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In this paper, we consider a double-ended queueing system which is a passenger-taxi service system. In our model, we also
consider the dynamic taxi control policy which means that the manager adjusts the arrival rate of taxis according to the taxi stand
congestion. Under three different information levels, we study the equilibrium strategies as well as socially optimal strategies for
arriving passengers by a reward-cost structure. Furthermore, we present several numerical experiments to analyze the relationship
between the equilibrium and socially optimal strategies and demonstrate the effect of different information levels as well as several
parameters on social benefit.

1. Introduction

The taxi service is an important component in the com-
prehensive transportation hubs. However, many travelers
encounter such a situation that there are no taxis in the
taxi stand during peak hour and there are many taxis in
the taxi stand during the nonpeak hour. In order to make
more efficient use of the taxi resource, we consider optimiza-
tion problems in the passenger-taxi service system under
dynamic taxi control. The passenger-taxi service system
can be described as a double-ended queue: a queue for
passengers, a queue for taxis. Clearly, the two queues cannot
exist at the same time. In this paper, wewill give some efficient
strategies to ensure passengers’ and taxis’ utilities and reduce
the taxi stand congestion.

Kendall [1] first studied the double-ended queue. The
passenger-taxi service system was introduced as an example.
Dobbie [2] found transient behavior under the nonhomo-
geneous Poisson arrival of passengers and taxis. Giveen [3]
showed the asymptotic behavior of the double-ended queue-
ing systemunder when themean rates of arrival of passengers
and taxis vary. Kashyap [4, 5] considered a double-ended
queue with limited waiting space for taxis and for passengers.
He studied the expected queue lengths of taxis and passengers

under the general arrival of passengers and the Poisson arrival
of taxis. Wong, Wong, Bell, and Yang [6] adopted an absorb-
ing Markov chain to model the searching process of taxi
movements and proposed a useful formulation for describing
the urban taxi services in a network. Conolly, Parthasarathy,
and Selvaraju [7] studied double-ended queues with an impa-
tient server or customers. Crescenzo, Giorno, Kumar, and
Nobile [8] discussed a double-ended queue with catastrophes
and repairs and obtained both the transient and steady-
state probability distributions. Moreover, the double-ended
queue can be applied to many other areas, for example,
computer science, perishable inventory system, and organ
allocation system. Zenios [9] illustrated a double-ended
matching problem between several classes of organs and
patients who would renege due to death. Wong, Szeto, and
Wong [10] adopted the sequential logit approach tomodeling
bilevel decisions of vacant taxi drivers in customer-search.
However, the above references discussed the performance
measures of the double-ended queue. In this paper, we study
the strategic behaviors of the passengers.

The study of queueing systems with strategic behavior
of customers was first done by Naor [11], who analyzed the
strategic behavior of customers under an observable queue
by a linear reward-cost structure. Edelson and Hildebrand
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[12] investigated the same problem following with Naor
(1969). However, in this model, arriving customers do not
know the queue length before his decision. Yang, Leung,
Wong, and Bell [13] presented an equilibrium model for
the problem of bilateral searching and meeting between
taxis and passengers in a general network. Burnetas and
Economou [14] discussed strategic behavior in a single server
Markovian queue with setup times. Burnetas, Economou,
and Vasiliadis [15] studied strategic customer behavior in a
queueing system with delayed observations. Guo and Hassin
[16] illustrated strategic behavior of customers and social
optimization in Markovian vacation queues. Wang, Zhang,
and Huang [17] considered strategic behavior of customers
and social optimization in a constant retrial queue with
the N-policy. The optimization problems of passenger-taxi
service system under strategic behavior of passengers were
first considered by Shi and Lian [18] who studied the arriv-
ing passengers’ equilibrium strategies and socially optimal
strategies under a limited waiting space of taxis and the same
taxis’ arrival rate. Shi and Lian [19] discussed a double-ended
queueing system with limited waiting space for arriving taxis
and arriving passengers. A passenger-taxi service system
with a gated policy was considered by Wang, Wang, and
Zhang [20] who studied the arriving passengers’ equilibrium
strategies and socially optimal strategies in fully observable,
almost unobservable and fully unobservable cases, while they
considered the model with same arrival rate of taxis. In order
to balance the relationship between long passenger delays
and high taxi’s company costs, we consider a passenger-taxi
service system with dynamic taxi control. The taxi control is
to improve the arrival rate of taxis when the queue length
of passengers is large so as to reduce delays and decrease it
at times of increased queue length of taxis so as to reduce
the costs of taxis’ derivers. In this model, we study the
(Nash) equilibrium strategies and socially optimal strategies
of arriving passengers. Our model will improve the social
benefit in the observable case and unobservable case if the
waiting space of taxis is large enough, compared with the
results in [18].

In the passenger-taxi service system with dynamic taxi
control, arriving passengers decide whether to join the taxi
stand or balk based on a linear reward-cost structure.We dis-
cuss the equilibrium strategies and socially optimal strategies
under three different information levels: (1) fully observable
case: the arriving passengers are noticed the number of pas-
sengers and taxis in the taxi stand; (2) almost unobservable
case: the arriving passengers are only informed of the state
of taxis; (3) fully unobservable case: the arriving passengers
are not informed of the number of passengers or taxis in
the taxi stand. The passenger’s strategic behavior is under
two different types: “selfishly optimal” and “socially optimal”.
“Selfishly optimal” is the strategy under (Nash) equilibrium
conditions. “Socially optimal” is the strategy to maximize the
social benefit. The contribution of the present paper is as
follows: (1) study the passenger’s selfishly optimal threshold
and socially optimal threshold in fully observable case; (2)
obtain the selfishly optimal joining probabilities and socially
optimal joining probabilities in the almost unobservable
case; (3) investigate the selfishly optimal joining probabilities

and social benefit function in the fully unobservable case;(4) present several numerical experiments to analyze the
relationship between the equilibrium and socially optimal
strategies and demonstrate the effect of different information
levels as well as several parameters on social benefit.

The rest of the paper is organized as follows. In Section 2,
we describe precisely the passenger-taxi service system. Sec-
tions 3, 4, and 5 discuss the equilibrium strategies and socially
optimal strategies of passengers in three different information
levels. In Section 6, we present some numerical examples to
show howdifferent information levels and parameters impact
passenger’s strategic behavior and social benefit. Section 7
concludes the paper with a summary.

2. Model Description

In this paper, we consider a passenger-taxi service system
which is a double-ended queueing system. Now we give a
precise description of the model. Passengers (one to four
passengers traveling together and will arrive at the same
destination can be seen as one passenger) arrive according
to a Poisson process with rate 𝜆1. Taxis arrive according to
a Poisson process. The arrive rate sets to 𝜆0 whenever the
number of passengers in the system equals to 0 and sets
to 𝜆2 otherwise, where 𝜆0 < 𝜆2. Passengers and taxis are
served according to first-in-first-out discipline and leave the
taxi stand at once if a taxi takes one passenger. In the taxi
stand, the taxis’ capacity is𝑁 which means that a taxi cannot
join the taxi stand if there are𝑁 taxis waiting for passengers.
The passengers can join the taxi stand without any limit. Let𝑁(𝑡) represent the queue length of passengers or taxis in
taxi stand in time 𝑡. If 𝑁(𝑡) > 0, it shows that passengers
are waiting for taxis. If 𝑁(𝑡) = 0, it shows that the system
is empty. If 𝑁(𝑡) < 0, it shows that taxis waiting for new
passengers. Obviously, we know that {𝑁(𝑡), 𝑡 ≥ 0} is a one-
dimensional continuous time Markov chain with state space
F = {−𝑁, −𝑁 + 1, ⋅ ⋅ ⋅ , −1, 0, 1, ⋅ ⋅ ⋅ }. The state transition
diagram is shown in Figure 1.

We assume that every joining passenger incurs a waiting
cost 𝐶1 per unit time of waiting in the passenger queue, pays
a taxi fare of 𝑝1, and obtains a reward of 𝑅 after arriving at his
definition. Let 𝐶2 be the waiting cost of a taxi per unit time.
Finally, we assume that joining passengers are not allowed to
retrial and renege.

3. Almost Unobservable Case

In this section, we consider the almost unobservable case
where an arriving passenger is only informed the state of
taxis. If the number of taxis is more than zero, an arriving
passenger will take a taxi immediately, to join the taxi stand
without a doubt. But if the number of taxis equals 0, the
passenger is not informed the number of passengers. The
joining probability of an arriving passenger is 𝑞𝑎𝑢 and the
balking probability is 1 − 𝑞𝑎𝑢. The state transition diagram
is shown in Figure 2. For stability, let 𝜌0 = 𝜆1/𝜆0, 𝜌1 = 𝜆1/𝜆2,
and 𝜌1,2 = 𝜆1𝑞𝑎𝑢/𝜆2 < 1.

Let 𝜋𝑎𝑢𝑖 = lim𝑡󳨀→∞P(𝑁(𝑡) = 𝑖), (𝑖 ∈ F) be the steady-
state probability of state 𝑖 in the almost unobservable case.We
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Figure 1: State transition diagram for the passenger-taxi service system.
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Figure 2: State transition diagram for the almost unobservable case.

can obtain the stationary distribution by solving the balance
equations.

Proposition 1. 	e stationary distribution in the almost unob-
servable case is given by

𝜋𝑎𝑢−𝑁 = (1 − 𝜌0) (1 − 𝜌1,2)1 − 𝜌1,2 − 𝜌𝑁+10 + 𝜌𝑁0 𝜌1,2 ; (1)

𝜋𝑎𝑢𝑖 = 𝜌𝑁+𝑖0 (1 − 𝜌0) (1 − 𝜌1,2)1 − 𝜌1,2 − 𝜌𝑁+10 + 𝜌𝑁0 𝜌1,2 , − 𝑁 + 1 ≤ 𝑖 ≤ 0; (2)

𝜋𝑎𝑢𝑖 = 𝜌𝑁0 𝜌𝑖1,2 (1 − 𝜌0) (1 − 𝜌1,2)1 − 𝜌1,2 − 𝜌𝑁+10 + 𝜌𝑁0 𝜌1,2 , 𝑖 ≥ 1. (3)

Proof. The balance equations can be written as follows:

𝜆1𝜋𝑎𝑢−𝑁 = 𝜆0𝜋𝑎𝑢−𝑁+1;
(𝜆1 + 𝜆0) 𝜋𝑎𝑢𝑖 = 𝜆1𝜋𝑎𝑢𝑖−1 + 𝜆0𝜋𝑎𝑢𝑖+1, − 𝑁 + 1 ≤ 𝑖 ≤ 1;

(𝜆0 + 𝜆1𝑞𝑎𝑢) 𝜋𝑎𝑢0 = 𝜆1𝜋𝑎𝑢−1 + 𝜆2𝜋𝑎𝑢1 ;
(𝜆2 + 𝜆1𝑞𝑎𝑢) 𝜋𝑎𝑢𝑖 = 𝜆1𝑞𝜋𝑎𝑢𝑖−1 + 𝜆2𝜋𝑎𝑢𝑖+1, 𝑖 ≥ 1.

(4)

Therefore, by the normalization condition, we obtain (1), (2),
and (3).

By (1), (2), and (3), we can get the expected queue length
of passengersE𝐿𝑎𝑢1 and expected queue length of taxisE𝐿𝑎𝑢2 ,
respectively,

E𝐿𝑎𝑢1 = ∞∑
𝑖=0

𝑖𝜋𝑎𝑢𝑖
= 𝜌𝑁0 𝜌1,2 (1 − 𝜌0)(1 − 𝜌1,2) (1 − 𝜌1,2 − 𝜌𝑁+10 + 𝜌𝑁0 𝜌1,2) ;

(5)

E𝐿𝑎𝑢2 = 0∑
−𝑁

(−𝑖) 𝜋𝑎𝑢𝑖

= 1 − 𝜌1,21 − 𝜌1,2 − 𝜌𝑁+10 + 𝜌𝑁0 𝜌1,2 [𝑁 − 𝜌0 (1 − 𝜌𝑁0 )1 − 𝜌0 ] .
(6)

The effective arrival rate of passengers is

𝜆∗𝑐 = 𝜆1
−1∑
𝑗=−𝑁

𝜋𝑎𝑢𝑗 + 𝜆1𝑞𝑎𝑢
∞∑
𝑗=0

𝜋𝑎𝑢𝑗

= 𝜆1 (1 − 𝜌𝑁0 ) (1 − 𝜌1,2) + 𝜆1𝑞𝑎𝑢𝜌𝑁0 (1 − 𝜌0)1 − 𝜌1,2 − 𝜌𝑁+10 + 𝜌𝑁0 𝜌1,2 .
(7)

The effective arrival rate of taxis is

𝜆∗𝑇 = 𝜆0
0∑
𝑗=−𝑁+1

𝜋𝑎𝑢𝑗 + 𝜆2
∞∑
𝑗=1

𝜋𝑎𝑢𝑗

= 𝜆1 (1 − 𝜌𝑁0 ) (1 − 𝜌1,2) + 𝜆1𝑞𝑎𝑢𝜌𝑁0 (1 − 𝜌0)1 − 𝜌1,2 − 𝜌𝑁+10 + 𝜌𝑁0 𝜌1,2 .
(8)

Therefore, by Little’s law, we obtain the expected waiting time
of a joining passenger E𝑊𝑎𝑢1 and the expected waiting time
of a taxi E𝑊𝑎𝑢2, respectively

E𝑊𝑎𝑢1 = E𝐿𝑎𝑢1𝜆∗𝑐 ; (9)

E𝑊𝑎𝑢2 = E𝐿𝑎𝑢2𝜆∗𝑇 . (10)

3.1. Equilibrium Strategies of Passengers. Now we consider
the equilibrium strategy of an arriving passenger in almost
unobservable case. We first consider the average waiting time
of a joining passenger; see the below proposition.

Proposition 2. When the queue length of taxis in the taxi
stand is zero, the expected waiting time for a joining passenger
is

𝑊(𝑞𝑎𝑢 | 𝑁 (𝑡) ≥ 0) = 1𝜆2 (1 − 𝜌1,2) . (11)

Proof. By Little’s law and (5), we get the expectedwaiting time
of a joining passenger

𝑊(𝑞𝑎𝑢 | 𝑁 (𝑡) ≥ 0) = (∑∞𝑗=0 𝑗𝜋𝑗) / (𝜆1𝑞)∑∞𝑗=0 𝜋𝑗
= 1𝜆2 (1 − 𝜌1,2) .

(12)
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Therefore, the utility of an arriving passenger is

𝑈𝑎𝑢 (𝑞𝑎𝑢 | 𝑁 (𝑡) ≥ 0) = 𝑅 − 𝑝1 − 𝐶1 1𝜆2 (1 − 𝜌1,2) . (13)

An equilibrium strategy for an arriving passenger who
decides whether to join or balk is represented by 𝑞𝑒𝑎𝑢 which is
the joining probability for an arriving passenger and 1 − 𝑞𝑒𝑎𝑢
is the balking probability. 𝑞𝑒𝑎𝑢 is also called selfishly optimal
joining probability.

�eorem 3. In the almost unobservable case, the equilibrium
strategy for an arriving passenger is given by

𝑞𝑒𝑎𝑢

=
{{{{{{{{{{{{{{{

0, 𝑖𝑓 𝑅 < 𝑝1 + 𝐶1 1𝜆2 ;𝑞𝑒∗𝑎𝑢, 𝑖𝑓 𝑝1 + 𝐶1 1𝜆2 ≤ 𝑅 ≤ 𝑝1 + 𝐶1
1𝜆2 (1 − 𝜌1) ;1, 𝑖𝑓 𝑅 > 𝑝1 + 𝐶1 1𝜆2 (1 − 𝜌1) ,

(14)

where 𝑞𝑒∗𝑎𝑢 = (𝜆2(𝑅 − 𝑝1) − 𝐶1)/(𝑅 − 𝑝1)𝜆1.
Proof. By Proposition 2, we have

𝑊󸀠𝑐 (𝑞𝑎𝑢 | 𝑁 (𝑡) ≥ 0) = ( 1𝜆2 (1 − 𝜌1,2))
󸀠

= 𝜆1(𝜆2 (1 − 𝜌1,2))2 ,
(15)

so that𝑊󸀠𝑐 (𝑞𝑎𝑢 | 𝑁(𝑡) ≥ 0) > 0; therefore,𝑊𝑐(𝑞𝑎𝑢 | 𝑁(𝑡) ≥ 0)
is increasing for 𝑞𝑎𝑢 ∈ [0, 1].

If𝑅 < 𝑝1+𝐶1(1/𝜆2), then𝑈𝑐(𝑞𝑎𝑢 | 𝑁(𝑡) ≥ 0) < 0 for 𝑞𝑎𝑢 ∈[0, 1]. Therefore, the best choice for an arriving passenger is
balking, so that 𝑞𝑒𝑎𝑢 = 0.

If 𝑅 > 𝑝1 + 𝐶1(1/𝜆2(1 − 𝜌1)), then 𝑈𝑐(𝑞𝑎𝑢 | 𝑁(𝑡) ≥ 0) > 0
for 𝑞𝑎𝑢 ∈ [0, 1], so that an arriving passenger’s best choice is𝑞𝑒𝑎𝑢 = 1.

Since 𝑈𝑐(𝑞𝑎𝑢 | 𝑁(𝑡) ≥ 0) is a decreasing function for𝑞𝑎𝑢 ∈ [0, 1], so that there exists a unique solution of the
equation 𝑈𝑐(𝑞𝑒∗𝑎𝑢) = 0 within (0, 1) for 𝑝1 + 𝐶1(1/𝜆2) ≤ 𝑅 ≤𝑝1 + 𝐶1(1/𝜆2(1 − 𝜌1)).
3.2. Socially Optimal Strategies of Passengers. Now, we con-
sider the socially optimal strategy of an arriving passenger.
By (5), (6), (7), and (8), we obtain the social benefit 𝑆𝑎𝑢 in the
almost unobservable case

𝑆𝑎𝑢 (𝑞𝑎𝑢) = 𝜆∗𝑐 (𝑅 − 𝑝1 − 𝐶1E𝑊𝑎𝑢1)
+ 𝜆∗𝑇 (𝑝1 − 𝐶2E𝑊𝑎𝑢2) = 𝑅
⋅ 𝜆1 (1 − 𝜌𝑁0 ) (1 − 𝜌1,2) + 𝜆1𝑞𝑎𝑢𝜌𝑁0 (1 − 𝜌0)1 − 𝜌1,2 − 𝜌𝑁+10 + 𝜌𝑁0 𝜌1,2 − 𝐶1

⋅ 𝜌𝑁0 𝜌1,2 (1 − 𝜌0)(1 − 𝜌1,2) (1 − 𝜌1,2 − 𝜌𝑁+10 + 𝜌𝑁0 𝜌1,2) − 𝐶2

⋅ 1 − 𝜌1,21 − 𝜌1,2 − 𝜌𝑁+10 + 𝜌𝑁0 𝜌1,2 [𝑁 − 𝜌0 (1 − 𝜌𝑁0 )1 − 𝜌0 ] .
(16)

We investigate the socially optimal strategy which is
represented by 𝑞∗𝑎𝑢 to maximize social benefit in almost
unobservable case.

�eorem 4. 𝑆𝑎𝑢(𝑞𝑎𝑢) is a concave function in 𝑞𝑎𝑢 ∈ [0, 1]
and reaches maximum at 𝑞∗𝑎𝑢 = min((𝑑𝑆𝑎𝑢(𝑞𝑎𝑢)/𝑞𝑎𝑢)|𝑞𝑎𝑢=𝑞∗𝑎𝑢 =0; 1).
Proof. To simplify, let𝐶 = 𝐶2[𝑁−𝜌0(1−𝜌𝑁0 )/(1−𝜌0)](1/(1−𝜌0)). Therefore,

𝑆𝑎𝑢 (𝑞𝑎𝑢) = 𝜆2𝑅
− [( 𝜆21 − 𝜌0 −

𝜆2𝜌𝑁+101 − 𝜌0 −
𝜆1 (1 − 𝜌𝑁0 )1 − 𝜌0 )𝑅

+ 𝐶1 𝜌𝑁0 𝜌1,2 (1 − 𝜌0)(1 − 𝜌0) (1 − 𝜌1,2)2 + 𝐶]𝜋
𝑎𝑢
−𝑁.

(17)

The first derivative of 𝑆𝑎𝑢(𝑞𝑎𝑢) is
𝑑𝑆𝑎𝑢 (𝑞𝑎𝑢)𝑑𝑞𝑎𝑢 = 𝜌1𝜌𝑁0(1 − 𝜌1,2)2 (𝜋

𝑎𝑢
−𝑁)2 [𝑅( 𝜆21 − 𝜌0

− 𝜆2𝜌𝑁+101 − 𝜌0 −
𝜆1 (1 − 𝜌𝑁0 )1 − 𝜌0 ) + 𝐶1 𝜌0𝜌1,2

(1 − 𝜌1,2)2 + 𝐶

− 1 + 𝜌1,21 − 𝜌1,2
𝐶1𝜋𝑎𝑢−𝑁] =

𝜌1𝜌𝑁0(1 − 𝜌1,2)4 (𝜋
𝑎𝑢
−𝑁)2 [𝑅( 𝜆21 − 𝜌0

− 𝜆2𝜌𝑁+101 − 𝜌0 −
𝜆1 (1 − 𝜌𝑁0 )1 − 𝜌0 ) (1 − 𝜌1,2) + 𝐶1𝜌𝑁𝜌1,2

+ 𝐶 (1 − 𝜌1,2)2 − (1 − 𝜌21,2) 𝐶1𝜋𝑎𝑢−𝑁]

= 𝜌1𝜌𝑁0(1 − 𝜌1,2)4 (𝜋
𝑎𝑢
−𝑁)2

⋅ [[𝑅( 𝜆21 − 𝜌0 −
𝜆2𝜌𝑁+101 − 𝜌0 −

𝜆1 (1 − 𝜌𝑁0 )1 − 𝜌0 ) + 𝐶

+ 𝐶1 1 − 𝜌
𝑁
01 − 𝜌0 ] 𝜌
2
1,2
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− 2𝜌1,2(𝑅( 𝜆21 − 𝜌0 −
𝜆2𝜌𝑁+101 − 𝜌0 −

𝜆1 (1 − 𝜌𝑁0 )1 − 𝜌0 )

+ 𝐶) + (𝑅( 𝜆21 − 𝜌0 −
𝜆2𝜌𝑁+101 − 𝜌0 −

𝜆1 (1 − 𝜌𝑁0 )1 − 𝜌0 )

+ 𝐶 − 𝐶1 1 − 𝜌
𝑁+1
01 − 𝜌0 )] .

(18)

Since

Δ = 4(𝑅( 𝜆21 − 𝜌0 −
𝜆2𝜌𝑁+101 − 𝜌0 −

𝜆1 (1 − 𝜌𝑁0 )1 − 𝜌0 ) + 𝐶)

⋅ 𝐶1𝜌𝑁0 + 4𝐶21 (1 − 𝜌
𝑁
0 ) (1 − 𝜌𝑁+10 )
(1 − 𝜌0)2 > 4𝐶21

⋅ (1 − 𝜌𝑁0 )
2

(1 − 𝜌0)2 ,

(19)

we have

𝑅 (𝜆2/ (1 − 𝜌0) − 𝜆2𝜌𝑁+10 / (1 − 𝜌0) − 𝜆1 (1 − 𝜌𝑁0 ) / (1 − 𝜌0)) + 𝐶 + √Δ/4𝑅 (𝜆2/ (1 − 𝜌0) − 𝜆2𝜌𝑁+10 / (1 − 𝜌0) − 𝜆1 (1 − 𝜌𝑁0 ) / (1 − 𝜌0)) + 𝐶 + 𝐶1 ((1 − 𝜌𝑁0 ) / (1 − 𝜌0)) > 1. (20)

Therefore, we know that 𝑑𝑆𝑎𝑢(𝑞𝑎𝑢)/𝑑𝑞𝑎𝑢 is a decreasing
function at 𝑞𝑎𝑢 ∈ [0, 1]. Hence, we obtain the maximum of𝑆𝑎𝑢(𝑞𝑎𝑢) in 𝑞∗𝑎𝑢 = min((𝑑𝑆𝑎𝑢(𝑞𝑎𝑢)/𝑞𝑎𝑢)|𝑞𝑎𝑢=𝑞∗𝑎𝑢 = 0, 1).
4. Fully Observable Case

We first consider the fully observable case in which arriving
passengers are informed both the number of passengers and
taxis in taxi stand. In this case, we consider the equilibrium
strategies and socially optimal strategies for arriving passen-
gers.

4.1. Equilibrium Strategies of Passengers. In fully observable
case, the equilibrium joining strategy of an arriving passenger
who decides whether to join the taxi stand or balk is
represented by threshold type that is an arriving passenger
will join the taxi stand if the queue length of passengers is
less than threshold and balking otherwise. If there exists a
threshold 𝑛0 such that the passengers will join the taxi stand
if 𝑁(𝑡) ≤ 𝑛0 and balk otherwise, then 𝑛0 is called selfishly
optimal threshold. The value of 𝑛0 is given by the following
Theorem 5.

�eorem 5. In the fully observable passenger-taxi system,
there exists a unique selfishly optimal threshold

𝑛0 = [𝜆2 (𝑅 − 𝑝1)𝐶1 ] (21)

which is the equilibrium strategy of an arriving passenger.

Proof. By the passenger’s utility, 𝑛0 should satisfy the follow-
ing conditions:

𝑅 − 𝑝1 − 𝐶1 𝑛0𝜆2 ≥ 0;
𝑅 − 𝑝1 − 𝐶1 𝑛0 + 1𝜆2 < 0.

(22)

4.2. Socially Optimal Strategies of Passengers. Then we con-
sider the socially optimal strategy for an arriving passenger.
That is specified by threshold which means that there exists a
unique 𝑛∗ (is called socially optimal threshold) such that the
social benefit reaches maximum. Clearly, we know that the
system follows a one-dimensional continuous time Markov
chain with state space F0 = {−𝑁, −𝑁 + 1, ⋅ ⋅ ⋅ , −1, 0, ⋅ ⋅ ⋅ , 𝑛},
where 𝑛 is the passenger buffer size. The transition rate
diagram is shown in Figure 3. For simplicity, let 𝜌0 = 𝜆1/𝜆0
and 𝜌1 = 𝜆1/𝜆2. Let 𝜋𝑘 be the stationary distribution of
state 𝑘 ∈ F0 in the fully observable case. We can obtain the
stationary distribution by solving the balance equations.

Proposition 6. 	e stationary distribution in the fully observ-
able case is as follows:

𝜋−𝑁 = (1 − 𝜌0) (1 − 𝜌1)1 − 𝜌1 + 𝜌1𝜌𝑁0 − 𝜌𝑁+10 − 𝜌𝑁0 𝜌𝑛+11 + 𝜌𝑁+10 𝜌𝑛+11 ;

𝜋𝑖 = 𝜌𝑁+10 (1 − 𝜌0) (1 − 𝜌1)1 − 𝜌1 + 𝜌1𝜌𝑁0 − 𝜌𝑁+10 − 𝜌𝑁0 𝜌𝑛+11 + 𝜌𝑁+10 𝜌𝑛+11 ,
−𝑁 + 1 ≤ 𝑖 ≤ 0;

𝜋𝑖 = 𝜌𝑁0 𝜌𝑖1 (1 − 𝜌0) (1 − 𝜌1)1 − 𝜌1 + 𝜌1𝜌𝑁0 − 𝜌𝑁+10 − 𝜌𝑁0 𝜌𝑛+11 + 𝜌𝑁+10 𝜌𝑛+11 ,
1 ≤ 𝑖 ≤ 𝑛.

(23)

By the same method of (16), we obtain the social benefit
function:

𝑆𝑜𝑏 (𝑛) = 𝜆𝑐 (𝑅 − 𝑝1 − 𝐶1E𝑊𝑜𝑏𝑐)
+ 𝜆𝑇 (𝑝1 − 𝐶2E𝑊𝑜𝑏𝑡) = 𝜆𝑐𝑅
− 𝐶1E𝐿𝑜𝑏𝑐 − 𝐶2E𝐿𝑜𝑏𝑡
= 11 − 𝜌1 + 𝜌1𝜌𝑁0 − 𝜌𝑁+10 − 𝜌𝑁0 𝜌𝑛+11 + 𝜌𝑁+10 𝜌𝑛+11 [𝑅𝜆1 (1
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Figure 3: State transition diagram for the fully observable case.

− 𝜌1 + 𝜌1𝜌𝑁0 − 𝜌𝑁+10 − 𝜌𝑁0 𝜌𝑛1 + 𝜌𝑁+10 𝜌𝑛1) − 𝐶1𝜌𝑁0 (1
− 𝜌0) [𝜌1 (1 − 𝜌

𝑛
1 )1 − 𝜌1 − 𝑛𝜌𝑛+11 ] − 𝐶2 (1 − 𝜌1) (𝑁

− 𝜌0 (1 − 𝜌𝑁0 )1 − 𝜌0 )] ,
(24)

where E𝑊𝑜𝑏𝑐 and E𝑊𝑜𝑏𝑡 represent the expected waiting
time of passengers and taxis respectively, E𝐿𝑜𝑏𝑐 and E𝐿𝑜𝑏𝑡
represent the mean queue length of passengers and taxis
respectively, and 𝜆𝑐 = 𝜆𝑇 represents the effective arrival rate
of passengers or taxis.

By definition of the socially optimal threshold, we know
that 𝑛∗ should follow the below two inequalities:

𝑆𝑜𝑏 (𝑛∗) − 𝑆𝑜𝑏 (𝑛∗ + 1) ≥ 0;
𝑆𝑜𝑏 (𝑛∗) − 𝑆𝑜𝑏 (𝑛∗ − 1) ≥ 0. (25)

By calculation, we have the following inequalities which are
equal to the condition (25)

𝑛∗ (1 − 𝜌1 + 𝜌1𝜌𝑁0 − 𝜌𝑁+10 ) (1 − 𝜌1)
− 𝜌𝑁0 𝜌1 (1 − 𝜌0) (1 − 𝜌𝑛∗1 ) ≤ 𝑀𝐶1𝜌1
≤ (𝑛∗ + 1) (1 − 𝜌1 + 𝜌1𝜌𝑁0 − 𝜌𝑁+10 ) (1 − 𝜌1)
− 𝜌𝑁0 𝜌1 (1 − 𝜌0) (1 − 𝜌𝑛∗+11 ) ,

(26)

where

𝑀 = 𝑅𝜆1 (1 − 𝜌1 + 𝜌1𝜌𝑁0 − 𝜌𝑁+10 ) (1 − 𝜌1)2

+ 𝐶2𝜌1 (1 − 𝜌1)2 [𝑁 − 𝜌0 (1 − 𝜌𝑁0 )1 − 𝜌0 ] . (27)

Let

𝑓 (𝑥) = 𝑥 (1 − 𝜌1 + 𝜌1𝜌𝑁0 − 𝜌𝑁+10 ) (1 − 𝜌1)
− 𝜌𝑁0 𝜌1 (1 − 𝜌0) (1 − 𝜌𝑥1 ) .

(28)

In the following proposition, we study the monotonicity of
the function 𝑓(𝑥) for 𝑥 ≥ 1.
Proposition 7. If 𝜌0 < 1, 𝑓(𝑥) is an increasing function in𝑥 ≥ 1. If 𝜌0 > 1 and 𝜌1 ̸= 1, 𝑓(𝑥) is a decreasing function in𝑥 ≥ 1.

Proof. The first order derivative of 𝑓(𝑥) is
𝑔 (𝜌1) fl 𝑑𝑓 (𝑥)𝑑𝑥

= (1 − 𝜌1 + 𝜌1𝜌𝑁0 − 𝜌𝑁+10 ) (1 − 𝜌1)
+ 𝜌𝑁0 (1 − 𝜌0) 𝜌𝑥+11 log 𝜌1.

(29)

The second order derivative of 𝑓(𝑥) is
𝑑2𝑓 (𝑥)𝑑𝑥2 = 𝜌𝑁0 (1 − 𝜌0) 𝜌𝑥+11 (log 𝜌1)2 > 0. (30)

The first order derivative of 𝑔(𝜌1) is
𝑑𝑔 (𝜌1)𝑑𝜌1 = −2 (1 − 𝜌1) + 𝜌𝑁 (1 − 𝜌1) + 𝜌𝑁0 (𝜌0 − 𝜌1)

+ (𝑥 + 1) 𝜌𝑁0 (1 − 𝜌0) 𝜌𝑥1 log 𝜌1
+ 𝜌𝑁0 (1 − 𝜌1) 𝜌𝑥1 .

(31)

(1) If 0 < 𝜌1 ≤ 𝜌0 < 1 and 1 < 𝜌1 ≤ 𝜌0, by (31), we have
𝑑𝑔 (𝜌1)𝑑𝜌1 < −2 (1 − 𝜌1) + 𝜌𝑁0 (1 − 𝜌1) + 𝜌𝑁0 (1 − 𝜌1)

+ 𝜌𝑁+𝑥0 (1 − 𝜌0) − 𝜌𝑁0 (1 − 𝜌0)
= (1 − 𝜌1) (−2 + 2𝜌𝑁0 )
+ (1 − 𝜌0) 𝜌𝑁0 (𝜌𝑥0 − 1) < 0.

(32)

Therefore, 𝑔(𝜌1) is a decreasing function for 𝜌1 ∈ (0, 1) ∪(1,∞). Then,

𝑔 (1) = 𝑑𝑓 (𝑥)𝑑𝑥
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜌1=1 = 0. (33)

Hence,

𝑑𝑓 (𝑥)𝑑𝑥 > 0, ∀𝜌1 ∈ (0, 1)
and

𝑑𝑓 (𝑥)𝑑𝑥 < 0, ∀𝜌1 ∈ (1,∞) .
(34)

(2) If 𝜌0 > 1 and 0 < 𝜌1 < 1, we have
𝑑𝑔 (𝜌1)𝑑𝜌1 > 2𝜌𝑁0 (1 − 𝜌1) − 2 (1 − 𝜌1)

= 2 (1 − 𝜌1) (𝜌𝑁0 − 1) > 0.
(35)
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Therefore, 𝑔(𝜌1) is an increasing function for 𝜌1 ∈ (0, 1) and𝜌0 ∈ (1,∞). Then,

𝑔 (1) = 𝑑𝑓 (𝑥)𝑑𝑥
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜌1=1 = 0. (36)

Thus,

𝑑𝑓 (𝑥)𝑑𝑥 < 0, ∀𝜌1 ∈ (0, 1) . (37)

By (34) and (37), for 𝑥 ≥ 1, we obtain that 𝑓(𝑥) is an
increasing function, when 𝜌0 < 1 and 𝑓(𝑥) is a decreasing
function when 𝜌0 > 1 and 𝜌1 ̸= 1.

Let

𝑛∗ (1 − 𝜌1 + 𝜌1𝜌𝑁0 − 𝜌𝑁+10 ) (1 − 𝜌1)
− 𝜌𝑁0 𝜌1 (1 − 𝜌0) (1 − 𝜌𝑛∗1 ) = 𝑀𝐶1𝜌1 .

(38)

In the following theorem, we consider the socially optimal
strategy which is specified by the socially optimal threshold𝑛∗ such that the social benefit reaches maximum.

�eorem 8. In fully observable case, the socially optimal
strategy is given as follows:

(1) If 𝜌1 = 1 or 𝜌0 = 1, there is no solution to (38).
(2) For 𝜌0 ∈ (0, 1),

(a) if 𝑓(1) > 𝑀/𝐶1𝜌1, there is no solution to (38).
(b) if 𝑓(1) < 𝑀/𝐶1𝜌1, there exists a unique solution𝑛∗ > 1 of (38).
(c) if 𝑓(1) = 𝑀/𝐶1𝜌1, there exists a unique solution𝑛∗ = 1 of (38).

(3) For 𝜌0 ∈ (1,∞),
(a) if 𝑓(1) < 𝑀/𝐶1𝜌1, there is no solution to (38).
(b) if 𝑓(1) > 𝑀/𝐶1𝜌1, there exists a unique solution𝑛∗ > 1 of (38).
(c) if 𝑓(1) = 𝑀/𝐶1𝜌1, there exists a unique solution𝑛∗ = 1 of (38).

5. Fully Unobservable Case

Now we consider fully unobservable case where arriving
passengers are not informed the number of passengers or
taxis, but they know the arrival rates of passengers and taxis.
The joining probability of an arriving passenger is 𝑞 and the
balking probability is 1 − 𝑞. The state transition diagram is
shown in Figure 4. Let 𝜌1,1 fl 𝜆1𝑞/𝜆2 and 𝜌0,1 fl 𝜆1𝑞/𝜆0.
Suppose the system is stable, so that 𝜌1,1 = 𝜆1𝑞/𝜆2 < 1.

Let𝜋𝑓𝑢𝑖 be the steady-state probability of state 𝑖 in the fully
unobservable case. In the following proposition, we obtain
the stationary distribution by balance equations.

-N -N+1 -1 0 1 n
0 0 0 0 2 2 2 2

1q1q1q1q1q1q1q1q
· · · · · ·· · ·

Figure 4: State transition diagram for the fully unobservable case.

Proposition 9. 	e stationary distribution in fully unobserv-
able case is given by

𝜋𝑓𝑢−𝑁 = (1 − 𝜌0,1) (1 − 𝜌1,1)1 − 𝜌1,1 − 𝜌𝑁+10,1 + 𝜌1,1𝜌𝑁0,1 ; (39)

𝜋𝑓𝑢𝑖 = 𝜌𝑁+𝑖0,1 (1 − 𝜌0,1) (1 − 𝜌1,1)1 − 𝜌1,1 − 𝜌𝑁+10,1 + 𝜌1,1𝜌𝑁0,1 , − 𝑁 ≤ 𝑖 ≤ 0; (40)

𝜋𝑓𝑢𝑖 = 𝜌0,1𝜌𝑖1,1 (1 − 𝜌0,1) (1 − 𝜌1,1)1 − 𝜌1,1 − 𝜌𝑁+10,1 + 𝜌1,1𝜌𝑁0,1 , 𝑖 ≥ 1. (41)

By the samemethod, we obtain the expected queue length
of passengers E𝐿𝑓𝑢1 and the expected queue length of taxis
E𝐿𝑓𝑢2, respectively:
E𝐿𝑓𝑢1 = ∞∑

𝑖=0

𝑖𝜋𝑓𝑢𝑖
= 𝜌1,1𝜌𝑁0,1 (1 − 𝜌0,1)(1 − 𝜌1,1) (1 − 𝜌1,1 − 𝜌𝑁+10,1 + 𝜌1,1𝜌𝑁0,1) ;

(42)

E𝐿𝑓𝑢2 = 0∑
𝑖=−𝑁

(−𝑖) 𝜋𝑓𝑢𝑖

= (𝑁 − 𝜌0,1 (1 − 𝜌𝑁0,1)1 − 𝜌0,1 ) 1 − 𝜌1,11 − 𝜌1,1 − 𝜌𝑁+10,1 + 𝜌1,1𝜌𝑁0,1 .
(43)

Obviously, the effective arrival rate of passengers is 𝜆1𝑞. Let
the effective arrival rate of taxis be 𝛼. Then

𝛼 = 0∑
𝑖=−𝑁+1

𝜆0𝜋𝑓𝑢𝑖 + ∞∑
𝑖=1

𝜆2𝜋𝑓𝑢𝑖 = 𝜆1𝑞. (44)

The expected waiting time of a passenger E𝑊𝑓𝑢1(𝑞) and the
expected waiting time of a taxi E𝑊𝑓𝑢2(𝑞) are, respectively,

E𝑊𝑓𝑢1 (𝑞) = E𝐿𝑓𝑢1𝜆1𝑞
and E𝑊𝑓𝑢2 (𝑞) = E𝐿𝑓𝑢2𝜆1𝑞 .

(45)

5.1. EquilibriumStrategies of Passengers. Wenow consider the
equilibrium strategy of an arriving passenger. By (45), we get
the utility of passengers

𝑈𝑓𝑢 (𝑞) = 𝑅 − 𝑝1 − 𝐶1E𝑊𝑓𝑢1 (𝑞) . (46)

The equilibrium strategy of an arriving passenger is specified
by the joining probability, denoted by 𝑞𝑒 such that a passenger
will choose to take a taxi with probability 𝑞𝑒 and balk with
probability 1 − 𝑞𝑒.
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�eorem 10. In the unobservable queue case, the equilibrium
strategy for each passenger is as follows:

𝑞𝑒 =
{{{{{{{{{{{{{{{

0, 𝑖𝑓 𝑅 < 𝑝1;
𝑞∗𝑒 , 𝑖𝑓 𝑝1 ≤ 𝑅 ≤ 𝑝1 + 𝐶1 𝜌1𝜌𝑁0 (1 − 𝜌0)𝜆1 (1 − 𝜌1) (1 − 𝜌1 − 𝜌𝑁+10 + 𝜌1𝜌𝑁0 ) ;
1, 𝑖𝑓 𝑅 > 𝑝1 + 𝐶1 𝜌1𝜌𝑁0 (1 − 𝜌0)𝜆1 (1 − 𝜌1) (1 − 𝜌1 − 𝜌𝑁+10 + 𝜌1𝜌𝑁0 ) ,

(47)

where 𝑞∗𝑒 is the unique solution of equation 𝑈𝑓𝑢(𝑞∗𝑒 ) = 0.
Proof. By (45), we know that𝑊𝑓𝑢(𝑞) is an increasing function
for 𝑞 ∈ [0, 1]; thus, 𝑈𝑓𝑢(𝑞) is a decreasing function for 𝑞 ∈[0, 1].

If 𝑅 < 𝑝1, 𝑈𝑓𝑢(𝑞) < 0, then the best response for an
passenger is balking, so that 𝑞𝑒 = 0.

If𝑅 > 𝑝1+𝐶1(𝜌1𝜌𝑁0 (1−𝜌0)/𝜆1(1−𝜌1)(1−𝜌1−𝜌𝑁+10 +𝜌1𝜌𝑁0 )),𝑈𝑓𝑢(𝑞) > 0; hence, his best choice is 𝑞𝑒 = 1.
Since 𝑈𝑓𝑢(𝑞) is a decreasing function for 𝑞, so that there

exists a unique solution to the equation 𝑈𝑓𝑢(𝑞∗𝑒 ) = 0 within
(0, 1) if 𝑝1 ≤ 𝑅 ≤ 𝑝1 + 𝐶1(𝜌1𝜌𝑁0 (1 − 𝜌0)/𝜆1(1 − 𝜌1)(1 − 𝜌1 −𝜌𝑁+10 + 𝜌1𝜌𝑁0 )).
5.2. Social Benefit Function. In this section, we study the
social benefit function in fully unobservable case. By (42),
(43), and (44), we obtain the social benefit function

𝑆𝑓𝑢 = 𝜆1𝑞𝑅 − 𝐶1
⋅ 𝜌1,1𝜌𝑁0,1 (1 − 𝜌0,1)(1 − 𝜌1,1) (1 − 𝜌1,1 − 𝜌𝑁+10,1 + 𝜌1,1𝜌𝑁0,1)

− 𝐶2(𝑁 − 𝜌0,1 (1 − 𝜌𝑁0,1)1 − 𝜌0,1 )
⋅ 1 − 𝜌1,11 − 𝜌1,1 − 𝜌𝑁+10,1 + 𝜌1,1𝜌𝑁0,1 .

(48)

Since the social benefit function is complicated, the first and
second order derivatives are too difficult to analyze. So, we
study the socially optimal strategies which is represented
by a joining probability (is called socially optimal joining
probability) such that the social benefit reaches maximum by
numerical experiments.

6. Numerical Experiments

In this section, we will show some tables to find the relation-
ship between the equilibrium strategies and socially optimal
strategies of arriving passengers under three different infor-
mation levels (fully observable case, almost unobservable
case, and fully unobservable case). Moreover, we will present
figures to compare the socially optimal joining probabilities
in the almost unobservable case with those in the fully

unobservable case. We also find the effect of three different
information levels as well as several parameters: taxi buffer
size 𝑁, arrival rate of passengers 𝜆1, the low arrival rate of
taxis 𝜆0, and the high arrival rate of taxis 𝜆2 on social benefit.

We first study the equilibrium joining probabilities in
almost unobservable and fully unobservable cases, respec-
tively. These results are shown in Figure 5. From the left of
Figure 5, we can see that the equilibrium joining probabilities
in the fully unobservable case is increasing as 𝑁 and 𝜆0
increase, respectively. It is obvious that the equilibrium
joining probabilities in the fully unobservable case is always
larger than that in the almost unobservable case. From the
right of Figure 5, we know that the equilibrium joining
probability in the almost unobservable case decreases with
respect to 𝜆1. Moreover, the equilibrium joining proba-
bility in the almost unobservable case is increasing as 𝜆2
increases.

We second consider the socially optimal strategies in
three different information levels. These results are shown in
Figures 6 and 7. In the left of Figure 6, we find that socially
optimal joining probabilities in the almost unobservable
case are decreasing as 𝑁 increases. When 𝜆0 < 𝜆2, the
socially optimal joining probabilities is larger than that in
the case 𝜆0 = 𝜆2. From the right of Figure 6, we can
observe that socially optimal joining probabilities in the
fully unobservable case is increasing with respect to 𝑁.
Furthermore, the socially optimal joining probabilities in the
case 𝜆0 < 𝜆2 is less than that in the case 𝜆0 = 𝜆2. In Figure 7,
we study the socially optimal threshold in two cases. When𝜆2 > 𝜆1, the socially optimal threshold is increasing as 𝑁
increases. The socially optimal threshold in the case 𝜆0 = 𝜆2
is larger than that in the case 𝜆0 < 𝜆2. When 𝜆2 < 𝜆1, the
relationship is opposite.

We then consider the optimal social benefit in the fully
unobservable and fully observable cases, respectively. These
results are shown in Figure 8. In the left of Figure 8, we
find that the optimal social benefit in the observable case is
decreasing with respect to 𝑁. If 𝑁 is less than 5, the best
choice is 𝜆0 = 𝜆2 which is the case in [18]. If𝑁 is larger than
5, the social benefit in the case 𝜆0 < 𝜆2 is larger than that in
the case 𝜆0 = 𝜆2. From this behavior, we know that ourmodel
can be used to improve the optimal social benefit. The right
of Figure 8 shows the relationship between the social benefit
and the arrival rates of taxis.

In the last numerical example, we investigate the effect of
three different information levels aswell as several parameters
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(taxi buffer size 𝑁, the arrival rate of passengers 𝜆1, and the
low arrival rate of taxis 𝜆0) on social benefit.These results are
shown in Figures 9, 10, and 11. From the left of Figure 9, when𝜆1 > 𝜆2, we can see that the social benefit in fully observable
case and almost unobservable case increase as𝜆0 increases. In
the fully unobservable case, we can see that the social benefit
function is unimodal; then, we get the optimal low taxi arrival
rate. In the right of Figure 9, when 𝜆1 < 𝜆2, the social benefits
in three cases are convex functions for 𝜆0. However, social
benefits in three cases are basically the same. Moreover, from
Figure 9 we know that the dynamic taxi control policy can
improve the social benefit in several cases compared with
the same taxi arrival rate case. In the left of Figure 10, when

𝜆1 < 𝜆2, we know that the social benefit in three cases is not
much difference. When 𝜆1 > 𝜆2, the social benefits in fully
observable case and almost unobservable case are larger than
that in fully unobservable case. From this behavior we know
that providing the taxi stand information is an efficiency
policy to improve the social benefit. In the right of Figures 10
and 11, the social benefit functions are convex in three cases.
In other words, we obtain an optimal taxi buffer size which
maximizes the social benefit. From the left of Figure 11, it can
be seen that the social benefit in the fully observable case is
more than that in the fully unobservable case. Moreover, the
gap between the social benefit in the almost unobservable
case and fully unobservable case becomes smaller as 𝑁
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increases. This behavior indicates that providing the queue
length of passengers and taxis can improve the social benefit.
From the right of Figure 11, when 𝜆0 < 𝜆2 < 𝜆1, we
know that the social benefits in the fully observable case
and almost unobservable case are larger than that in the
fully unobservable case. However, the gap between the social
benefit in the fully observable case and almost unobservable
case becomes smaller as 𝑁 increases. This phenomenon
indicates that when 𝜆0 < 𝜆2 < 𝜆1, if the cost of providing

the fully information of the system is large, announcing
the state of taxis can also greatly improve the social
benefit.

7. Conclusions

In this paper, we study the passenger-taxi service system with
dynamic taxi control by a double-endedMarkovian queueing
system. The taxi control is to improve the arrival rate of taxis
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when the queue length of passengers is large so as to reduce
delays and decrease it at times of increased queue length of
taxis so as to reduce the costs of taxis. We derive the passen-
ger’s and taxi’s expected waiting times in three different infor-
mation levels. By the reward-cost structure, we analyze the
strategic behavior of arriving passengers from their individ-
ual utility and social benefit under three different information
levels.

We study the (Nash) equilibrium strategies and so-
cially optimal strategies in three different information
levels, respectively. We obtain the selfishly and socially
optimal thresholds of passengers in the fully observable

case. In the almost unobservable case and the fully
unobservable case, we consider the selfishly and socially
optimal joining probabilities for arriving passengers.
Furthermore, the numerical results showed that dynamic
taxi control policy can greatly improve the social benefit
compared with the model with the same arrival rate of
taxis.

In order to reduce the waiting time of passengers, a
possible extension to this work can be to consider a model
with priority. In another direction, the extension of the study
to non-Markovian models with general interarrival times
seems also important.
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