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­e short-term interactions between on-street and garage parking policies and the associated parking pricing can be highly in�uential 
to the searching-for-parking tra�c and the overall tra�c performance in the network. In this paper, we develop a macroscopic on-street 
and garage parking decision model and integrate it into a tra�c system with an on-street and garage parking search model over time. 
We formulate an on-street and garage parking-state-based matrix that describes the system dynamics of urban tra�c based on di�erent 
parking-related states and the number of vehicles that transition through each state in a time slice. ­is macroscopic modeling approach 
is based on aggregated data at the network level over time. ­is leads to data collection savings and a reduction in computational costs 
compared to most of the existing parking/tra�c models. ­is easy to implement methodology can be solved with a simple numerical 
solver. All parking searchers face the decision to drive to a parking garage or to search for an on-street parking space in the network. 
­is decision is a�ected by several parameters including the on-street and garage parking fees. Our model provides a preliminary 
idea for city councils regarding the short-term impacts of on-street and garage parking policies (e.g., converting on-street parking to 
garage parking spaces, availability of garage usage information to all drivers) and parking pricing policies on: searching-for-parking 
tra�c (cruising), the congestion in the network (tra�c performance), the total driven distance (environmental impact), as well as the 
revenue created for the city by the hourly on-street and garage parking fee rates. ­is model can be used to analyze how on-street and 
garage parking policies can a�ect tra�c performance; and how tra�c performance can a�ect the decision to use on-street or garage 
parking. ­e proposed methodology is illustrated with a case study of an area within the city of Zurich, Switzerland.

1. Introduction

As the population in urban areas is increasing, more and more 
cars need to �nd parking spaces in city centers. ­ese vehicles 
normally have the choice between on-street and garage park-
ing. Both parking possibilities follow diverse policies, which 
can sometimes lead to rather complex interdependencies and 
signi�cant changes in the performance of a transportation 
network. In this research, we develop a macroscopic on-street 
and garage parking model such that the in�uence of di�erent 
on-street and garage parking policies on the tra�c system can 
be studied and illustrated. Herea�er, o�-street parking is 
referred to as garage parking. ­e macroscopic model is built 
on a tra�c system with a parking search model over time. It 
is incorporated into the on-street parking framework from 
Cao and Menendez [1].

­e existing literature contains a number of empirical 
approaches to model the interaction between on-street and 
garage parking. ­ese empirical methods usually focus on 
collecting data for both on-street and garage parking, e.g., 
SFpark [2] uses its responsive pricing scheme to leave between 20 and 40 percent of on-street parking spaces open on every 
block, and Pierce et al. [3] introduce parking pricing to have 
open spaces available in public garages at all times. Other 
garage parking models are based on questionnaires, e.g.,  
[4, 5]; or they use dynamic information to predict real-time 
garage parking availability [6]. Kobus et al. [7] estimate the 
e�ect of on-street parking fees on drivers’ choice between 
on-street and garage parking. Gragera and Albalate [8] analyze 
how garage parking demand is a�ected by on-street parking 
regulations. Our macroscopic modeling approach allows us 
to estimate the average impact of on-street and garage parking 
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on the traffic system without any physical devices nor large 
data collection efforts.

For modeling both on-street and garage parking and the 
associated parking fees, previous studies [9, 10] illustrate how 
the actual full price of parking contains both the interaction 
between garage operators and the cruising costs for on-street 
parking. �ey develop a spatial competition model to eliminate 
cruising by allocating excess cruising demand to garage parking 
and focus on social optimum suggestions concerning the rela-
tionship between curbside and garage fares. Shoup [11] shows 
that underpriced on-street parking creates an incentive for 
drivers to cruise. �e microeconomic model explains why a 
driver would rather choose to cruise for free on-street parking 
than paying for garage parking. �e decision model between 
on-street and garage parking in [11] is based on the garage 
parking fee, the driver’s intended parking duration, the time 
spent cruising, the cost of petrol while cruising-for-parking, 
the number of people in the car, and the driver’s and his pas-
sengers’ value of time (VOT). Our parking decision, instead, 
is based on a macroscopic modeling approach. Arnott and 
Rowse [12] present a nonlinear model of parking congestion 
focusing on the searching-for-parking phenomenon for an 
available on-street parking space in a homogeneous metropolis. 
Arnott and Inci [13] analyze the influences of on-street parking 
pricing on cruising-for-parking and Arnott and Rowse [14] 
study the effects of on-street parking time limits on traffic per-
formance, but do not consider garage parking. Arnott et al. 
[15] explore optimal location-dependent parking fees in com-
parison to time-varying road tolls concentrating on commuter 
parking and their arrival times during the morning rush hour. 
Arnott and Inci [16] investigate how an increasing demand 
affects the traffic dynamics for a uniform road network with 
on-street parking. Mackowski et al. [17] model variable 
on-street and garage pricing in real-time for effective parking 
access and space utilization by using a dynamic Stackelberg 
leader-follower game theory approach. Qian and Rajagopala 
[18] develop a real-time pricing approach for a parking lot 
based on its occupancy rate as a system optimal parking flow 
minimization problem. �ey assume a user equilibrium travel 
behavior and only focus on garage parking without analyzing 
its interdependency with on-street parking in the network. 
Benenson et al. [19] develop an agent-based parking model for 
a city by simulating the behavior of each driver in comparison 
to our macroscopic framework based on aggregated data. 
Further studies use this agent-based parking model to analyze 
different parking policies [20], estimate city parking patterns 
[21], explore cruising-for-parking [22, 23] and evaluate parking 
planning projects for large parking garages [24]. Wang et al. 
[25] study park-and-ride (P+R) networks with multiple origins 
and one destination and focus on an optimal parking pricing 
strategy. �ey only focus on setting optimal parking fees for 
P+R terminals and do not consider the interaction with 
on-street parking. Klade�iras and Antoniou [26] focus on the 
effects of illegal parking (double parking) on traffic and envi-
ronmental conditions using a microscopic simulation. Zheng 
and Geroliminis [27] model multimodal traffic with limited 
on-street and garage parking and dynamic pricing based on a 
congestion- and cruising-responsive feedback parking pricing 
scheme. �e proposed framework is based on the macroscopic 

fundamental diagram (MFD) reflecting the dynamics of park-
ing flows in an urban network [28, 29]. Liu and Geroliminis 
[30] use an MFD approach to investigate how cruising-for-on-
street-parking influences the commuters’ morning peak and 
develop a dynamic parking pricing model to reduce total social 
cost. However, they do not consider garage parking in its 
framework. Leclercq et al. [31] also only include on-street park-
ing to their trip-based MFD model evaluating the on-street 
parking search process with respect to different vehicle parking 
strategies. Arnott et al. [32] study how much curbside to allo-
cate to parking when the private sector provides garage park-
ing. Arnott and Rowse [33] analyze parking in a spatially 
homogeneous downtown area where the drivers choose 
between on-street and garage parking. Cruising for parking 
contributes to congestion, such that the price of the initially 
cheaper on-street parking is increased until it equals the price 
of garage parking. �en increasing the on-street parking fee 
may generate an efficiency gain through the reduction of 
cruising. �ese models focus on social optimum and user 
equilibrium methodologies.

Compared to methodologies concentrating on long-term 
demand management strategies, our dynamic macroscopic 
modeling approach focuses on the short-term effects in the 
traffic network, i.e., the demand entering the network is treated 
as exogenous, and the on-street and garage parking capacity 
is taken as fixed. An on-street and garage parking-state-based 
matrix is used to capture the system dynamics of urban traffic. 
It is based on multiple parking-related traffic states and tran-
sition events to update the number of vehicles per state over 
time [1]. �e total traffic demand entering the network is 
divided into two groups; through-traffic, and vehicles search-
ing for parking. �e first group of vehicles represents the pro-
portion of traffic that is driving through this area but does not 
want to park or has a destination outside. �erefore, it only 
experiences two transition events, as seen in Figure 1(a). �e 
second group of vehicles needs to decide between searching 
for on-street parking or driving towards a parking garage, as 
seen in Figure 1(b). During one single time slice, a vehicle may 
experience at most one transition event.

In case the drivers decide for on-street parking, they might 
need to circulate in the city to search for an available on-street 
parking space, which contributes to the problem of traffic con-
gestion. In case the drivers decide for garage parking, there is 
no need to search-for-parking. �ese vehicles drive towards 
the closest parking garage and access it depending on its cur-
rent availability. With limited data collection efforts, our mac-
roscopic on-street and garage parking decision model shows 
the influence of different on-street and garage parking pricing 
ratios on the average searching time/distance. We analyze not 
only the relationship between on-street and garage parking, 
but also their interdependency on cruising-for-parking traffic 
and traffic performance with respect to different parking fees. 
Different pricing strategies affect the drivers’ decision to park 
on-street or to drive towards a parking garage. Insights from 
this paper will help city councils or private agencies to analyze 
the short-term impacts on the traffic system, for example, when 
changing the hourly on-street and garage parking fee rates on 
the network, or when converting on-street to garage parking 
spaces (as it has been the case in cities like Zurich, Switzerland).
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In summary, the existing literature approaches on-street 
and garage parking models either with empirical data collec-
tion e�orts or with methodologies concentrating on user equi-
librium or social optimum solutions that focus on long-term 
demand management strategies. Our on-street and garage 
parking decision model follows a macroscopic approach and 
focuses on short-term e�ects. ­e main contributions of this 
study are three-fold.

(i)   First, without large data collection e�orts, our macro-
scopic decision model provides valuable insights into 
di�erent on-street and garage parking fee ratios and 
their impacts on cruising-for-parking tra�c as well as 
the overall tra�c performance. ­e macroscopic model 
of garage parking also allows us to provide an easy to 
implement methodology with low computational costs 
based on aggregated data at the network level over time 
that can be easily solved with a simple numerical solver.

(ii)   Second, our framework provides the tools to study 
the trade-o� between the parking revenue and the 
cruising-for-parking tra�c. We analyze not only the 
relationship between on-street and garage parking, 
but also their interdependency on tra�c performance 
with respect to di�erent parking fees. ­is study can 
be used for city councils or private agencies to �nd 
reasonable hourly on-street and garage parking fees 
such that the average vehicle time/distance is not neg-
atively a�ected and additionally, acceptable �nancial 
revenues are obtained.

(iii)   ­ird, di�erent parking policies in city center areas, 
e.g., the short-term e�ects of converting on-street to 
garage parking spaces on the tra�c system, or the 
availability of garage usage information to all drivers 

can be simulated using our methodology and recom-
mendations for city councils can be made.

­e paper is organized as follows. Section 2 presents the over-
all framework of the macroscopic on-street and garage parking 
decision model. Section 3 illustrates the concept and mathe-
matical model of the on-street and garage parking-state-based 
matrix. Section 4 shows a case study of an area within the city 
of Zurich, Switzerland. Section 5 concludes this paper.

2. On-Street and Garage Parking Decision

Several cost factors in�uence the on-street/garage parking deci-
sion, as seen in Figure 2. ­ese cost variables include variables 
that have an impact on either the on-street parking option (e.g., 
the on-street parking pricing), the garage parking option 
(e.g., the garage parking pricing) or on both parking options 
(e.g., the number of parking spaces of each kind, and the 
desired parking duration). Drivers with desired long parking 
durations are more likely to choose garage parking. All drivers 
are assumed to be rational during their parking decision and 
only compare the relevant parking costs between on-street and 
garage parking, i.e., all drivers are treated as risk-neutral.

­e parking decision is then modeled macroscopically 
using a logistic function based on the on-street and garage 
parking cost variables. ­e data inputs are presented in Section 
2.1. All mathematical details of this modeling approach are 
illustrated in Section 2.2.

2.1. Data Inputs for Decision Model. ­e decision between 
on-street and garage parking is dependent on the input 
variables shown in Tables 1 and 2. ­e model parameters and 
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Figure 1: ­e transition events of urban tra�c focusing on on-street and garage parking in-between di�erent parking-related states. (a) 
­rough-tra�c. (b) Searching for parking tra�c.
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Given the homogeneous network, parking searchers are 
assumed to be homogeneously distributed within the overall 
driving tra�c. ­is is reasonable, as we also assume that all 
on-street parking spaces (not only the available ones) are uni-
formly distributed on the network. Although on-street parking 
maneuvers have been proven to in�uence tra�c �ow [35, 36], 
here we do not account for them, as we focus on the in�uence 
of the number of vehicles searching for on-street parking on 
the overall tra�c performance. Recall that we focus on small 
compact areas with standard parking policies (e.g., downtown 
areas or portions thereof). We do not need to record the loca-
tion of individual cars and parking spots throughout the dif-
ferent time slices in the system, i.e., only average numbers of 
vehicles during a time slice and total/average searching times 
and distances are tracked.

all variables that are required to de�ne the tra�c network are 
presented in Table 1. ­ese variables can either be directly 
measured, or estimated based on simulation results and/or 
the macroscopic fundamental diagram.

All data inputs are based on a compact urban area with a 
relatively homogeneous network. ­e total time horizon is 
divided into small time slices (e.g., 1 minute). All tra�c and 
parking conditions can change over multiple time slices, but 
they are assumed to be steady within each time slice. As stated 
in [1], the urban network is abstracted as one ring road with 
cars driving in a single direction, which has been proven to be 
reasonable for small, homogeneous tra�c networks [34].

It is assumed that all trips are exclusively made by car, i.e., 
the mode choice has been previously made. In addition, we 
assume that drivers do not cancel their trips while searching 
for parking. ­e VOT is assumed to be di�erent for individual 
vehicles depending on their user group. Such user group can 
be dependent on the residents’ location, income, careers, 
working states, etc.

Table 2 shows all independent variables associated with 
on-street and garage parking. ­is includes parking duration 
and parking pricing speci�c input parameters. ­ese variables 
can be estimated based on real measurements, historical 
on-street and garage parking and pricing data, or de�ned oth-
erwise. All variables related to the travel demand and the dis-
tances driven can be estimated based on historical data, e.g., 
tra�c data on main roads to enter the network, etc. ­e dis-
tance variables that are associated with a transition into the 
next state can be reasonably assumed based on the length of 
the network, and other data collected from drivers.

Decision

On-street 
parking 
pricing

Average 
cruising time 
and distance

Garage 
parking 
pricing

Cost of 
walking to 
destination

Cost of driving
towards
garage 

Desired 
parking 
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Number of 
parking spaces 

of each kind

Garage parking costOn-street parking cost

Figure 2: Decision model for on-street and garage parking based on several cost factors.

Table 1: Independent variables for parking decision (inputs to the 
model): tra�c network and model parameters.

Notation De�nition
� Size (length) of the network.
� Average length of a block in the network.
� Length of the simulation’s time horizon.
� Length of a time slice.

� Total number of user groups for demand input of 
the network. Each user group has a di�erent VOT.

VOT
� VOT for user group � ∈ �.

� Free �ow speed, i.e., maximum speed in the net-
work, including stopped time at intersections.

� Walking speed in the network.

Table 2: Independent variables for parking decision (inputs to the 
model): on-street and garage parking parameters.

Notation De�nition

� Total number of existing on-street parking spaces 
(for public use) in the area.

� Number of parking garages in the network.

� Total capacity of all parking garages, i.e., total number 
of all garage parking spaces.

�� Parking duration of vehicles (independently of  
on-street and garage parking).

��,� Parking duration of vehicles focusing on on-street  
(��) or garage parking (��), � ∈ {��, ��}.

�� On-street (��) or garage parking (��) time limit, � ∈ {��, ��}.
�� Hourly on-street (��) or garage parking (��) fee rate, � ∈ {��, ��}.
�
dist

Price per kilometer driven on the network (i.e., 
 external costs as petrol, wear and tear of vehicles).

�� Proportion of new arrivals during time slice � that 
corresponds to tra�c that is not searching for parking.

����/ Distance that must be driven by a vehicle from user 
group � ∈ � before it starts to search for parking.

��/
Distance that must be driven by a vehicle from user 
group � ∈ � before it leaves the area without having 

parked.

���/
Distance that must be driven by a vehicle from user 

group � ∈ � before it leaves the area a�er it has parked 
on-street or in a garage.
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of all parking garages), � (the total number of existing 
on-street parking spaces), ��,��� (the cost of on-street parking, 
modeled in Section 2.2.1), and ��,��� (the cost of garage parking, 
modeled in Section 2.2.2).

Drivers base their parking choice on expected costs. ­ese 
cost variables are determined macroscopically without sto-
chastic components, using average values and probability dis-
tributions across the whole population. ­erefore, ��,��� is 
modeled as an average corresponding to aggregated data at 
the network level based on the logistic probability distribution. 
To make sure the parking choice takes the supply into consid-
eration, we add the weight parameters �/(� + �) and �/(� + �) to Eq. (1). ­ese terms are not time-dependent 
since there is no real-time information for on-street and garage 
parking availability. We assume that the drivers have only 
information available about the VOT for their own user group � ∈ �, about total parking capacities in the network, and about 
the system averages required to determine the cost variables ��,��� and ��,���. It is further assumed that the drivers are unso-
phisticated in their decision-making since they do not use 
their experienced vehicle speed values as additional informa-
tion to update the available system average information 
required to determine ��,��� and ��,���. In an alternative scenario 
in Section 4.5, we relax this assumption by having real-time 
garage parking availability information accessible to the driv-
ers when deciding to park on-street or to drive towards a park-
ing garage. However, no real-time on-street parking 
information is assumed to be available in this alternative sce-
nario, as this is less common. In future research, other scenar-
ios can be investigated involving a forecast about future 
on-street and/or garage parking availability when making their 
decision.

Notice that the decision of some drivers is restricted by ��� 
and ���. ­is is taken into account when calculating ��,��� in Eq. 
(2), which described the proportion of vehicles deciding for 
garage parking, and ��,��� in Eq. (3) which describes the propor-
tion of vehicles deciding to search for on-street parking.

Term 1 in Eq. (2) represents the portion of vehicles with a 
parking duration �� ≤ ��� that have the option to decide for 
on-street or garage parking. Term 2 represents the portion of 
vehicles with ��� < �� ≤ ��� that have to park in a garage 
because of their desired parking duration. Notice that both ∫���0 �(��)��� and ∫�������(��)��� are assumed to be �-independ-
ent, i.e., the distribution of the parking durations is assumed 
to be independent of the drivers’ VOT.

(1)��,�g� = �
�/�+�∙��,���−�/�+�∙��,�g�/min{�/�+�∙��,��� ,�/�+�∙��,�g�}
1 + ��/�+�∙��,���−�/�+�∙��,�g�/min{�/�+�∙��,��� ,�/�+�∙��,�g�} .

(2)
��,��� = ∫

���

0
�(��)��� ⋅ ��,���⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

term 1

+∫���
���
�(��)���⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
term 2

,

(3)��,��� = 1 − ��,���.

Parking garages are also assumed to be uniformly distrib-
uted within the network, and without loss of generality, all 
associated garage parking capacities are assumed to be equal. 
­e distribution of desired parking durations is considered as 
an input to this model. Some distributions describe the park-
ing duration better than others, see [37, 38]. In theory, how-
ever, any distribution can be used, e.g., poisson, negative 
binomial [1]. It is assumed that during the period of one work-
ing day, drivers do not repark their car a�er the on-street 
parking time limit has expired.

2.2. Mathematical Decision Framework. Table 3 summarizes 
the intermediate modeling variables that are needed to model 
the on-street and garage parking decision. ­e model outputs 
provide, among others, the results of the interactions between 
on-street and garage parking and their in�uence on the urban 
tra�c system.

We model the parking decision between on-street and 
garage parking macroscopically in Eqs. (1)–(3). ­is will then 
be incorporated into the on-street and garage parking-state-
based matrix from [1, 39] in Section 3. We assume that the 
on-street parking time limit ��� is smaller than the garage 
parking time limit ���, i.e., ��� ≤ ���. All drivers with a desired 
parking duration of �� ≤ ��� decide between on-street and 
garage parking, whereas drivers with ��� < �� ≤ ��� are 
restricted and can only park at garages. Notice that �� is taken 
out of a distribution and no individual vehicles are tracked. 
We assume that �� ≤ ��� for all drivers, since vehicles with �� > ��� cannot �nd a parking place according to their desired 
parking duration anywhere within this network. ­e choice 
for garage parking over on-street parking, ��,���, is modeled in 
Eq. (1) using a logistic function based on � (the total capacity 

Table 3: Intermediate model variables.

Notation De�nition

��,�� Total cost of on-street (��) or garage parking (��) in 
time slice � for user group � ∈ �, � ∈ {��, ��}.

��,��� Choice of drivers for garage parking (��) in time slice � for user group � ∈ �.

��,��
Proportion of drivers deciding for on-street (��) or 
 garage parking (��) in time slice � for user group � ∈ �, � ∈ {��, ��}.

ACT
� Average cruising time for on-street parking in time 

slice �.
ADD Average driving distance to closest garage location.

AWD�
Average walking distance from on-street (��) or garage 

parking (��) parking to destination, � ∈ {��, ��}.
�� Average travel speed in time slice �, including stopped 

time at intersections.
�� Maximum driven distance per vehicle in time slice �.
�� Number of available on-street parking spaces at the 

beginning of time slice �.
�� Garage parking availability of all parking garages in 

time slice �.
�
tot

Total revenue resulting from hourly on-street and 
garage parking fee rates for the city.
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the associated average driving distance ADD, determined in 
Eq. (7).

Remember that the actual garage locations are assumed to be 
uniformly distributed on the network and that we assume that 
tra�c on the abstracted ring moves in a single direction.

Term 4 in Eq. (6) represents the cost of walking from the 
garage parking to the destination expressed in price units for � ∈ �. As the number of garages is limited, they are expected 
to require, on average, some walking distance. ­e walking 
speed � is assumed to be a constant input. To estimate the area 
served by each parking garage, we take the surface of the 
square grid [� ⋅ (−1/2 + √1/4 + �/2�)]2 and divide it by �
(Figure 3). Assuming destinations are uniformly distributed 
in the network, we can compute the average walking distance 
AWD�� in Eq. (8) as 2/3 of the radius of each of the areas 
served by a parking garage.

Note that we enhance ��,��� in Section 4.5 by including 
garage usage information to all drivers.

2.2.3. Total Revenue. One component of the parking decision 
is paying an hourly fee for on-street or garage parking. 
However, the drivers pay the �nal parking fee from on-street 
or garage parking depending on how long they have parked. 
Eq. (9) expresses the total revenue �

tot
 obtained from all user 

groups � for the time horizon �.

Term 1 shows the revenue from on-street parking for user 
group � ∈ � during time slice �. Term 2 illustrates the revenue 
from garage parking for user group � ∈ � during time  
slice �. ��,�� and ��,�� illustrate the average on-street/garage 
parking duration obtained from all user groups � for the time 
horizon �. Notice that ��,���/�� in term 1 and ��,���/�� in term 2 are 
both de�ned in Section 3.1 (Table 4).

3. On-Street and Garage Parking-State-Based 
Matrix

­e on-street and garage parking-state-based matrix describes 
the system dynamics of urban tra�c based on multiple 
parking-related states as in [1]. ­e matrix is used to 
incorporate our parking decision model into a macroscopic 
tra�c system framework that captures the interactions over 
time between the on-street and garage parking systems. ­is 
section shows an overview of all on-street and garage parking-
related tra�c states (Section 3.1), and the analytical 
formulations for the transition events between those states 
(Section 3.2).

(7)ADD = �2 ⋅ � .

(8)AWD�� = 2�3√� ⋅ �[−
1
2 + √
1
4 +
�
2�].

(9)�
tot
= �∑
�=1

�∑
�=1
��,���/�� ⋅ ��� ⋅ ��,��⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

term 1

+ ��,���/�� ⋅ ��� ⋅ ��,��⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
term 2

.

2.2.1. Cost of On-Street Parking. In Eq. (4), we derive the cost 
of on-street parking, ��,��� for each user group � ∈ � in time 
slice �.

Term 1 represents the hourly on-street parking fee rate which, 
in the remainder of this paper, is assumed to be constant. In 
theory, however, the on-street parking fee could also be mod-
eled as a responsive parking pricing scheme [39] that takes the 
parking search phenomenon into consideration. Notice that 
the parking decision in Eq. (1) is assumed to be based on the 
parking fee rates per hour independently of the parking dura-
tions. Term 2 represents the average cruising distance for 
on-street parking (i.e., external costs as petrol, wear and tear 
of vehicles) converted to price units. Term 3 represents the 
average cruising time based on the drivers’ VOT expressed in 
price units for � ∈ �. ­e average cruising time ACT� is deter-
mined as in Jakob et al. [39], and is based on a queueing dia-
gram showing the cumulative number of vehicles going 
through each transition event as a function of time. Notice 
that the longer the drivers search for on-street parking, the 
higher the average cruising time ACT� is, and consequently 
also the ��,���. ­erefore, it is more likely that the drivers might 
decide for garage parking in congested areas. Term 4 repre-
sents the cost of walking from the on-street parking to the 
destination expressed in price units for � ∈ �. Even though 
our abstracted network was a ring, we may assume without 
loss of generality that the real network is a square grid, where 
the average length of a block � in the network is known. ­e 
total length of the ring network, �, is then equivalent to joining 
all blocks of length � together. As on-street parking spaces are 
uniformly distributed throughout the network, the walking 
costs can be determined using the average distance traveled 
AWD�� (Eq. (5)) between two random points in the square 
grid [40].

Term 1 represents the side length of the square grid.

2.2.2. Cost of Garage Parking. ­e cost of garage parking, ��,���
for each user group � ∈ � in time slice � is based on multiple 
cost terms as shown in Eq. (6).

Term 1 represents the hourly garage parking fee rate which, in 
the remainder of this paper, is assumed to be constant. Terms 2 and 3 show the cost of driving from the actual vehicle’s garage 
parking decision location to the closest garage for � ∈ �. It 
contains the average distance to the closest garage parking 
expressed in distance price units (term 2) and the average time 
expressed in price units for � ∈ � (term 3). Both terms include 

(4)

��,��� = ���⏟⏟⏟⏟⏟⏟⏟
term 1

+�
dist
⋅ �� ⋅ ACT�⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
term 2

+VOT� ⋅ ACT�⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
term 3

+VOT� ⋅ AWD��

�⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
term 4

.

(5)AWD�� = 23 ⋅ � ⋅ (−
1
2 + √
1
4 +
�
2�)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

term 1

.

(6)

��,��� = ���⏟⏟⏟⏟⏟⏟⏟
term 1

+�
dist
⋅ ADD⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

term 2
+VOT� ⋅ ADD��⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

term 3

+VOT� ⋅ AWD��

�⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
term 4

.
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and switch to garage parking later. As soon as the vehicles 
decide for garage parking, they will drive towards the closest 
parking garage and access it based on availability. For these 
drivers, the location of the parking garages is assumed to be 
known, or guidance to the garage location is available. Once 
the garage parking decision is made, we assume the drivers do 
not change their decision while driving to the garage location. 
If there are no available garage parking spaces, the vehicles 
cannot access the parking garage and might move to the 
searching-for-on-street-parking state. A�er the vehicles have 
accessed on-street or garage parking, they depart and move 
back to the non-searching state before they leave the area. All 
tra�c states in Figure 1 are summarized in Table 5. ­e initial 
conditions of all tra�c state variables are model input variables 
that can be measured, assumed, or simulated.

­ese parking-related states are determined using the 
information on the transition events. We introduce the tran-
sition events in Table 4.

Eqs. (10–14) update the number of “non-searching, 
“searching for on-street parking”, “on-street parking”, “driving 
to garage parking,” and “garage parking” vehicles, respectively. 
Notice that all equations need to be determined for every user 
group � ∈ �, where � is the total number of user groups for 
the demand input of the network.

Eq. (10) updates the number of “non-searching” vehicles for 
each � ∈ � before aggregating them to ��+1

ns
. Vehicles entering 

the area (i.e., ��,�/��), and vehicles that depart from on-street or 
garage parking (i.e., ��,���/�� and ��,���/��) join this state; vehicles 
that start searching or drive to garage parking (i.e., ��,���/� and ��,���/���), and vehicles leaving the area (i.e., ��,���/) quit this state. 
Eq. (11) updates the number of “searching” vehicles for each � ∈ � and aggregates them a�er to ��+1� . Vehicles starting to 
search for on-street parking (i.e., ��,���/�) and vehicles not able 
to access garage parking (i.e., ��,����/�) join this state; vehicles 
accessing on-street parking (i.e., ��,��/��) and vehicles driving to 
garage parking (i.e., ��,��/���) leave this state. Eq. (12) updates 
the number of “on-street parking” vehicles for each � ∈ � and 

(10)

��+1
ns
= �∑
�=1
��+1,�

ns
, where��+1,�

ns
= ��,�

ns
+ ��,�/�� + ��,���/�� + ��,���/��

− ��,���/� − ��,���/��� − ��,���/,

(11)

��+1� =
�∑
�=1
��+1,�� , where��+1,�� = ��,�� + ��,���/� + ��,����/�
− ��,��/�� − ��,��/���,

(12)
��+1�� =

�∑
�=1
��+1,��� , where��+1,��� = ��,��� + ��,��/�� − ��,���/��,

(13)
��+1��� =

�∑
�=1
��+1,���� , where��+1,���� = ��,���� + ��,���/��� + ��,��/���
− ��,����/�� − ��,����/�,

(14)

��+1�� =
�∑
�=1
��+1,��� , where��+1,��� = ��,��� + ��,����/�� − ��,���/��.

3.1. Parking-Related Tra�c States. ­e parking-related tra�c 
states build the foundation for the parking-state-based matrix. 
­e matrix updates all parking-related tra�c states based on 
the number of vehicles going through di�erent transition 
events in each time slice. ­e matrix is updated iteratively over 
time until the whole period is analyzed, or a de�ned criterion 
is reached (e.g., all the cars leave the area). By integrating our 
on-street and garage parking decision model from Section 
2, the matrix allows us to illustrate the e�ects of di�erent 
on-street and garage parking policies on searching time and 
searching distance.

All transition events are modeled using a deterministic 
approach. However, the model is not thoroughly deterministic, 
as for example, the parking location of each vehicle is not �xed, 
nor the travel time, nor the parking duration. ­e model is not 
thoroughly stochastic either and there are no random values 
involved in the computation of each transition event. Having 
a not thoroughly stochastic model does not necessarily make 
the model less valuable than one under completely stochastic 
conditions, because the model is meant to look for average 
values based on some probability distributions rather than the 
random values themselves. Since all variables are based on 
average values and not on random values, every simulation run 
returns the same results as long as the input variables to the 
model are not changed. In addition, there is no need to run the 
model many times in order to account for its stochasticity, as 
it is based on probability functions (i.e., the stochasticity is 
already implicit within the model formulations) [1].

All vehicles searching for parking in Figure 1(b) have the 
option to decide for on-street or garage parking at their current 
location. ­is decision involves the on-street and garage park-
ing decision model from Section 2. ­e vehicles that have 
decided to search for on-street parking can change their mind 

AWD

Garage parking

AWD

AWD

Figure 3: Simple example of uniformly distributed garage parking 
to illustrate the average walking distance in Eq. (8).
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3.2. Transition Events. We model the transition events 
introduced in Table 4 in Sections 3.2.1–3.2.9.

3.2.1. Enter the Area. ­e tra�c demand ��,�/�� is an input 
to the model. It can be based on a probability distribution 
or it can be extracted from an agent-based model (e.g., 
MATSim). However, similar to all other transition events, ��,�/��
is deterministic and represents average values, i.e., there are 
no random values involved in their computation. A portion �� of all vehicles entering the area is considered as through-
tra�c, i.e., these vehicles will drive through the area without 
needing to park.

3.2.2. Go to Parking (Decision to Park). We assume that the 
vehicles from user group � ∈ � make their parking decision 
(searching for on-street parking or driving to garage parking) 
a�er driving a distance ����/ since they enter the area. ����/ can be 

then aggregates them to ��+1�� . Vehicles accessing an on-street 
parking space (i.e., ��,��/��) join this state; vehicles departing from 
on-street parking (i.e., ��,���/��) leave this state. Eq. (13) updates 
the number of vehicles that “drive to garage parking” for each 
user group � ∈ � and then aggregates them to ��+1���. Vehicles 
that drive to a parking garage during time slice � (i.e., ��,���/���
and ��,��/���) join this state; vehicles that actually access garage 
parking (i.e., ��,����/��) and vehicles that cannot access garage 
parking (i.e., ��,����/�) quit this state. Eq. (14) updates the number 
of “garage parking” vehicles for each � ∈ � before aggregating 
them to ��+1�� . Vehicles that access a garage during time slice � 
(i.e., ��,����/��) join this state; vehicles that depart garage parking 
(i.e., ��,���/��) quit this state. ­e total number of vehicles driving 
in the network at the beginning of time slice � is ��

ns
+ ��� + �����. 

­e total number of vehicles parked at the beginning of time 
slice � is ���� +����.

Table 4: All transition event variables for the on-street and garage parking-state-based matrix per time slice.

Notation Name De�nition

��,�/�� Enter the area
Number of vehicles that enter the area and transition to “non-searching” 

for user group � ∈ � during time slice � (i.e., travel demand per VOT user 
group).

��,���/��� Go to parking (Decision to park: Driving to 
garage parking)

Number of vehicles that transition from “non-searching” to “driving to 
garage parking” (depending on their parking decision) for user group � ∈ � during time slice �.

��,���/� Go to parking (Decision to park: Searching for 
on-street parking)

Number of vehicles that transition from “non-searching” to “searching for 
on-street parking” (depending on their parking decision) for user group � ∈ � during time slice �.

��,��/��� Switch to garage parking Number of vehicles that transition from “searching for on-street parking” 
to “driving to garage parking” for user group � ∈ � during time slice �.

��,��/�� Find and access on-street parking Number of vehicles that transition from “searching for on-street parking” 
to “on-street parking” for user group � ∈ � during time slice �.

��,����/�� Access garage parking Number of vehicles that transition from “driving to garage parking” to 
“garage parking” for user group � ∈ � during time slice �.

��,����/� Not access garage parking Number of vehicles that transition from “driving to garage parking” to 
“searching for on-street parking” for user group � ∈ � during time slice �.

��,���/�� Depart on-street parking Number of vehicles that transition from “on-street parking” to 
“non-searching” for user group � ∈ � during time slice �.

��,���/�� Depart garage parking Number of vehicles that transition from “garage parking” to “non-search-
ing” for user group � ∈ � during time slice �.

��,���/ Leave the area Number of vehicles that leave the area and transition from “non-search-
ing” for user group � ∈ � during time slice �.

Table 5: All tra�c state variables for the on-street and garage parking-state-based matrix per time slice.

Notation Name De�nition

��,�
ns

Non-searching Number of vehicles in the state “non-searching” for user group  � ∈ � at the beginning of time slice �.
��,�� Searching for on-street parking Number of vehicles in the state “searching for on-street parking” for user group  � ∈ � at the beginning of time slice �.
��,��� On-street parking Number of vehicles in the state “on-street parking” for user group  � ∈ � at the beginning of time slice �.
��,���� Driving to garage parking Number of vehicles in the state “driving to garage parking” for user group  � ∈ � at the beginning of time slice �.
��,��� Garage parking Number of vehicles in the state “garage parking” for user group  � ∈ � at the beginning of time slice �.
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lot of searching vehicles on the network. ­e level of the pen-
alty for the simulation is characterized by �. ­is parameter 
is de�ned as � > 1 such that (���)−� < 1, if ��� > 1. We intro-
duce a minimum function in term 3 to keep term 3 as a prob-
ability value, i.e., between 0 and 1. It can be shown in a 
sensitivity analysis that as long as � > 1, changes to its value 
only have a marginal in�uence on the average searching time/
distance, the average time/distance of drivers driving to garage 
parking, and on the revenue collected by on-street and garage 
parking fees in the network, but the details are omitted in this 
paper for brevity. In the remainder of this study, we assume a 
square root dependency and set � = 2.
3.2.4. Find and Access On-Street Parking. ­e vehicles ��,��/��
from user group � searching for on-street parking that �nd 
and access a parking space are determined in Eq. (19).

Notice that all drivers decide to access the �rst available 
on-street parking space in the network, as all parking spaces 
have the same price. As previously stated, details on ���/�� can 
be found in [1].

3.2.5. Access Garage Parking. ­e transition event ��,����/�� in 
Eq. (20) describes the process of accessing a parking garage. 
A�er the vehicles have decided to use garage parking, they 
drive towards the parking garage where they realize whether 
it is possible for them to access it depending on the garage 
parking availability. 

where

Term 1 in Eq. (20) represents the portion of vehicles trying to 
access garage parking that belong to user group �. Term 2
shows the sum of all vehicles (from Sections 3.2.2 and 3.2.3) 
that have decided to use garage parking in any former time 
slice �� ∈ [1, � − 1]. Term 3 (computed in Eq. (21)) indicates 
whether these vehicles have arrived at the garage a�er reaching 
ADD − ����/ (Section 2.2.2). Note that the drivers driving to 
garage parking are assumed to drive directly towards their 
garage as soon as they enter the area. ­us, the distance ����/ is 
deducted from ADD. Two conditions must be satis�ed: the 
vehicles have driven enough distance to arrive at a parking 
garage a�er having decided for it, and they have not accessed 
a garage in a former time slice. Finally, the number of vehicles 
that can actually access garage parking is the minimum of the 
available garage parking spaces and the number of vehicles 
that want to park.

(19)��,��/�� = ���/�� ⋅ �
�,�
���� .

(20)

��,����/�� = �
�,�
���

�����⏟⏟⏟⏟⏟⏟⏟⏟⏟
term 1

⋅min
{{{
�∑
�=1

�−1∑
��=1
(��� ,���/��� + ��� ,��/���)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

term 2

⋅ ��� ,�
ADD⏟⏟⏟⏟⏟⏟⏟
term 3
; ��}}}
,

(21)��� ,�
ADD
=
{{{{{{{{{

1, ifADD − ����/ ≤
�=�−1∑
�=��
�� and �=�−1∑

�=��
��

≤ ADD − ����/ + ��−1,0, otherwise.

�xed or taken out of any given probability density function. 
­e vehicles have the option to drive to garage parking as 
modeled in Eq. (15), or search for an on-street parking space as 
shown in Eq. (16). Both ��,���/��� and ��,���/� may consist of vehicles 
from user group � ∈ � entering the network in any former 
time slice �� ∈ [1, � − 1].

where 

Term 1 in Eqs. (15) and (16) shows the portion of the total 
demand ��� ,�/�� that needs to park, i.e., all vehicles excluding 
through tra�c. ­e proportion of through-tra�c, ���, is 
assumed to be independent of the individual user group  � ∈ �. Term 2 indicates whether these vehicles can decide for 
parking in time slice � or need to continue driving until they 
cover a distance ����/ (Eq. (17)). Term 3 in Eq. (15) expresses 
the proportion of drivers deciding to drive towards a parking 
garage (from Eq. (2)) in time slice � depending on user group �. Term 4 in Eq. (16) expresses the proportion of drivers decid-
ing to search for an on-street parking space (from Eq. (3)) in 
time slice � depending on user group �.
3.2.3. Switch to Garage Parking. In this section, the transition 
event ��,��/��� is modeled in Eq. (18) to determine the number 
of vehicles switching to garage parking a�er being in the 
searching-for-on-street-parking state for at least one time slice. 
­is represents the drivers who change their mind regarding 
where to park.

Term 1 represents all searching vehicles of user group � that 
have not parked on-street in this time slice �. Further details 
on the computation of ���/�� can be found in Cao and Menendez 
[1] based on probability theory. ­ese details are omitted in 
this paper for brevity and because they are not part of the main 
contributions here. Term 2 shows the proportion of searching 
vehicles deciding to drive towards a parking garage (Eq. (1)). 
Notice that the same vehicles have to go over the same decision 
at multiple time slices in the transition events “Go to parking” 
and “Switch to garage parking” (potentially revising their pre-
vious decision). Term 3 represents a penalty term that prevents 
drivers from �ipping between ��,��/��� and ��,����/�. It is dependent 
on ��� since the likelihood of �ipping is high when there are a 

(15)
��,���/��� = [[

�−1∑
��=1
(1 − ���) ⋅ ��� ,�/��⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

term 1

⋅ ��� ,���/⏟⏟⏟⏟⏟⏟⏟
term 2

]
]
⋅ ��,���⏟⏟⏟⏟⏟⏟⏟
term 3

,

(16)��,���/� = [[
�−1∑
��=1
(1 − ���) ⋅ ��� ,�/��⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

term 1

⋅ ��� ,���/⏟⏟⏟⏟⏟⏟⏟
term 2

]
]
⋅ ��,���⏟⏟⏟⏟⏟⏟⏟
term 4

,

(17)��� ,���/ =
{{{{{
1, if ����/ ≤

�=�−1∑
�=��
�� and �=�−1∑

�=��
�� ≤ l���/ + ��−1,

0, otherwise.

(18)

��,��/��� = [[[
[
��,�� − ���/�� ⋅ �

�,�
����⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

term 1

]]]
]
⋅ ��,���⏟⏟⏟⏟⏟⏟⏟
term 2

⋅min{(���)−�; 1}⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
term 3

.
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A�er vehicles access or depart from garage parking, the avail-
ability �� is updated in Eq. (26). �� cannot surpass the total 
capacity, i.e., �� ≤ � for all time slices �.

3.2.9. Leave the Area. ­e vehicles leave the area a�er having 
driven for a given distance ��/ or ���/ depending on whether 
they have parked or not. Notice that the distances ��/ and ���/ analogous to ����/ can be �xed or taken out of any given 
probability density function. Vehicles leaving the area are 
modeled as ��,���/ in Eq. (27)–Eq. (29) and include through-
tra�c vehicles, ��� ⋅ ��� ,�/��, and vehicles from the transition events ��� ,���/�� and ��� ,���/��.

where 

Further details can be found in [1]. ­ese details are omitted 
in this paper for brevity and because they are not part of the 
main contributions here.

4. Applications

In this section, a case study of an area within the city of Zurich, 
Switzerland, is provided to illustrate the in�uences of on-street 
and garage parking on the tra�c system. We use real data 
obtained by Cao et al. [34]. ­e results are obtained with the 
aid of a simple numerical solver such as Matlab. We discuss 
the �ndings regarding on-street and garage parking pricing, 
the related parking decision, and the impacts on the average 
searching time/distance. We analyze the short-term e�ects of 
including garage usage information to all drivers, as well as 
the in�uences of converting on-street to garage parking spaces 
on the tra�c system.

4.1. Case Study of an Area within the City of Zurich, 
Switzerland. Our study area (0.28 km2) in Figure 4(a) is 
located around the shopping area Jelmoli in the city center of 
Zurich [34]. ­ere is a signi�cant amount of retail space and 
o�ces from the �nancial sector in this area. ­e total length 
of all roads in the area is � = 7.7 km with an associated area 
radius of 0.3 km and � = 76 m. Most streets in this area have 
two lanes (one per direction or two one-way lanes).

(25)��,���/�� =
�−1∑
��=1
��� ,����/�� ⋅ ∫(

�+1−��)⋅�
(�−��)⋅� �(��,��)���,��.

(26)��+1 = �� + �∑
�=1
��,���/�� −

�∑
�=1
��,����/��.

(27)��,���/ =
�−1∑
��=1
(��� ⋅ ��� ,�/�� ⋅ ��� ,�/ + (��� ,���/�� + ��� ,���/��) ⋅ ��� ,��/ ),

(28)��� ,�/ = {{{
1, if ��/ ≤

�=�−1∑
�=��
�� and �=�−1∑

�=��
�� ≤ ��/ + ��−1;

0, otherwise.

(29)��� ,��/ = {{{
1, if ���/ ≤

�=�−1∑
�=��
�� and �=�−1∑

�=��
�� ≤ ���/ + ��−1;

0, otherwise.

3.2.6. Not Access Garage Parking. ­is transition event includes 
all vehicles that do not access garage parking due to limited 
availability. In this situation, some of these vehicles ��,����/� in 
Eq. (22) return back to searching-for-on-street-parking state. 
However, depending on � and �, some drivers might prefer 
to stay in the “drive to garage parking” state as a result of a low 
total number of existing on-street parking spaces compared 
to the total existing garage capacity.

Terms 1, 2, and 3 are already determined as in Eq. (20). In case 
the garage parking availability limit is reached and the  
vehicles that would like to enter a parking garage, i.e., 
∑��=1∑�−1��=1(��� ,���/��� + ��� ,��/���) ⋅ ��� ,�ADD, surpass ��, the remaining 
vehicles need to return to searching-for-parking state; other-
wise all vehicles can successfully enter a garage. ­is portion 
of vehicles returning back to searching-for-on-street-parking 
state is reduced by term 4 that represents the drivers’ decision 
to stay in the “drive to garage parking” state due to a low � in 
comparison to � + �. ­is term is not time-dependent since 
there is no real-time usage information available. ­is con-
straint is relaxed later (Section 4.5) when real-time informa-
tion is available. Notice that for more realistic applications, the 
capacity of garage parking will not be an active constraint. It 
is included here, however, for the sake of completeness.

3.2.7. Depart On-Street Parking. ­e number of vehicles that 
depart from on-street parking is based on the distribution of 
on-street parking durations �(��,��) and on the number of 
vehicles having accessed on-street parking, ��� ,��/��, in a former 
time slice �� ∈ [1, � − 1]. ­e probability that these vehicles 
depart from on-street parking in time slice � equals to the 
probability of the on-street parking duration being between 
(� − ��) ⋅ � and (� + 1 − ��) ⋅ �, i.e., ∫(�+1−��)⋅�(�−��)⋅� �(��,��)���,��. ­e 

transition event is formulated as ��,���/�� in Eq. (23) as in [1].

­e on-street parking availability �� is updated in Eq. (24) a�er 
vehicles access or depart from on-street parking. �� cannot 
surpass the total number of existing on-street parking spaces, 
i.e., �� ≤ � for all time slices �.

3.2.8. Depart Garage Parking. ­e transition event ��,���/�� in Eq. 
(25) is modeled analogously to ��,���/��. As we know the number 
of vehicles having decided to use garage parking in all former 
time slices, we can �nd ��,���/�� based on the distribution of 
garage parking durations �(��,��).

(22)

��,����/� = �
�,�
���

�����⏟⏟⏟⏟⏟⏟⏟⏟⏟
term 1

⋅max
{{{
�∑
�=1

�−1∑
��=1
(��� ,���/��� + ��� ,��/���)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

term 2

⋅ ��� ,�
ADD⏟⏟⏟⏟⏟⏟⏟
term 3
−��; 0}}}

⋅ �� + �⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
term 4

.

(23)��,���/�� =
�−1∑
��=1
��� ,��/�� ⋅ ∫(

�+1−��)⋅�
(�−��)⋅� �(��,��)���,��.

(24)��+1 = �� + �∑
�=1
��,���/�� −

�∑
�=1
��,��/��.
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Tuesdays, Wednesday, and ­ursdays from the Jelmoli and 
Talgarten garages are included in the study to represent 
a working day demand. Compared to Cao et  al. [34], the 
garage parking occupancy obtained in this paper is already 
close to 100% a�er the 9.5th hour. ­is happens because 
the garage parking duration used here (gamma distribution 
with mean � = 293 min in Figure 5(b)) is on average longer 
than that used in Cao et al. [34] (gamma distribution with 
mean � = 230.2 min) due to our di�erentiation of parking 
durations based on parking destinations. Hence, the turnover 
rate of the garage parking spaces is reduced, and the 100%
garage occupancy is reached at an earlier hour of the day.

­e curve re�ecting the estimated garage parking occu-
pancy rate shows a rather similar pattern to that of the real 
data. ­e approximation is more accurate compared to the 
validation in Cao et al. [34], where no di�erentiation between 
on-street and garage parking is modeled. ­e mean absolute 
error of our estimation is 0.046, less than in [34].

4.3. Model Results. In this section, we present some valuable 
insights with respect to on-street and garage parking. Table 6 
illustrates the average/total time and driven distance for the 
vehicles in the states “Searching for on-street parking”, “Drive 
to garage parking” and “Non-searching” during a typical 
working day.

On average, each vehicle spends 9.7 minutes in the net-
work (excluding the time spent parked). Not surprisingly, 
vehicles spend on average longer in the “Searching for on-street 
parking”- state (3.7 minutes) than in the “Drive to garage park-
ing”- state (3 minutes). A similar behavior can be detected 
when looking at the average driven distance in the network 
(Table 6). What is interesting, however, is that the absolute 
di�erence in average travel time between the two parking 
options is less than a minute. ­is happens because of two 
reasons. First, the area itself is rather small. Second, based on 
our decision framework in Eq. (2), on average, only 48.8% of 
the parking vehicles are able to make a decision between 
on-street and garage parking. ­e remaining 51.2% must drive 
toward a parking garage, given that the on-street parking dura-
tion limit is set to ��� = 180 min.

Following the parking demand (Figure 4(b)), the number 
of vehicles searching for on-street parking increases drastically 
between the 9th and the 13th hour, and the number of available 
on-street parking spaces goes down (Figure 7(a)). A�er the 
9.5th hour, the number of available garage parking spaces gets 
close to zero (Figure 7(b)). ­e vehicles that cannot access 
garage parking then return back to the searching-for-on-
street-parking state. ­is leads to more searching vehicles and 
less available on-street parking spaces at an earlier hour com-
pared to Cao et al. [34] (Figure 7(a)). ­e number of vehicles 
driving to garage parking behaves analogously to the parking 
demand (Figure 4(b)) and increases between the 5th and the 
20th hour (Figure 7(b)). Given the distribution of garage park-
ing durations and the resulting turnover, the number of avail-
able garage parking spaces decreases drastically between the 
9.5th and the 14th hour (see also Figure 6).

Once there are no available on-street parking spaces any-
more (Figure 7(a)), the average cruising time increases 

­ere are � = 207 on-street parking spaces and � = 2
parking garages (Jelmoli and Talgarten garage) with a total 
capacity of � = 332 spaces. ­e on-street parking price is on 
average ��� = 1.5���/h and the garage parking price is on 
average ��� = 3���/h [34]. We consider time slices of 1 min 
during a working day, i.e., � = 1 min for a time horizon of � = 1440 min. ­e MFD of the city of Zurich was used for the 
tra�c properties (i.e., � = 12.5 km/h), based on [41, 42, 43].

­e parking demand (Figure 4(b)), parking durations, and 
initial conditions are extracted from an agent-based model in 
MATSim that is based on previous measurements. ­is has 
been validated and proven reasonable for the city of Zurich in 
Waraich and Axhausen [44]. Note that the parking demand 
(Figure 4(b)) is a deterministic demand that changes through-
out the day. ­ere is a total travel demand of 2687 trips spread 
between four di�erent user groups (892/956/838/956 trips) in 
the network associated with di�erent VOTs (VOT1 = 29.9
CHF/h; VOT

2 = 25.4 CHF/h; VOT
3 = 25.8 CHF/h; 

VOT
4 = 17.2 CHF/h). All VOT values are based on the esti-

mated mean values for the VOT for car journeys in Switzerland 
[45]. Based on the parking demand and parking usage 23% (618
trips) of the daily demand (i.e., �� = 0.23, ∀�) does not search 
for parking and can be considered as through-tra�c, while 77%
(2069 trips) of the daily tra�c searches for parking [34]. At the 
beginning of every working day 183 vehicles are already in the 
area, where �0�� = 70 are parked on-street and �0�� = 113 are 
in a garage. All other initial conditions are considered as zero, 
i.e., �0

ns
= �0� = �0��� = 0. Taking the network properties into 

account, the travel distances ����/, ��/, and ���/ are all uniformly 
distributed between 0.1 and 0.7 km for all � ∈ {1, . . . , 4}.

­e parking durations of vehicles are di�erentiated by 
their parking destination. Figure 5(a) displays the distribution 
of on-street parking durations and Figure 5(b), the distribu-
tion of garage parking durations. ­e histogram in Figure 5(a) 
is comparable to a gamma distribution with a shape parameter 
of �1 = 3.5 and a scale parameter of �2 = 28.5. ­e histogram 
in Figure 5(b) represents the two types of drivers, those that 
have to park in a garage because �� > ��� and those that chose 
to do it as �� ≤ ���. It is modeled using the gamma distribution 
with a shape parameter of �1 = 2.1 and a scale parameter of �2 = 137.4. Depending on the frequency, a bi-modal gamma 
distribution might be suitable for other case studies. All 
on-street parking spaces have a parking time limit of ��� = 180 min and the garages have no limit within 24 hours, 
i.e., ��� = 1440 min [34]. ­e price per distance driven is 
assumed as �

dist
= 0.3 CHF/km and the walking speed is set 

to � = 5 km/h [46].

4.2. Validation. Given that the original framework [1] 
focusing only on on-street parking has already been 
validated—in terms of parking usage and cruising time – in 
former studies [34] and has been used in [47], here we focus 
on the validation of the garage parking usage. We validate 
the garage parking occupancy rate using empirical data 
collected by the city of Zurich. ­e real garage occupancy 
data in Figure 6 is generated through a local monitoring 
system (PLS Zurich) based on 15-minute intervals between 
the 1st and the 22nd of April, 2016. Only data from 
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on-street and garage parking pricing to improve tra�c 
performance in the short term (i.e., minimize the average 
searching time and distance). ­is might be accomplished by 
increasing the attractiveness of garage parking such that fewer 
vehicles insist on searching for an on-street parking space, or 
vice versa, once the garages become full. Remember that this is 
only possible for drivers who actually have a choice and not for 
drivers who can only use a garage (Eq. (2)) due to the on-street 
parking time limit restrictions. What is the ideal ratio between 
on-street and garage parking fees to attract drivers such that 
they avoid cruising for on-street parking? We study the impacts 
of a limited on-street and garage capacity in combination with 
di�erent on-street and garage parking pricing parameters, 
i.e., due to the limited number of garage parking spaces and 
di�erent related pricing schemes, congestion might occur and 
a�ect the tra�c performance in the network.

Remember that both the hourly on-street and garage parking 
fee rates, ��� and ���, are part of the decision-related cost variables 
for on-street and garage parking. Based on these cost variables, 
the drivers decide for on-street or garage parking, a�ecting the 

(Figure 8). ­is leads to an increase in the costs associated 
with cruising-for-on-street-parking.

Figure 9(a) shows the share of vehicles searching for 
on-street parking, driving to garage parking, or non-searching 
over time. ­is tra�c composition is related only to the vehi-
cles circulating on the network, and not those that are parked. 
Between the 10th and the 13th hour, the network has the high-
est percentage of vehicles searching for on-street parking. 
Figure 9(b) shows the number of vehicles ��,���/���, ��,��/��� and 
��,����/� summed over all user groups � ∈ � over a typical work-
ing day. ��,���/��� behaves analogously to the parking demand 
(Figure 4(b)). It increases between the 5th and the 20th hour. ��,��/��� is negligibly small. ��,����/� increases from approximately 
the 9.5th hour since the garage parking occupancy rate is close 
to 100% (Figure 6). ­us, not enough available garage parking 
spaces are le� (Figure 7(b)) and vehicles are not able to access 
the parking garages.

4.4. Impacts of On-Street and Garage Parking Pricing. We 
now use our model to capitalize on the interactions between 
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Figure 4: Case study area and parking demand per minute computed as a moving average over 10 min (Source: [34]). (a) Case study area in 
the city center of Zurich. (b) Number of vehicles entering the area over one day.
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since more than 60% of the parking spaces in the network are 
garage parking spaces. Every city can estimate their best on-street 
and garage parking fees according to its plans on improving the 
tra�c performance, the congestion and the environmental con-
ditions and on collecting parking fee revenue (see the di�erent 
on-street and garage parking pricing ratios in Table 7). It is also 
possible to use more advanced sensitivity analysis techniques 
(e.g., as in [48, 49]) to further understand the impact of di�erent 
inputs (dependent or independent) on these metrics.

Di�erent on-street and garage parking fee rates can lead 
not only to more vehicle time/distance on the network, worse 
tra�c performance, and worse environmental conditions, but 
also to various �nancial revenue outputs. Based on these 
results, cities can �nd reasonable hourly on-street and garage 
parking fees such that the average time driving to garage park-
ing and searching for on-street parking are not negatively 
a�ected and additionally, acceptable �nancial revenues are 
obtained. Our methodology provides the tools to do a 
cost-bene�t analysis and to study the trade-o� between reve-
nues and the average travel time of vehicles trying to park.

4.5. Availability of Garage Usage Information to All Drivers. In 
reality, the actual garage parking availability also in�uences the 
drivers’ decision to park on-street or to drive towards a parking 
garage. ­is garage usage information can be made available 
to the drivers by providing real-time smartphone applications 
or garage information signs in the tra�c network.

In this section, we include full real-time information of 
garage parking availability into our on-street and garage 
parking model, i.e., the drivers have access to real-time usage 
information but no forecast of future garage availability. 
Since this garage parking availability in�uences the driver’s 
parking decision, we replace all � by �� in Eq. (1) and Eq. 
(22). Table  7 illustrates the average time and driven distance 

average travel time in each parking-related state as illustrated in 
Figure 10. Increasing the ratio ���/��� leads to a higher cost 
variable ��,��� (Section 2.2.1) and the drivers are more likely to drive 
to garage parking. ­us, the average time for vehicles driving to 
garage parking increases, while the average searching time 
decreases (Figure 10). Both times are equal for ���/��� = 1.75.
At the same time, the average vehicle time for both searching and 
driving to garage parking vehicles increases in the network a�er 
some initial drop (green dotted line in Figure 10). ­e results for 
the average distance driven follow a similar pattern as Figure 10, 
but the details are omitted in this paper for brevity.

Table 7 highlights these �ndings by comparing the refer-
ence scenario in Section 4.3 with an average ��� = 1.5 CHF/
hour and an average ��� = 3 CHF/hour, i.e., ���/��� = 1/2,
with the following scenarios:

(i)    ��� = 0.75���/hour and ��� = 3���/hour, i.e., ���/��� = 1/4,
(ii)   ��� = 3���/hour and ��� = 3���/hour, i.e., ���/��� = 1,
(iii)  ��� = 6���/hour and ��� = 3���/hour, i.e., ���/��� = 2.

As one would expect, the short-term �nancial bene�ts for the 
city, i.e., the total revenue from both on-street and garage park-
ing pricing, increase as either ��� and ��� increase. As a matter 
of fact, increasing only the price of on-street parking (e.g., to 3��� or 6���) increases the revenues for both the on-street 
and the garage parking. ­e former is intuitive; the latter comes 
from the fact that more vehicles move into garage parking in 
order to avoid the expensive on-street parking fees. Only dou-
bling ��� compared to the reference scenario (scenario ���/��� = 1) leads to 23.8% more parking revenue. ­e total 
revenue would increase slightly faster if ��� were to increase, 
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­e parking choice for garage over on-street parking 
decreases drastically for drivers with available garage usage 
information between the 9.5th and the 14th hour compared 
to drivers who have no garage information available 
(Figure 11). Since the increase in the average cruising time 
(Figure 8) has an impact on the drivers’ decision, more drivers 
without any available garage usage information drive to garage 
parking between the 9.5th and the 13th hour. Due to the lack 
of garage information, this parking choice is made even if the 
garage occupancy rate is low. Note that this parking choice 
only a�ects the portion of the parking demand that can make 
a decision between on-street and garage parking due to the 
on-street parking duration limit. By including the garage usage 
information into the decision framework, the drivers react 
towards the garage occupancy rate. ­e garage occupancy rate 
(Figure 6) is then re�ected in Figure 11 and the parking choice 
for garage parking increases from the 14th hour analogously 
to the decrease in the garage occupancy rate in Figure 6.

4.6. Impacts of Converting On-Street Parking to Garage Parking 
Spaces. It has been one of the policies in Zurich, Switzerland 
to convert on-street to garage parking spaces. In this section, 
we evaluate the e�ects of this policy on tra�c performance 
and the city’s revenue. Converting on-street to garage parking 
spaces is not a trivial task, since real estate in downtown areas 
is normally expensive to be dedicated to parking garages. 
However, many cities around the world have indeed done it in 
order to remove on-street parking spaces without necessarily 
downsizing the overall parking supply. For example, since the 

for the scenario with garage availability information given 
to all drivers in the network during a typical working day. 
­is additional information helps to reduce the average 
searching time by 21.2% and the average time driving to 
garage parking by 27.7% compared to the scenario without 
garage information available (Section 4.3). ­e average 
driven distance in the network reduces similarly and the 
revenue from on-street and garage parking fees stays constant 
(Table 7). Allowing drivers to make their on-street or garage 
parking decision based on real-time occupancy data leads to 
a better tra�c performance on the network, and on average, 
a faster journey for drivers searching for parking, without 
a�ecting much the parking revenues.
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Table 6: Average/total time and driven distance in the network during a typical working day.

State Average time per vehicle 
(min/veh) Total time (min) Average driven distance 

(km/veh) Total driven distance (km)

Searching for on-street 
parking state 3.72 4323 0.77 901

Driving to garage parking 
state 2.96 7458 0.69 1554

Non-searching state 4.46 10047 0.93 2093
Total 9.69 21827 2.02 4547
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Figure 7: On-street and garage parking demand and supply over a typical working day. (a) Searching vehicles and available on-street parking. 
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parking spaces. Note that the initial conditions for �0�� and �0�� are adapted accordingly.
­e outputs in Figure 12(a)–12(b) show the impacts of the 

on-street parking conversion on the average time searching/
driving to garage parking and the parking fee revenue. ­e 
impacts on the average/total driven distance follow a similar 
pattern, but the details are omitted in this paper for brevity.

­e more on-street parking spaces that are converted to 
garage parking spaces, the less drivers chose to go to on-street 
parking in the �rst place. ­is leads to a decreasing average 
searching time and an increasing average time driving to garage 
parking in the short term (Figure 12(a)). Table 7 highlights 
these �ndings by comparing the reference scenario in Section 
4.3 with the scenarios of having a 10%, 30%, and 50% conversion 
rate from on-street to garage parking spaces. ­e average time/
distance for vehicles that wish to park decreases as more 
on-street parking spaces are converted to garage parking. When 
converting on-street parking, for simplicity, we assume that the 
distribution for the garage parking durations becomes the same 
for all levels (based on the combination of Figure 5(a) and 
Figure 5(b)) as in Cao et al. [34]. Figure 12(b) and Table 7 show 
the impact of the on-street parking conversion on the total 
revenue created by on-street/garage parking. While a decreas-
ing number of on-street parking spaces leads to a decreasing 
total on-street parking revenue, it leads to an increasing total 
revenue from both on-street and garage parking fees. A con-
version of on-street parking to garage parking spaces leads to 
a reduced travel time and distance for vehicles wishing to park 
and an increase in the total parking revenue for the city.

5. Conclusions

In this study, we develop a dynamic macroscopic on-street 
and garage parking model such that the short-term in�uences 
of di�erent on-street and garage parking policies on the tra�c 
system can be studied and illustrated. ­e macroscopic model 
is built on a tra�c system with a parking search model over 
time. It is incorporated into the on-street parking framework 
from Cao and Menendez [1]. We validate this model based on 

1990’s, Zurich has introduced a parking supply cap system in 
the inner-city [50], i.e., in case a new parking space is created 
in a parking garage, an existing on-street parking space must 
be removed such that the parking supply is kept the same [51]. 
Since the introduction of this policy a few parking garages (e.g., 
City Parkhaus Zurich and Globus Parkhaus Zurich) and o�ce 
parking lots have been built, and as a result, on-street parking 
space has been recovered for other activities. In this paper, 
we assume a new parking garage is built and the number of 
parking garages increases to � = 3. At the same time, valuable 
on-street parking space becomes available. We assume that the 
recovered road space while converting on-street parking to 
garage parking spaces has no in�uence on the tra�c �ow, and 
can be used for other activities as in the case of Zurich (e.g., to 
create pedestrian zones or bicycle lanes). It is further assumed 
that the conversion of on-street parking does not in�uence the 
on-street and garage parking accessibility in the network. ­e 
total garage capacity starts at � = 332 (as in Section 4.3) and 
increases dependent on the number of converted on-street 
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respect to di�erent parking fees. Di�erent hourly on-street 
and garage parking fee ratios can lead not only to more vehicle 
time/distance in the network, but also to various �nancial 
revenue outputs. ­us, this analysis can be used for city coun-
cils or private agencies to �nd reasonable hourly on-street and 
garage parking fee ratios such that the average vehicle time/
distance is not negatively a�ected and additionally, acceptable 
�nancial revenues are obtained. Our methodology provides 
the tools to do a cost-bene�t analysis and to study the trade-o� 
between the revenue and the average travel time. In the long-
term, drivers might avoid paying high on-street or garage 
parking fees and quit their journeys. ­is could a�ect the 
demand, but long-term e�ects are beyond the scope of this 
paper.

real data for a case study of an area within the city of Zurich, 
Switzerland.

­e main contributions of this paper are three-fold.
First, we model garage parking macroscopically, including 

the parking searchers’ decision to drive to a parking garage or 
search for an on-street parking space in the network. ­is 
includes the in�uences on the searching-for-parking tra�c 
(cruising), the congestion in the network (tra�c perfor-
mance), the total driven distance (environmental impact), and 
the revenue created by on-street and garage parking fees for 
the city.

Second, we analyze not only the relationship between 
on-street and garage parking but also their interdependency 
on cruising-for-parking tra�c and tra�c performance with 
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demand split with a fixed (low subsidized) parking fee for all 
on-street and/or garage parking spaces. All remaining portions 
of demand could be treated responsively, reflecting the exter-
nal costs for parking. �is approach can be motivated by, e.g., 
the subsidy by a company or a city for their residents.

In summary, the model can be used to efficiently analyze 
the influence of different on-street and garage parking policies 
on the traffic system for a smaller geographic scale network, 
despite its simplicity in data requirements. Based on scarce 
aggregated data, this model can be used to analyze how 
on-street and garage parking policies can affect the traffic 
performance; and how the traffic performance can affect the 
decision to use on-street or garage parking.
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