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Macrolevel crash modeling has been extensively applied to investigate the safety e�ects of demographic, socioeconomic, and land
use factors, in order to add safety knowledge into tra�c planning and policy-making. In recent years, with the increasing attention
to regional tra�c management and control, the safety e�ects of macrolevel tra�c �ow parameters may also be of interest, in order
to provide useful safety knowledge for regional tra�c operation. In this paper, a new spatial unit was developed using a recursive
half-cut partitioning procedure based on a normalized cut (NC) minimization method and tra�c density homogeneity. Two
Bayesian lognormal models with di�erent conditional autoregressive (CAR) priors were applied to examine the safety e�ects of
tra�c �ow characteristics at the NC level. It was found that safety e�ects of tra�c �ow exist at such macrolevel, indicating the
necessity of considering safety for regional tra�c control and management. Furthermore, tra�c �ow e�ects were also examined
for another two spatial units: Tra�c Analysis Zone (TAZ) and Census Tract (CT). It was found that ecological fallacy and atomic
fallacy could exist without considering tra�c �ow parameters at those planning-based levels. In general, safety needs to be
considered for regional tra�c operation and the e�ects of tra�c �ow need to be considered for spatial crash modeling at various
spatial levels.

1. Introduction

Macroscopic safety evaluation was often conducted, with the
purpose of �nding factors that could be improved or con-
trolled at the planning stage or during policy-making
process. Traditional macroscopic crash models (e.g., Poisson
lognormal models) rely on the assumption of independence
across observations. However, in recent years, spatial crash
models have gained a lot of attention, by adding spatial
dependence into macroscopic crash models. Socioeconomic,
land use, demographic, and tra�c network characteristics
were of interest, and they were often aggregated at varying
levels of spatial units [1], including Tra�c Analysis Zones
(TAZ), Census Tracts (CT), census wards, statistical area
levels, block groups, counties, and states. In general, spatial
crash models have shown their superiority over conven-
tional macroscopic crash models.

However, an important issue of spatial crash models is
the choice of a certain level of spatial unit, which is also

called Modi�able Aerial Unit Problem (MAUP). Wang et al.
[2] discussed the possible ecological fallacy of spatial ag-
gregation (Davis) that modeling results from spatially ag-
gregated data may not be fully applied to disaggregated data.
�ey also argued the possible atomistic fallacy caused by
disaggregated data, which is unable to take “system-wide
e�ects” captured by spatially aggregated data [3, 4]. Abdel-
Aty et al. [5] compared spatial crash models based on three
di�erent aggregate-level spatial units (i.e., TAZs, CT, and
block groups) and found the e�ects of di�erent spatial units
on the signi�cance of model estimates. Xu et al. [6] con-
ducted a sensitive analysis on the e�ects of di�erent ag-
gregate-level spatial TAZ units. �ey found that more
aggregated TAZs tended to have better model performance
but fewer variables. �is result was consistent with Wang
et al. [2], as spatially aggregated data tend to decrease at-
omistic fallacy while increase ecological fallacy if not
properly aggregated. Gyimah et al. [1] examined the e�ect of
six di�erent aggregate-level spatial units on unobserved
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spatial heterogeneity. According to the results, the aggre-
gation level could significantly affect spatial heterogeneity, as
well as model performance.

Both Xu et al. [6] and Gyimah et al. [1] pointed out the
necessity of defining a new spatial unit from the perspective
of macroscopic safety evaluation, instead of using long-term
planning-based TAZs. To note, most spatial units like TAZ
were not initially defined for safety analysis but for traffic
planning purposes. *us, they are possibly delineated based
on the homogeneity of demographic, socioeconomic, or land
use factors, regardless of traffic flow characteristics. Traffic
flow characteristics were largely found to be associated with
crash occurrence and safety in the previous literature. *us,
an aggregate-level spatial unit, like TAZs at any aggregate
level, may contain roadways with significantly distinct traffic
flow characteristics. As a result, the relationship between
traffic flow characteristics and crash occurrence could be
weakened or nonsignificant (i.e., an example of ecological
fallacy for a spatial unit due to the inhomogeneity in traffic),
leading to biased model estimates. To overcome possible
ecological fallacy and atomistic fallacy (caused by dis-
aggregated data), Wang et al. [2] claimed the necessity of a
better mathematical partitioning scheme based on spatial
homogeneity in both demographic and traffic flow
characteristics.

*ere are many different spatial partitioning methods in
the literature to define spatial units, such as k-means al-
gorithm, AZP [7], and REDCAP (regionalization with dy-
namically constrained agglomerative clustering and
partitioning) [8]. Some have also been introduced into
spatial crash modeling. In order to study the effect of en-
forcement on road crashes in Greece, Yannis et al. [9]
formed spatial units based on spatial homogeneity in traffic
characteristics and road safety parameters, with a direct k-
means algorithm. Yannis concluded the statistical results
might be more reliable if spatial units are more homoge-
neous. Xu et al. [6] proposed a zoning scheme of aggregating
similar TAZs into a spatial unit, based on REDCAP. *e
homogeneity of crash risk was considered as the clustering
criteria. However, although considering spatial homogeneity
in various factors, these partitioning methods still rely on
predefined spatial units for planning, such as TAZ.

Ji and Geroliminis [10] introduced a graph cut mini-
mization method to divide urban traffic networks into
multiple spatial units. With such method, a traffic network
was partitioned into spatial units with homogeneous traffic
flow characteristics, and macroscopic fundamental diagram
(MFD) of each region was successfully identified. Such
method is very flexible, by not depending on any sort of
predefined spatial unit (e.g., TAZs). Although initially
proposed for controlling traffic and improving congestion,
the idea of the graph cut minimization method could also be
beneficial for macroscopic safety evaluation. As traffic flow
characteristics have been shown strong relationships with
crash, it is reasonable to believe that a spatial unit aggre-
gating roadway with similar traffic flow characteristics would
be more suitable for spatial crash modeling. Based on such
method, the underlying relationship between traffic flow and

crash may be better explored. *us, active regional traffic
control and management strategies [11–15] could be ex-
pected to improve macroscopic safety, by managing traffic
flow in some certain state with lower crash risk.

*us, in this paper, we will define a new spatial unit for
macroscopic safety evaluation, by considering the homo-
geneity of traffic densities. A graph cut method will be in-
troduced, based on which a spatial partitioning procedure is
proposed. Two Bayesian spatial modeling techniques are
employed to analyze crash data at the new level, in order to
identify possible traffic flow effects on safety. *e remainder
of the paper is organized as follows. In Section 2, we present
the detail of the graph cut minimization method for spatial
partitioning as well as spatial modeling techniques. Section 3
gives a brief description of the data. Section 4 summarizes
the spatial partition results and modeling results and in-
cludes a discussion. *e last part concludes the paper and
recommends future research directions.

2. Spatial Partitioning

2.1. A Normalized Cut (NC) Minimization Method. In order
to divide an area into multiple regions, a normalized cut
minimization (NC) method is introduced, considering in-
tersections as nodes and roadways as edges. NC method has
been used in the previous literature for spatial partitioning
[10].

Suppose the node set V in an undirected graph G �

(V, E) where E indicates the set of edges in G. Assume that
each edge between two vertices vi and vj carries a non-
negative weight wij � wji ≥ 0. *e weight adjacency matrix
of the graph can be defined as W � (wij)i,j�1,...,n. When
wij � 0, it indicates that the two vertices are not connected.
*e degree of a vertex vi ∈ V is defined as di � 

n
j�1wij. *e

degree matrix D is defined as the diagonal matrix with
degree d1, d2, . . . , dn on the diagonal.

Consider edge to be a measure of the similarity between
nodes. We want to find a partition of the graph such that edges
between different groups have a very low weight, indicating
that points in different clusters are dissimilar from each other.
Moreover, the edges within a group need to have high weights,
implying that pints within the same cluster are similar.

For two disjoint subsets A and B,

cut(A, B) � 
i∈A,j∈B

wij. (1)

In 2000, Shi and Malik proposed a 2-way normalized cut
functions: Ncut and Nassoc, which indicate the homogeneity
and heterogeneity of two clusters:

Ncut(A, B) �
cut(A, B)

cut(A, V)
+
cut(A, B)

cut(B, V)
,

Nassoc(A, B) �
cut(A, A)

cut(A, V)
+
cut(B, B)

cut(B, V)
,

cut(A, A) + cut(A, B) � cut(A, V),

Ncut(A, B) � 2 − Nasssoc(A, B).

(2)
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*us, the objective can be determined as the minimi-
zation of Ncut:

min
x

Ncut(x).

s.t. x ∈ V.
(3)

Minimizing Ncut value exactly is NP-complete. *e
discrete solution can be approximated efficiently by solving
an eigenvalue system in the real value domain. A common
way is to convert the normalized cut into the unnormalized
graph Laplacian. Set

w(i, j) �
exp − di − dj 

2
 , aij � 1,

0, aij � 0.

⎧⎪⎨

⎪⎩
(4)

*en, we have

min
x

Ncut(x) � min
y

yT(D − W)y

yTDy
,

s.t xi � 1 if xi ∈ A,

xi � 1 if xi ∈ B,

yi ∈ − 1, b{ },

yTD1 � 0,

(5)

where D is an N ∗N diagonal matrix with dii � jω(i, j)

on its diagonal. D − W is the Laplacian matrix, known to
be positive semidefinite. Based on Rayleigh–Ritz theo-
rem, the solution is to solve the generalized eigenvalue
system:

(D − W)y � λDy, (6)

where λ is the eigenvalue and y is the eigenvector. *e
second smallest eigenvector is called the Fiedler vector,
which is the real-valued solution to normalized cut
problem.

2.2. A Recursive Half-Cut Partitioning Procedure. To apply
the above method for spatial partitioning, we propose a
recursive half-cut procedure:

Step 1: set up a weighted graph G � (V, E) based on
the topology of traffic network. Intersections are
treated as nodes while roadways are considered as
edges.
Step 2: set the weight on the edge connecting two nodes,
using a measure of similarity between two notes (i.e.,
traffic density).
Step 3: solve (D − W)y � λDy for eigenvectors with
the smallest eigenvalues.
Step 4: cut the graph into two clusters based on the
second smallest eigenvector (i.e., Fiedler vector).
Step 5: decide if the current partition should be further
divided.

Step 6: repeat the first five steps until certain criteria
were met.

When partitioning a graph with the Fiedler vector,
different strategies can be used.*ere are three general ways:
(1) partition the graph with the median value; (2) cut the
graph with value 0 (negative versus positive); and (3) cut the
graph based on the largest interval between every two ele-
ments. In this study, the third approach was utilized.

2.3. Spatial Model Configuration. Crash modeling includes
severity modeling [16–18] and crash frequency modeling
[19, 20]. Spatial crash modeling belongs to crash frequency
modeling, which contains multiple model structures [21–
26], including Poisson lognormal model, negative binomial
spatial model, Poisson lognormal spatial model, geographic
weighted Poisson regression model, and Bayesian spatial
varying-coefficient model. Since the purpose of this study is
to examine the effect of traffic flow characteristics, two
Bayesian lognormal models with different CAR priors were
applied, since they have been widely applied in many dif-
ferent research fields such as epidemiology.

A generalized Bayesian lognormal model with CAR prior
can be presented as

YI ∼ Poisson λi( ,

ln λi(  � ln(E) + β0 + βkXik + θi + ϕi,
(7)

where λi is the expected mean of crash occurrence for ob-
servation i; E is the exposure/expectation for observation i;
βk is the parameter coefficient of kth variable; Xik is the kth
variable for ith observation; θi is the unstructured error,
often assumed as a prior normal distribution; and ϕi is the
spatial correlation.

For the spatial correlation term ϕi, the intrinsic condi-
tional autoregressive prior (CAR prior) can be defined as
follows [18]:

∅i

∅− i, W, τ2 ∼ N
i≠jϕjmij

i≠jmij

,
τ2c

i≠jmij

 , (8)

where mij denotes the binary entries of proximity matrix (1
represents adjacency while 0 indicates nonadjacency). τc is
the precision parameter, assumed as a prior gamma dis-
tribution. In essence, the conditional expectation ϕi is the
average of spatial correlations of adjacent areas; conditional
variance τ2 is inversely proportional to the number of ad-
jacent areas.

A Cressie autoregressive prior can be written as follows:

∅i

∅− i, W, τ2 ∼ N ρ
i≠jϕjmij

i≠jmij

+(1 − ρ)


n
j�1ϕj

n
,

τ2c
i≠jmij

 .

(9)

Different from IAC priors, the conditional expectation of
ϕi is modified into the weighted average of the average of
adjacency area and the average of the entire area. Weight
parameter ρ indicates the intensity of spatial autocorrela-
tion. When ρ � 0, it indicates a complete spatial indepen-
dency, and with the increase of ρ, spatial autocorrelation
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increases. When ρ � 1, the Cressie model degenerates to an
intrinsic CAR model.

Based on a fitted model, the relative risk (RR) of a
subregion can be calculated as follows:

RR � e
β0+βkXik+θi+ϕi( ). (10)

3. Data Preparation

Crash data for the central area of Kunshan City (within the
KunshanMiddle Ring Road) in 2015 were acquired from the
Kunshan Police Department. A total of 5538 crashes were
collected. *e crash data contain detailed information on
drivers, roadways, and vehicles. For each crash record, there
is a unique coordinate, which can be further used for lo-
cating it on the map. In order to conduct macroscopic crash
modeling, spatially aggregated features also need to be
collected.

Planning-based data were extracted from the planning
department of Kunshan City. More importantly, detailed
traffic data are necessary for spatial partition and spatial
modeling. *us, traffic data between 2015.8 and 2015.9 were
extracted from microwave detectors with the 30 s interval,
including density, speed, and counts. *e average traffic
density was considered as the measure of traffic homoge-
neity, used in spatial partitioning. Figure 1 shows the
roadway network, the location of microwave detectors, and
the land use sketch of the studied area.

As for Bayesian modeling, the total number of crashes
was used as the dependent variable. Unlike previous studies,
we calculated the expected crash number as exposure. *e
expected crash number of a spatial unit can be calculated as
the total crash number times the proportion of the exposure
(daily traffic volume ∗ total population ∗ area size) of the
area. *e calculation assumed that the expected average risk
of each area is comparable. However, it is also reasonable
that the relative exposure risk among different areas can
largely vary. Many factors could contribute to it, including
traffic flow parameters (used as explanatory variables),
planning, and land use factors. Four aggregated traffic
variables (average flow, average density, average speed, and
speed variance) were calculated for each area, which were
also used as explanatory variables for spatial modeling.
Other explanatory variables include most planning-based
aggregated variables, commonly used in the previous
literature.

4. Results

4.1. Partitioning Results. *e NC partitioning method was
applied to partition the graph with 99 nodes (i.e., 99 in-
tersections). Initially, by solving the Laplacian matrix, all
eigenvalues were calculated. Based on the similarity of ei-
genvectors and their spatial adjacency, 8 clusters were de-
termined. However, NC 8 has the area size of 10.98m2,
which is much larger than other NCs. In order to obtain all
NCs with comparable size, further division efforts were
conducted in NC 8, which has 23 intersections within the

area. Based on another two rounds of partitioning on NC 8,
13 NCs were finally delineated, as shown in Figure 2.

*e descriptive statistics of planning, roadway, and
traffic flow parameters of 13 NCs are summarized in Table 1.

4.2. Model Results. Intrinsic and Cressie Bayesian CAR
models were developed to examine the relationship between
various variables with crash risk. First, multicollinearity
needs to be examined for those variables. VIF tests and
stepwise methods were applied to eliminate those variables
with high multicollinearity (VIF >10).

*en, for each Bayesian CAR model, 100000 iterations
were conducted with 5000 iterations as burn-in period. All
three models appeared to reach convergence within the
simulation period. Figure 3 gives an illustration of model
convergence.

Both intrinsic and Cressie CAR models showed signif-
icant traffic flow effects on crash risk. *e results were
comparable for the two models. Detailed results are shown
in Table 2. A region having higher speed variance tends to
have higher crash risk. *is is reasonable. With higher traffic
density, there is a slight increase in crash risk. Previous
literature studies suggest controversial findings on the re-
lationship between density and crash risk. Some claimed a
positive linear relationship while others suggested a qua-
dratic function. It is reasonable to expect that, at first, the
higher density creates more interaction and thus more
crashes. While it reaches some certain point, the traffic
becomes congested and the speed significantly drops down.
In this case, crashes could possibly decrease. Since we only
consider an average effect without regarding spatial and
temporal heterogeneity, the detailed density effect of each
zone needs to be further explored. Average daily traffic
volume (ADT) was not found to be significant as the ex-
planatory variable, implying that traffic volume is not sig-
nificantly connected with average crash risk. *us, the effect
of ADT on crash risk could be considered as the only ex-
posure effect (Figure 4).

As for the effects of planning/roadway factors on crash
risk, there are slight differences between the two models.
According to intrinsic CAR models, the increase of major/
minor arterial density will increase crash risk. *is was
consistent with the previous literature. *ere is no signifi-
cant relationship between local road density and crash risk.
It was expected that the increase of local roads would lower
crash risk, according to the previous literature. A possible
reason could be the inclusion of significant traffic flow
variables adjusts the effects of local roads density. In other
words, traffic flow variables could be endogenous variables
that cannot be ignored. According to the Cressie CAR
model, with the increase of industrial land use, crash risk
decreases by 2.5%. More school land use and residential land
use are associated with higher crash risk.*is was reasonable
in China. During morning and evening peak hours, parents
pick children to increase the disorder of traffic. *us, it is
critical to deal with school land use. *ose low-income
residential areas are older district. Buildings are too old so
that there is enough parking space. Oftentimes, roadways
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were occupied by vehicles. *ese could be potential safety
issues. *us, certain traffic management could be
considered.

*e relative risk of each spatial unit was also calculated,
based on the two models. In general, two models estimated
the similar results. Comparing with crash frequency, it
should be noted that spatial models can effectively identify

actual relative risk, by accounting for exposure and spatial
autocorrelation.

4.3. Ecological Fallacy andAtomic Fallacy. To further discuss
ecological fallacy and atomic fallacy, spatial modeling was
also conducted for another two spatial units: TAZ and
Census Tract (CT) zone. For each spatial unit, two models
were developed, one considering traffic flow parameters
(model 2) and another without considering them (model 1).
Detailed results can be found in Table 3. Note that both
original TAZ and CT were decided by the Kunshan Traffic
Planning Department (as shown in Figure 5).

For CT model 2, average daily traffic volume, average
speed, business, administrative, and public service land use
were found as significant variables. For TAZ model, only
land use variables were found as significant, including the
public management and public service, business, and resi-
dence. Using TAZ as spatial units, there were no significant
traffic flow effects on crash risk. However, for CT units,
traffic flow effects emerge.

(a) (b)

Figure 1: (a) Roadway network and location of microwave detectors and (b) land use sketch of the subject area.

NC1
NC2

NC3

NC4

NC5
NC6 NC7

NC8 NC9NC10

NC11

NC12

NC13

Boundary
Crash

Figure 2: Final NC partitioning results.

Table 1: Descriptive analysis of 13 NCs.
Roadway characteristics Min Max Mean SD
Area (km2) 1.016 4.269 2.329 1.237
Roadway density (km/km2) 3.181 10.919 6.923 2.423
Major arterials (km/km2) 0.392 4.805 2.648 1.396
Minor arterials (km/km2) 0.022 2.386 1.432 0.660
Land use characteristics Average percentage (%)
School land use 2.391
Public land use 5.761
Commercial land use 11.822
Industrial land use 9.816
Low-income residentials 1.015
High-income residentials 28.265

Iteration
1 2500 5000 7500 10000

Intrinsic

(a)

Iteration
1 2500 5000 7500 10000

Cressie

(b)

Figure 3: Illustration of Bayesian model convergence: intrinsic (a)
and Cressie (b).
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It is known that TAZ is delineated by land use, socio-
economics, and demographics. From the results, it can be
concluded that the major issue of TAZ-based spatial

modeling is the risk of atomic fallacy. In other words, the
actual traffic flow effects were not detected based on TAZs.
Moreover, in practice, any active interventions or policies

N

Values for Y

0.02km

(5) <250.0
(4) 250.0 – 500.0
(2) 500.0 – 750.0

(0) 750.0 – 1.00E + 3
(2) ≥1.00E + 3

(a)

N

Values for RR

0.02km

(10) <2.0
(2) 2.0 – 4.0

(0) 4.0 – 6.0
(1) ≥6.0

(b)

0.02km

Values for RR

N

(8) < 1.0
(2) 1.0 – 2.0

(2) 2.0 – 3.0
(0) 3.0 – 4.0

(0) 4.0 – 5.0
(1) ≥ 5.0

(c)

Figure 4: Crash count, relative risk of intrinsic and Cressie model estimation. (a) Crash Count. (b) Intrinsic model estimation. (c) Cressie
model estimation.

Table 2: Two bayesian modeling results of NC spatial units.

Varibale
BYM intrinsic CAR BYM cressie CAR

Mean s.d. 95% CI Mean s.d. 95% CI
Roadway density − 0.136 0.067 (− 0.239, − 0.012) − 0.081 0.091 (− 0.206, 0.096)
Major arterial density 0.089 0.199 (− 0.526, 0.309) 0.222 0.252 (− 0.158, 0.596)
Minor arterial density 0.121 0.313 (− 0.304, 1.012) −0.601 0.242 (− 1.083, − 0.193)
School land use − 0.224 0.150 (− 0.841, 0.015) 0.047 0.111 (0.034, 0.228)
Public land use 0.032 0.106 (0.121, 0.700) 0.066 0.058 (− 0.049, 0.176)
Commercia land use − 0.066 0.033 (− 0.099, 0.008) 0.040 0.018 (− 0.074, 0.085)
Industrial land use − 0.037 0.019 (− 0.064, 0.006) −0.025 0.025 (− 0.067, − 0.012)
Low-income residence 0.222 0.194 (− 0.257, 0.531) 0.145 0.201 (− 0.185, − 0.510)
High-income residence − 0.026 0.032 (− 0.076, 0.011) − 0.013 0.019 (− 0.046, 0.015)
Daily traffic density 0.021 0.010 (0.009, 0.033) 0.014 0.012 (0.007, 0.028)
Average traffic speed 0.013 0.024 (− 0.023, 0.052) 0.011 0.020 (− 0.017, 0.041)
ADT 0.223 0.141 (− 0.019, 0.788) 0.213 0.131 (− 0.011, 0.634)
Speed variance 0.082 0.012 (0.053, 0.114) 0.077 0.011 (0.049, 0.103)

Table 3: Bayesian modeling results of CT and TAZ model.

Variables
CT model 2∗ CT model 1 TAZ model 2∗ TAZ model 1

Mean s.d. Mean s.d. Mean s.d. Mean s.d.
Intercept − 3.034 0.665 − 2.993 0.385 − 2.603 0.438 − 2.702 0.425
Planning parameters
Minor arterials
Local roads −0.001 0.005 −0.001 0.004
Public service land use 0.040 0.017 0.057 0.021 0.025 0.009 0.027 0.010
Commercial land use 0.053 0.016 0.078 0.017 0.046 0.011 0.048 0.010
Residential land use — — 0.027 0.009 0.029 0.007 0.031 0.009

Traffic parameters
Daily traffic density − 0.1264 0.0318 0.02459 0.02557
Average traffic speed 0.0216 0.0062 — — 0.00161 0.00535
ADT −0.0415 0.0090 − 0.0109 0.00674
Speed variance 0.0432 0.0076 − 0.0321 0.00339

∗*e modeling efforts of adding traffic flow parameters to the corresponding spatial levels.
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cannot be proposed on regional traffic flow control or
management to improve traffic safety, as only land use
parameters were found as significant.

For the CT-based model, average daily traffic volume
(ADT) was found as a significant variable, with a negative
sign indicating that higher traffic volume would result in
lower crash rates. *is finding could be challenged because
traffic volume was considered positively associated with
crash risk as the crash exposure, per the previous literature
studies. In addition, average speed was found to be positively
associated with regional crash risk. However, according to
Abdel-Aty et al. [27], relatively low-speed area tended to
have higher crash risk. Moreover, previous literature largely
suggested the insignificance of possible linear relationship
between average speed and crash risk [28]. *us, the sig-
nificant traffic flow effects from CT appear to be ecological
fallacy [29]. As known, CT was also defined based on
nontraffic parameters.

5. Conclusion

Crash occurrence was believed and found to be associated
with traffic flow characteristics. Macroscopic spatial crash
modeling was initially conducted with the purposes of
adding safety consideration into long-term traffic planning
and policy-making, as spatial units used were mainly defined
from the planning perspective. However, it could also be
expected to propose some effective control and management
strategies to improve not only efficiency but also regional
traffic safety. *us, exploring the possible linkage among
traffic flows and crash risk at regional level appears to be
necessary. In addition, previous literature argued the major
flaw of TAZ-based spatial modeling of both atomic fallacy
and ecological fallacy. *us, conducting macroscopic spatial
crash modeling using a better-defined spatial unit is of
interest in this paper.

Based on a normalized cut minimization method, we
defined a spatial unit for regional safety evaluation.Microwave

data were used to partition the subject area into multiple parts,
according to the homogeneity of traffic density. Crash data,
planning data, and traffic data were all collected for spatial
modeling purpose. In order to account for the spatial de-
pendency among each unit and the potential overfitting issue
(caused by the availability of detectors), two Bayesian CAR
models were employed.

*e results proved the existence of traffic flow effects at
macrolevels. Note that this level was often used to study
regional traffic control and management strategies. *us, it
indicates the necessity of deeply examining the relationship
among traffic flow characteristics (e.g., MFD) and crash risk
at regional level, in order to enlighten traffic professionals to
propose time-dependent active regional traffic control and
management strategies for safety improvement.

Admittedly, the current study still has some limitations.
First, most traffic data were collected for arterial roads,
where microwave detectors are installed. Only those roads
can be used as edges in graph cut minimization. *us,
limited by the sparsity of microwave detectors and the size
of the subject area, only 13 NC zones were finally defined.
*is could possibly cause overfitting issue. Bayesian CAR
models were introduced to deal with the issue, and the
coefficients were assumed to follow prior normal distri-
butions (similar with L2 regularization). In our future
study, we will obtain more detailed traffic data through
different ways and expand the study area. Second, spatial
and temporal heterogeneities were not considered in this
model. Spatial heterogeneity had been discussed in the
previous literature. Since this study mainly focuses on
defining new spatial unit and comparing it with other units,
spatial heterogeneity could be examined in the future,
especially for the effect of traffic characteristics. Moreover,
since NC is defined based on traffic flow data instead of
planning data, temporal heterogeneity can also be dis-
cussed in the future. *ird, only three simple aggregated
traffic parameters were considered in the study. It is in-
teresting to extract other features of traffic flow (e.g.,

(a) (b)

Figure 5: (a) TAZ and (b) CT spatial units of the studied area.
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macroscopic fundamental diagram (MFD) and examine
their possible effects on safety. Last, it appeared that
macrolevel traffic flow parameters were not significant at
TAZ levels. It deserves a deeper investigation and possible
endogenous factors need to be examined in the future.
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