝑖0 = 𝑛∑
𝑗=1

𝜆𝑗𝑥𝑖𝑗 + 𝑆−𝑖 𝑖 = 1, 2, . . . , 𝑚
𝑦𝑟0 ≤ 𝑛∑

𝑗=1

𝜆𝑗𝑦𝑟𝑗 𝑟 = 1, 2, . . . , 𝑠
𝜆 ≥ 0, 𝑆−𝑖 ≥ 0

(4)

Tone and Tsutsui suggested that CCR model and SBM
model had some shortcomings [20]. The radial CCR model
neglects the effect of nonradial slacks S- in the efficiency𝜃∗. The nonradial SBM model may lose the proportionality
in the inputs or outputs, because S- is not necessarily pro-
portional to x0. Therefore, they proposed the epsilon-based
measure (EBM) to simultaneously consider both the radial
and nonradial measures in a unified DEA framework. A new
index called “affinity index” was used to measure similarity
and defined a scalar measure epsilon (𝜀), and a scheme for
applying weights to the slacks based on principal component
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analysis was also proposed [20]. The efficiency 𝛾∗ of the
input-oriented EBMmodel is calculated as follows:

𝛾∗ = min 𝜃 − 𝜀𝑥 𝑚∑
𝑖=1

𝑤−𝑖 𝑠−𝑖𝑥𝑖0 (5)

𝑠.𝑡. 𝜃𝑥𝑖0 = 𝑛∑
𝑗=1

𝜆𝑗𝑥𝑖𝑗 + 𝑆−𝑖 𝑖 = 1, 2, . . . , 𝑚
𝑦𝑟0 ≤ 𝑛∑

𝑗=1

𝜆𝑗𝑦𝑟𝑗 𝑟 = 1, 2, . . . , 𝑠
𝜆 ≥ 0, 𝑆−𝑖 ≥ 0

(6)

where 𝑤𝑖 is the relative importance of ith input and satisfies∑𝑚𝑖=1 𝑤−𝑖 = 1 and𝑤−𝑖 ≥ 0. 𝜀x is a parameter that depends on the
dispersion degree of inputs. 𝑤𝑖 and 𝜀x are offered in advance
of measuring the efficiency. In EBM model, 𝜃 represents
the radial properties and 𝜀𝑥∑𝑚𝑖=1(𝑤−𝑖 𝑠−𝑖 /𝑥𝑖0) represents the
nonradial properties. 𝜀x = 0 implies that EBMmodel changes
to be a CCR model and 𝜀x = 1 implies that EBM model
changes to be an SBM model. 𝑤𝑖 depends on the affinity
degree between inputs.Thehigher the affinity degree between
inputs is, the more weights are allocated to the inputs.

2.2. NEBM Model. Conventional EBM methods make no
assumptions concerning the internal operations of a DMU
and treat each DMU as a “black box” by considering only the
initial inputs consumed by the DMU and the final outputs
produced by theDMU.Madjid et al. extended the EBMmodel
and proposed the Network EBM (NEBM) model for solving
network DEA problems, which allowed one to examine in
more detail the inner workings of the production process
[21]. The NEBM model combines the radial and nonradial
measures of efficiency into a unified framework.

xijh and y
rj
h represent the ith input (i = 1, 2, . . ., mh) and the

rth output (r =1, 2, . . ., sh) of the hth division (h = 1, 2, . . ., k) in
the jthDMU(j = 1, 2, . . ., n), respectively. 𝑧(ℎ,ℎ)

𝑓
(ℎ,ℎ)
𝑗
represents the

intermediate measure between the hth division and the ℎth
division of the jth DMU. The subscript 𝑓(ℎ,ℎ) represents the
number of intermediate measures sent from the hth division
to the ℎth division𝑓(ℎ,ℎ) = 1, 2, . . . , 𝐹(ℎ,ℎ).TheNEBMmodel
is presented as follows:

𝛾∗ = min
𝑘∑
ℎ=1
𝜃𝑘 ,𝜆,𝑆

−

𝑊ℎ(𝜃ℎ − 𝜀ℎ𝑥
𝑚ℎ∑
𝑖=1

𝑤ℎ−𝑖 𝑠ℎ−𝑖𝑥ℎ𝑖0 ) (7)

𝑠.𝑡. 𝜃ℎ𝑥ℎ𝑖0 =
𝑛∑
𝑗=1

𝜆ℎ𝑗𝑥ℎ𝑖𝑗 + 𝑆ℎ−𝑖 𝑖 = 1, 2, . . . , 𝑚ℎ, ℎ = 1, 2, . . . , 𝑘
𝑦ℎ𝑟0 ≤

𝑛∑
𝑗=1

𝜆ℎ𝑗𝑦ℎ𝑟𝑗 𝑟 = 1, 2, . . . , 𝑠ℎ, ℎ = 1, 2, . . . , 𝑘
𝑛∑
𝑗=1

𝑧(ℎ,ℎ)𝑓
(ℎ,ℎ)
𝑗𝜆ℎ𝑗 =

𝑛∑
𝑗=1

𝑧(ℎ,ℎ)𝑓
(ℎ,ℎ)
𝑗𝜆ℎ𝑗 , 𝑓(ℎ,ℎ) = 1, 2, . . . , 𝐹(ℎ,ℎ), ∀ (ℎ, ℎ)

𝜃ℎ ≤ 1 ℎ = 1, 2, . . . , 𝑘
𝜆ℎ𝑗 ≥ 0 𝑗 = 1, 2, . . . , 𝑛, ℎ = 1, 2, . . . 𝑘

𝑆ℎ−𝑖 ≥ 0 𝑖 = 1, 2, . . . 𝑚ℎ, ℎ = 1, 2, . . . , 𝑘

(8)

where 𝑤ℎ−𝑖 is the weight of the ith input sent from the hth
division that satisfies ∑𝑚ℎ𝑖=1 𝑤ℎ−𝑖 = 1. 𝜀ℎ𝑥 is determined based
on the dispersion degree of parameters associated with the
inputs of the hth division. 𝑆ℎ−𝑖 represents the slack for the ith
input in the hth division.Wh represents the weight of the hth
division and is determined by the decision-makers.The third
constraint is related to the intermediate products where the
right side represents the products sent from the hth division
and the left side shows the same products sent to the ℎth
division. The efficiency score of each division for the NEBM
is calculated as follows:

𝛾ℎ𝑁𝐸𝐵𝑀 = 𝜃ℎ − 𝜀ℎ𝑥
𝑚ℎ∑
𝑖=1

𝑤ℎ−𝑖 𝑠ℎ−𝑖𝑥ℎ𝑖0 (9)

3. Indicator Design

3.1. Evaluation Framework. This study aims to address the
main concerns in strategic planning which have rarely been
evaluated collectively in existing studies. Two data envelop-
ment analysis (DEA) models using network epsilon-based
measures (NEBM) are constructed.

The first NEBM model is used to evaluate the rationality
of the route network design. A “well-being” bus route ought
to meet passengers’ travel needs in terms of spatial coverage,
transfer potentials, and travel time saving and its operation
will thus gain high ridership. Hence, inputs are designed
from the following perspectives: (1) the number of stops
and route length should be kept under a certain bound; (2)
the bus route hardly deviates from the shortest path so as
to reduce the operator’s costs and improve the reliability;(3) the bus route should be irreplaceable by other routes.
Five indicators, the number of stops, route length, route
directness, bus overlapping, and metro overlapping, are
used as inputs of stage 1. Four indicators, the residential
coverage, employment coverage, bus connectivity, and metro
connectivity, are used as intermediate inputs/outputs. Two
indicators, that is, the off-peak operation speed and the
peak operation speed, are used as inputs of stage 2. That is
because buses operate in the urban road or highway contexts,
which are often interrupted by traffic congestion, signals,
pedestrian, or vehicle crossing. The off-peak operation speed
and peak operation speed, which are mostly determined by
external environment, are used as inputs of stage 2 rather than
intermediate inputs/outputs. Annual average daily ridership
is used as the final output.The framework and indices of route
network design evaluation are illustrated in Figure 1.

The secondNEBMmodel is used to evaluate the effective-
ness of frequency setting. A general objective of frequency
setting is to gain the profit (i.e., ridership) and minimize
operation costs (which are related to the number of buses,
the number of drivers, and daily operation time) under
constraints of route length and reliability. Three indicators,
the number of buses, the number of drivers, and daily
operation time, are used as inputs of stage 1. Two indicators,
that is, the peak frequency and the off-peak frequency, are
used as intermediate inputs/outputs. Two indicators, the off-
peak on-time arrival rate and the peak on-time arrival rate,
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residential coverage

employment coverage

metro connectivity

bus connectivity

metro overlapping

bus overlapping

route length

route directness

peak operation speed

number of stops

annual average daily ridership

Intermediate Output

Input

Output

Input

off-peak operation speed

Stage 1

Stage 2

Figure 1: The framework and indices of route network design evaluation.

off-peak on-time arrival rate

peak on-time arrival rate

daily operation time

number of buses annual average daily ridership

peak frequencynumber of drivers

Input Output

off-peak frequency

Intermediate Output

Input

Stage 1

Stage 2

Figure 2: The framework and indices of frequency setting evaluation.

are used as inputs of stage 2. Annual average daily ridership
is used as the final output. The framework and indices of
frequency setting evaluation are illustrated in Figure 2.

3.2. Indices of Network Route Design

3.2.1. Number of Stops. The total number of stops on a bus
route is a conventional transit planning indicator, which can
be directly obtained from transit agencies.

3.2.2. Route Length. The route length of bus routes can be
calculated using ArcGIS, which should not be too long for
profitability and reliability reasons.

3.2.3. Route Directness. Bus riders prefer to travel directly
from their origin to destination. Route directness reflects
route’s deviation from a linear path and travel time of bus
riders. It also considers the additional mileage incurred
by a bus trip compared to the same trip by car or other
modes of transportation. Calculation of the route directness
is presented in the following equation:

𝑟𝑜𝑢𝑡𝑒 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑒𝑠𝑠𝑢 = 𝑟𝑜𝑢𝑡𝑒 𝑙𝑒𝑛𝑔𝑡ℎ𝑢𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑢 (10)

where u represents labels of bus routes. Route length and
Euclidean distance can be calculated using ArcGIS.

3.2.4. Bus and Metro Overlapping. Most previous studies
treated bus routes independently without considering route
interchange and overlapping. We propose bus and metro
overlapping indices as well as bus and metro interchange
indices to solve this problem. If the travel demand between
two bus stops on one bus route can be severed by another bus
route, we define it as overlapping. The higher overlapping is,
the more chance that a bus route can be replaced. Assuming
that a bus route has p stops within 300m from any bus stop of
another bus route, the bus overlapping score equals 𝐶2𝑝. The
permutation formula means that there are 𝐶2𝑝 combinations
of boarding and alighting stops can be served by other bus
routes. For example, if there are 3 overlapped stops, trips
between stop 1 and 2, stop 2 and 3, and stop 1 and 3 can
take other bus routes. The bus overlapping score equals 𝐶23.
The final bus overlapping is calculated as the sum of bus
overlapping scores applied to the whole bus network divided
by the number of bus stop pairs, as shown in the following
equations:

𝑏𝑢𝑠 𝑜V𝑒𝑟𝑙𝑎𝑝𝑝𝑖𝑛𝑔𝑢 =
𝑎∑

V=1,V ̸=𝑢

𝑏𝑢𝑠 𝑜V𝑒𝑟𝑙𝑎𝑝𝑝𝑖𝑛𝑔 𝑠𝑐𝑜𝑟𝑒𝑢V𝐶2𝑐 (11)

𝑏𝑢𝑠 𝑜V𝑒𝑟𝑙𝑎𝑝𝑝𝑖𝑛𝑔 𝑠𝑐𝑜𝑟𝑒𝑢V = 𝐶2𝑝 (12)

where a is total number of bus routes; c is total number of
bus stops on bus route u; p is number of overlapped bus stops
between bus route u and v; u and v are labels of bus routes.
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The same formulas with some minor modifications can
be applied to calculate metro overlapping:

𝑚𝑒𝑡𝑟𝑜 𝑜V𝑒𝑟𝑙𝑎𝑝𝑝𝑖𝑛𝑔𝑢
= 𝑏∑
𝑡=1

𝑚𝑒𝑡𝑟𝑜 𝑜V𝑒𝑟𝑙𝑎𝑝𝑝𝑖𝑛𝑔 𝑠𝑐𝑜𝑟𝑒𝑢𝑡𝐶2𝑐
(13)

𝑚𝑒𝑡𝑟𝑜 𝑜V𝑒𝑟𝑙𝑎𝑝𝑝𝑖𝑛𝑔 𝑠𝑐𝑜𝑟𝑒𝑢𝑡 = 𝐶2𝑞 (14)

where b is total number of metro routes; c is total number of
bus stops on bus route u; q is number of overlapped bus stops
between bus route u and metro route t; u are labels of bus
routes; t are labels of metro routes.

3.2.5. Residential and Employment Coverages. Detailed res-
idential and employment data are needed to calculate res-
idential and employment coverages. However, the official
population census (related to residential data) and economic
census (related to employment data) conducted every five
years or ten years is outdated and coarse-scaled. Even worse,
only a few large cities have conducted economic census. To
ensure applicability and transferability of indicators, the heat
map fromBaiduMap is used. As the largest onlinemap app in
China, BaiduMap hasmore than 200million registered users
and receives 3.5 million position requests every day [22].
Baidu Map gathers location-based data from smartphone
apps using its location services to generate the heat map,
which provides an interpretable visual representation of
spatial distribution of its users.

A multistep procedure was developed to calculate the
residential and employment coverages. Firstly, assuming that
most Baidu Map users stay in work places at 10 am and at
home at 10 pm, a python script is used to crawl heat maps
at 10 am and 10 pm in a workday to represent employment
distribution and residential distribution. These crawled heat
maps are saved as PNG images. Secondly, the opacity band of
each PNG image is imported in ArcGIS as a raster layer.Then
georeferencing is conducted to match the raster layer to bus
stop data, which is in the WGS84 coordinate system. Finally,
opacity values of the raster layer within 300 m from each bus
stop are extracted and averaged to get the heat value of each
bus stop using extract point value tool and raster calculation
tool in ArcGIS. These heat values range from 52 to 179. For
computational convenience, all heat values are subtracted by
51 and the final range is from 1 to 128. The procedure is
illustrated in Figure 3.

The residential coverage for each bus route is calculated as
the sum of heat values of all bus stops on the route divided by
the number of bus stops, as shown in the following equation:

𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑡𝑖𝑎𝑙 𝑐𝑜V𝑒𝑟𝑎𝑔𝑒𝑢 =
𝑐∑
𝑔=1

𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑡𝑖𝑎𝑙 ℎ𝑒𝑎𝑡 V𝑎𝑙𝑢𝑒𝑢𝑔𝑐 (15)

where u are labels of bus routes; 𝑔 are labels of bus stops on
bus route u; c is total number of bus stops on bus route u.
The same formula can be applied to calculate the employment
coverage. The calculation standardizes the residential and
employment coverages and eliminates effects of the number
of bus stops.

3.2.6. Bus and Metro Connectivity. An efficient public transit
network should encourage transfer between bus routes and
between bus routes and metros. The geographic data of bus
stops and metro stops are used to calculate bus connectivity
and metro connectivity. For a bus route, if at least one stop
is within 300m from any stop of another bus route, bus
connectivity score equals 1. The final bus connectivity of the
bus route is the sum of bus connectivity score applied to the
whole bus network divided by the number of bus stops as
shown in the following equations:

𝑏𝑢𝑠 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖V𝑖𝑡𝑦𝑢 =
𝑎∑

V=1,V ̸=u

𝑏𝑢𝑠 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖V𝑖𝑡𝑦 𝑠𝑐𝑜𝑟𝑒𝑢V𝑐 (16)

𝑏𝑢𝑠 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖V𝑖𝑡𝑦 𝑠𝑐𝑜𝑟𝑒𝑢V
= {{{

1, 𝑒𝑥𝑖𝑠𝑡 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑠𝑡𝑜𝑝
0, o𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(17)

where a is total number of bus routes; c is total number of bus
stops on bus route u; u and v are labels of bus routes.

The same formulas with some minor modifications can
be applied to calculate metro connectivity.

𝑚𝑒𝑡𝑟𝑜 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖V𝑖𝑡𝑦𝑢
= 𝑏∑
𝑡=1

𝑚𝑒𝑡𝑟𝑜 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖V𝑖𝑡𝑦 𝑠𝑐𝑜𝑟𝑒𝑢𝑡𝑐
(18)

𝑚𝑒𝑡𝑟𝑜 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖V𝑖𝑡𝑦 𝑠𝑐𝑜𝑟𝑒𝑢𝑡
= {{{

1, 𝑒𝑥𝑖𝑠𝑡 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑠𝑡𝑜𝑝
0, o𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(19)

where b is total number of metro routes; c is total number of
bus stops on bus route u; u are labels of bus routes; t are labels
of metro routes.

3.2.7. Operation Speed. Running time records from transit
agencies are used to calculate average route operation speeds
in peak period and off-peak period, respectively. Operation
speed is defined as the length of bus route divided by the
average running time, as presented in the following equation:

𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑠𝑝𝑒𝑒𝑑𝑢 = 𝑟𝑜𝑢𝑡𝑒 𝑙𝑒𝑛𝑔𝑡ℎ𝑢𝑎V𝑒𝑟𝑎𝑔𝑒 𝑟𝑢𝑛𝑛𝑖𝑛𝑔 𝑡𝑖𝑚𝑒𝑢 (20)

where u are labels of bus routes.
Since inputs should have the characteristics of smaller

values being better (less resource needed for a given output),
(21) is introduced to convert the “more-the-better” type of
route connectivity to “less-the-better” type of route connec-
tivity.

𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑠𝑝𝑒𝑒𝑑𝑢 = max (𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑠𝑝𝑒𝑒𝑑)
− 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑠𝑝𝑒𝑒𝑑𝑢 (21)
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Step 1: crawl heat map from Baidu Map Step 2: import opacity band in ArcGIS as a raster layer 

Step 3: georeferencing Step 4: extract opacity value and average

Figure 3: Calculation procedure of residential and employment coverages.

3.2.8. Annual Average Daily Ridership. Annual average daily
ridership is the most widely used indicator of efficiency
evaluation, since it accurately measures the actual output of
a bus system, taking both the number of passengers and the
revenues of providers into account. It should be noted that
ticket fares of urban arterial bus routes in most Chinese cities
are fixed at 1 RMBor 2RMB,which donot dependondistance
travelled.

3.3. Indices of Frequency Setting

3.3.1. Number of Buses. The lengths of buses range from 8 to
12 m. The 12 m long bus with the capacity of 70 persons is
regarded as a standard bus.Other types of buses are converted
to standard buses according to their capacities.Therefore, the
total number of standard buses for each bus route can be
obtained.

3.3.2. Number of Drivers. Since the data of other indirect
employees are unavailable, only full-time drivers are taken
into account, which can be directly obtained from transit
agencies.

3.3.3. Daily Operation Time. The daily operation time can be
directly obtained from transit agencies.

3.3.4. Frequency. The frequency can be directly obtained
from transit agencies. Since most urban arterial bus routes
adopt the two-frequency scheme (i.e., different frequencies
applied in peak period and off-peak period), peak frequency
and off-peak frequency are used in the model.

3.3.5. On-Time Arrival Rate. On-time arrival rate is defined
as the ratio of buses arriving at end stop on time in peak
period and off-peak period, respectively. Using running time
records, on-time arrival rate is calculated as the number of
on-time arrival runs divided by the number of total runs:

o𝑛-𝑡𝑖𝑚𝑒 𝑎𝑟𝑟𝑖V𝑎𝑙 𝑟𝑎𝑡𝑒𝑢 = 𝑜𝑛-𝑡𝑖𝑚𝑒 𝑎𝑟𝑟𝑖V𝑎𝑙 𝑟𝑢𝑛𝑠𝑢𝑡𝑜𝑡𝑎𝑙 𝑟𝑢𝑛𝑠𝑢 (22)

where u are labels of bus routes.
Since inputs should have the characteristics of smaller

values being better (less resource needed for a given output),
(23) is introduced to convert the “more-the-better” type of
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Figure 4: Distributions of efficiency rating.

route connectivity to “less-the-better” type of route connec-
tivity.

𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑠𝑝𝑒𝑒𝑑𝑢 = max (𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑠𝑝𝑒𝑒𝑑)
− 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑠𝑝𝑒𝑒𝑑𝑢

(23)

3.3.6. Annual Average Daily Ridership. Same as Section 3.2.8,
Annual Average Daily Ridership.

4. Case Study

Nanjing in China had a population of 8.16 million in 2016.
Like other China’s large cities, it is experiencing rapid urban-
ization and motorization. In the last decade, Nanjing’s built-
up area reached 653 km2 by an annual growth rate of 11.9%;
private car ownership reached 866 thousand by an annual
growth rate of 25.3% [23].

The transit network ofNanjing consisted of 410 bus routes
and 7 metro lines in 2016. Out of the 410 bus routes, 185 bus
routes were urban arterial routes; 126 bus routes were urban
local routes; 81 bus routes were rural routes; and the rest were
tour routes or night routes. The total average daily transit
ridership was 3.35 million.

The performance of bus routes with different character-
istics varies greatly. For example, rural routes are usually
inefficient, because they serve rural areas with low population
density. In this study, NEBM models are built for urban
arterial routes, urban local routes, and rural routes, separately.
The tour routes and night routes were not modelled due to
their small quantities from the DEA modelling perspective.
For brevity, only NEBM models of urban arterial routes are
illustrated.

4.1. Descriptive Statistics of Indicators. 19 indicators for 185
urban arterial bus routes in Nanjing are calculated, respec-
tively. Descriptive statistics of these indicators are shown in
Table 2. “sd” denotes the standard deviation.

4.2. Model Application and Results Analysis. Based on
selected indicators, two NEMB models are built to measure
the route design and frequency setting efficiencies. The
efficiency scores should be smaller than or equal to 1.0 and
a higher score indicates a more efficient status. Figure 4 is a
box plot of efficiency distributions for two overall and four
divisional efficiencies. The mean efficiency of route design is
0.60 and that of frequency setting is 0.18. The efficiencies of
route design are more widely distributed than efficiencies of
frequency setting. The proposed models have relatively low
efficiency scores because we incorporate many DMUs and
apply NEBMs. The efficiency value of NEBM is lower than
that of traditional DEA, because NEBM adopts intermediate
inputs/outputs to reflect internal or linking activities of
DMUs. The efficiency of stage 2 is much lower than that of
stage 1 for both NEBMs, which suggests that the input-output
process in stage 2 needs more improvement.

The best way to obtain a comprehensive picture of bus
route performance is to compare the efficiency of route design
with the efficiency of frequency setting. The correlation
coefficient between two efficiencies is 0.13, which is positive
but rather small. It indicates that bus routes with high route
design efficiency scores may not have high frequency setting
efficiency scores and vice versa. The geographic location and
environment of bus routes are illustrated using GIS. We use
nature breaks to classify bus routes based on two overall
efficiencies. Figures 5 and 6 provide snapshots of the effi-
ciency classifications for all urban arterial bus routes operated
in Nanjing. Bus routes with high efficiencies (colored red)
are best performers and can be served as benchmarks for
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Table 2: Descriptive statistics of indicators.

Type Indicator min max mean sd
Model 1

Input of stage 1

number of stops 10.0 38.0 24.4 5.1
route length (km) 5.7 45.5 16.0 4.8
route directness 1.1 2.8 1.6 0.3
bus overlapping 0.0 15.8 2.2 1.7

metro overlapping 0.0 0.2 0.0 0.0

Intermediate input/output

residential coverage 1.0 27.7 8.9 4.1
employment coverage 1.5 44.7 15.9 7.5

bus connectivity 0.0 6.5 2.6 1.1
metro connectivity 0.0 0.1 0.0 0.0

Input of stage 2 off-peak operation speed (km/h) 10.5 34.8 18.9 3.8
peak operation speed (km/h) 8.4 26.8 16.6 3.4

Output annual average daily ridership 2122 36642 13768 7029
Model 2

Input of stage 1
number of buses 2.0 71.0 25.5 11.3
number of drivers 5.0 195.3 69.9 34.0

daily operation time (h) 7.0 19.2 16.2 1.5

Intermediate input/output off-peak frequency (veh/h) 3.3 17.1 8.2 2.7
peak frequency (veh/h) 3.8 30.0 11.6 4.6

Input of stage 2 off-peak on-time arrival rate (%) 0.0 98.0 53.9 31.1
peak on-time arrival rate (%) 0.0 90.0 47.4 31.4

Output annual average daily ridership 2122 36642 13768 7029

Figure 5: Bus routes classified by network route design efficiencies. Figure 6: Bus routes classified by frequency setting efficiencies.
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Table 3: Top and bottom performers and efficiency scores.

Bus routes Model 1 Model 2
Overall Stage 1 Stage 2 Overall Stage 1 Stage 2

Top performers
100 1.00 1.00 1.00 0.34 0.71 0.47
101 0.94 0.88 1.00 1.00 1.00 1.00
151 1.00 1.00 1.00 1.00 1.00 1.00
157 0.86 1.00 0.78 0.44 0.66 0.67
183 1.00 1.00 1.00 0.32 0.62 0.52
55 1.00 1.00 1.00 1.00 1.00 1.00
Bottom performers
113 0.20 0.55 0.25 0.06 0.40 0.16
114 0.19 0.50 0.21 0.06 0.39 0.16
121 0.23 0.44 0.23 0.03 0.39 0.07
134 0.23 0.65 0.23 0.12 0.61 0.19
160 0.11 0.63 0.10 0.11 0.33 0.31
318 0.17 0.50 0.22 0.08 0.43 0.19
53 0.10 1.00 0.08 0.10 0.65 0.15
66 0.27 0.74 0.25 0.07 0.62 0.11
73 0.25 0.65 0.27 0.10 0.62 0.17
JN21 0.22 0.62 0.18 0.11 0.39 0.29

other routes to improve their efficiencies. Bus routes with
middle efficiencies (colored yellow) are effective performers
and can be maintained and supported. Bus routes with
low efficiencies (colored green) are worst performers, which
should be redesigned.

Figure 7 shows the top and bottom performers. Table 3
displays the top and bottom performers in terms of efficiency.
Efficiencies of bus routes 100, 101, 151, 157, 183, and 55 rank
highest in both route design and frequency setting aspects.
Further analyses on annual average daily ridership indicate
that these four bus routes also have the highest volumes.
Efficiencies of bus routes 113, 114, 121, 134, 160, and so
forth rank lowest in both aspects. For these bus routes, the
planning and operation should be strengthened to attract
more passengers.

Table 4 shows descriptive statistics of indicators of the top
and bottom performers.There are several interesting facets to
these results.

First, compared with top performers, bottom performers
are associated with very low ridership.

Second, for Model 1, bottom performers “over-invest”
in the number of stops and route directness, but “under-
produce” residential and employment coverage and bus
connectivity (stage 1). The efficiency of stage 2 is even
worse than that of stage 1. Compared with top performers,
bottomperformers “invest” about 93%of residential coverage
and 83% of employment coverage but “produce” 31% of
annual average daily ridership (stage 2). Strategies to improve
efficiency involve optimizing bus stop locations to increase
the bus interchange potential and to get closer to residential
and employment area and, more importantly, to achieve the
good balance between residential and employment coverages.

Figure 7: Top and bottom performers.

It requires further analysis of demographics and commuting
patterns at neighbourhood level.
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Table 4: Descriptive statistics of indicators of the top and bottom performers.

Type Indicator Bottom performers Top performers
mean sd mean sd

Model 1

Input of stage 1

number of stops 27.8 4.3 22.0 5.3
route length (km) 15.2 2.6 15.5 1.6
route directness 1.8 0.5 1.6 0.3
bus overlapping 2.0 1.2 2.5 0.9

metro overlapping 0.0 0.0 0.0 0.0

Intermediate input/output

residential coverage 8.3 2.9 8.9 4.6
employment coverage 13.1 3.9 15.8 7.1

bus connectivity 2.0 0.7 3.3 1.1
metro connectivity 0.0 0.0 0.0 0.0

Input of stage 2 off-peak operation speed (km/h) 15.7 1.8 15.1 4.2
peak operation speed (km/h) 9.7 1.5 9.9 4.1

Output annual average daily ridership 6500 2962 21044 8401
Model 2

Input of stage 1
number of buses 19.6 8.1 28.0 10.0
number of drivers 51.4 23.2 79.5 28.5

daily operation time (h) 15.6 0.7 17.1 1.1

Intermediate input/output off-peak frequency (veh/h) 6.7 2.2 8.6 2.3
peak frequency (veh/h) 8.8 3.4 18.2 7.1

Input of stage 2 off-peak on-time arrival rate (%) 26.6 19.9 64.8 39.3
peak on-time arrival rate (%) 19.9 18.2 62.2 35.4

Output annual average daily ridership 6500 2962 21044 8401

Third, for model 2, the efficiency of stage 2 is still worse
than that of stage 1. Bottom performers “invest” about 78%
of off-peak frequency and 48% of peak frequency but only
“produce” 31% of annual average daily ridership (stage 2).
In order to improve efficiencies, strategies involve modifying
service frequencies and schedules.

5. Conclusions

The dramatic expansion of urban land use and the intro-
duction of urban rail transit change the travel patterns in
China’s large cities. The need to adequately evaluate and
improve bus routes has been accentuated. TwoNEBMmodels
are proposed for bus routes evaluation so as to identify
deficiencies and bring out optimization strategies in terms
of route design and frequency setting. To the best of our
knowledge, it is the first attempt to apply NEBM model
to evaluate bus routes. This model is much easier to use
than mathematical programming approaches in assisting the
development of bus transit systems. It can be applied on a
yearly/monthly basis and easily transferred to other cities.

Besides, this study focuses on route design and fre-
quencies setting, which mainly reflect the transit operator
perspectives. From the passenger perspective, travel time,
reliability, and in-vehicle comfort are their concerns. Passen-
gers’ requirements of travel time and reliability are consistent
with transit operators, which are reflected in route directness,
operation speed, and on-time arrival rate indicators. But their
requirements of in-vehicle comfort are not fully considered

in the proposed model. As passenger flows and bus services
fluctuate at different time periods, the service quality indica-
tor can be calculated using Automatic Fare Collection (AFC)
or Automatic Passenger Counting (APC) data. Extending the
model by relaxing the output variables and investigating how
external traffic conditions influence transit efficiency will be
important future works.
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The [19 indicators of 185 urban arterial routes] data of
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