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+e goal of this study was to develop a new method for identifying the actual risky spots by using the geographic information
system (GIS). For this purpose, in this study, three different methods for detecting hotspots are developed, i.e., (1) the annual
average daily traffic (AADT) normalization method, (2) AK crashes (A is the incapacitating crash, and K is the fatal crash)
percentage method, and (3) distribution difference method. To evaluate the performances of these three hotspot detection
methods along with a baseline method that only considered the frequency of crashes, we applied these three methods to identify
the top 20 hotspots for truck crashes in two representative areas in Texas.+e results indicated that (1) all three proposed methods
produced more reasonable results than the baseline method, and (2) the “distribution difference” method outperformed the
other methods.

1. Introduction

Due to the size and weight of large trucks, their crashes often
result in fatal injuries, property damage, and significant
economic losses. According to a study conducted by the
National Highway Traffic Safety Administration [1], in 2013,
342,000 large trucks were involved in traffic crashes, and
these crashes killed 964 people and injured about 95,000
people. +e analysis of historical truck crash data is a re-
liable, extensively used approach for identifying risk factors
and preventing such crashes. However, analyzing crash data
and reviewing the police reports for all of the crashes in the
entire network is time-consuming and impractical.
Detecting the hotspots and analyzing the crashes that have
occurred at these locations provide a more effective way to
identify the factors that cause crashes and to develop crash-
prevention strategies.

Most of the methods that are currently used to analyze
crash hotspots have no effective way of considering the
impacts of roadway traffic conditions and exposure factors,
and very few of them have taken account of the severities of
the crashes. As a result, the hotspots that have been identified
often are the spots with high traffic volumes or dense

roadway networks instead of especially risky spots. In ad-
dition, for some locations that have been identified as
hotspots because many crashes have occurred there, most of
the crashes have been minor crashes with no injuries. For
example, Qi et al. [2] analyzed hotspots for truck crashes in
Texas; but because they did not consider the volumes of
traffic on different segments of the roadway, 7 of the top 10
hotspots they identified were in congested urban areas. In
the same study, because the severities of the crashes that
occurred were not considered, most of the top 10 hotspots
that were identified for truck crashes were located near
locations that generate or attract truck traffic, such as the
distribution centers, rest areas, or stopping places for trucks.

+e goal of this study was to develop an effective method
for detecting truck crash hotspots by using the geographic
information system (GIS). For this purpose, in this study,
three new methods for detecting hotspots are developed and
compared, i.e., (1) the annual average daily traffic (AADT)
normalization method that considers both the frequency of
crashes and the ADDTon a segment of the roadway; (2) the
AK percentage method that considers both crash frequency
and percentage of severe level crashes (AK crashes, where A
is the incapacitating crash and K is the fatal crash); and (3)
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the distribution difference method that is based on the
difference between the distribution of AK crashes and the
distribution of all types of the crashes. Among these three
methods, the AADT normalization method that is also re-
ferred to as the crash rate method has been used by many
previous studies [3–5]. +e other two methods, i.e., AK
percentage method and distribution difference method, are
proposed by this study and have not been used by other
studies in identifying crash hotspots. To evaluate the per-
formances of these three hotspot detection methods along
with a baseline method that only considered the frequency of
crashes, we applied these three methods to identify the top
20 hotspots for truck crashes in two representative areas in
Texas, i.e., the Houston–Galveston area and the Eagle Ford
Shale area in South Texas. +e results indicated that (1) all
three proposed methods produced more reasonable results
than the baseline method, and (2) the “distribution differ-
ence” method outperformed the other methods. +e de-
tected hotspots were evaluated based on the number of spots
that were identified to have risky geometric or traffic features
as already recognized by the literature and which are referred
to in this study as the recognized high-risk spots for trucks.
By comparing the numbers of recognized high-risk spots for
trucks identified by different methods, recommendations
were provided.

Following a brief review of previous studies on detecting
hotspots for crashes, three proposed methods for detecting
these hotspots are introduced. After that, descriptions of the
study areas are provided. +en, the results of identifying the
hotspots by different methods are compared and discussed.
Finally, conclusions are presented based on the findings of
this study.

2. Literature Review

Many studies have been conducted on developing methods
for identifying hotspots for crashes in which the geographic
information system- (GIS-) based geoprocessing and spatial
analysis techniques were used. Among these methods, the
point pattern analysis has been the most popular method. In
this method, after geocoding of the crash events, the spatial
distribution of crash data is analyzed to determine whether
an observed distribution of point events results from a
random pattern or whether it follows some systematic
processes that form a clustered or regular pattern [6]. Some
popular methods for point pattern analysis include nearest-
neighbor distances, kernel-density estimation (KDE), andK-
function [7].

KDE is one of the most extensively used methods. +e
goal of standard planar KDE is to develop a continuous
surface of density estimates of discrete events, such as road
crashes by summing the number of events within a search
bandwidth. +e KDE method has certain benefits in visual-
izing the crash density. +e density value typically is the
highest at the center, and it becomes smaller as the distance
from the center increases [8, 9]. Pulugurtha et al. [10] used this
method to study the zones in which there were large numbers
of crashes involving pedestrians, while Erdogan et al. [11]
studied the hotspots associated with highway crashes.

+ese point pattern analyses mentioned above account
for spatial information, but they still treat all sites equally
irrespective of their characteristics, i.e., each point is
weighted equally. To solve this problem, an advanced point
pattern analysis, i.e., the spatial autocorrelation method, was
developed to take into account the locations of simulta-
neously discrete events and their values. +e objective of the
spatial autocorrelation is to have ranges of numbers to
represent two spatial patterns, i.e., cluster and dispersion.
+e statistical significance of these two spatial patterns can
be tested with the “z score” [12, 13], which is not the case
with KDE.

+ese point pattern analysis methods are used to analyze
the point distribution patterns for a 2D planar space, which
is certain to raise controversial issues because road crashes
often occur on the roads and inside the road networks that
are portions of the 2D space. +erefore, road crashes should
be considered in a road network space, represented by 1D
lines [14]. Several studies have used a road network space to
count point events [15–17]. Recently, transportation pro-
fessionals have developed an ArcGIS-based package for the
transport community [18].

Although many previous works have been performed,
only a small number of studies have considered the impacts
of exposure variables, such as the volume of traffic and the
length of the segment of the road. In addition, most of these
studies did not take the severity of the crashes into account
in their analyses of the hotspots. Note that, in this study, a
hotspot for crashes is defined as a location at which the risk
of a crash is greater than it is at other locations. +us, the
term “hotspots” refers to locations at which more crashes
tend to occur that have a high level of severity.+us, both the
frequency of crashes and their severity must be considered in
the analysis of hotspots. +is research is intended to ensure
that this occurs by proposing three new, GIS-based methods
for detecting hotspots for truck crashes and evaluating their
performances.

3. Methodology

To consider the exposure factors and the weights of severe
crashes (AK crashes) in the detection of crash hotspots, three
hotspot detection methods were proposed, i.e., the AADT
normalization method, the AK percentage method, and the
distribution difference method. +e basic concepts in these
three methods are provided as follows.

3.1. AADT Normalization Method. +e AADT normaliza-
tion method considers the exposure factors and the volume
of traffic in the detection of hotspots. In general, there are
two exposure factors, i.e., the volume of traffic and the length
of the segment of the road that is of interest. In this study,
initially, all of the links in the roadway network were split
into approximately equal, fixed distances. +erefore, the
impacts of the length of the segment of the road being
studied could be ignored, and only the volume of the traffic
was considered as the exposure factor. In this study, the
frequency of crashes, i.e., the number of crashes in 5 years,
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was calculated for each small segment of the road. Subse-
quently, a crash rate normalized by AADTwas estimated by
the following equation:

crash rate �
segment crash frequency

segmentAADT
. (1)

3.2. AK Percentage Method and the Distribution Difference
Method. Both the AK percentage method and the distri-
bution difference method are designed to consider the
weight of severe crashes (AK crashes) in the detection of
crash hotspots. +e crash hotspots are defined as the lo-
cations at which the risk of a crash is higher than it is at other
locations. High risk means that there is a high probability of
traffic crashes that meet or exceed a certain level of severity.
In this study, we focused on AK crashes, i.e., incapacitating
and fatal crashes, because these two types of crashes cause
significant economic and social damages.

In the analysis of the risk associated with traffic crashes,
both the frequency and severity of the crashes must be
considered. Otherwise, the real crash risk cannot be
identified. For example, Figure 1 shows the crash distri-
bution under different lighting conditions. +e left y-axis is
for all the symbols in this figure except the orange curve,
while the right y-axis is particularly for the orange curve. In
Figure 1, the AK crash (total crash) distribution is the
percentage of the AK crash (total crash) across different
lighting conditions, while the AK percentage is only for a
particular lighting condition, and it is the ratio of the
number of AK crash occurred under a particular lighting
condition vs. the total number of crashes occurred under
this lighting condition. From Figure 1, it can be seen that, if
only the frequency of crashes is considered when analyzing
the risk of a truck crash under different lighting conditions,
the daylight condition is the riskiest because most of the
crashes occurred during that condition. Even if the fre-
quency of AK crashes is the only consideration, it still was
found that most of the AK crashes occurred during the
daylight condition. As is well known, the daylight condi-
tion is not the riskiest condition, and more crashes oc-
curred during this condition simply because there was

much more traffic. Also, it was found that the AK crash
distribution at the “daylight” condition was much less than
the total crash distribution. However, when the total crash
distribution was compared with the AK crash distribution,
it was found that the AK crash distribution for the “dark
and not lighted” condition was much higher than the total
crash distribution. +is result indicated that even more
crashes occurred during the daylight condition, but most of
these were not severe crashes. However, only a few crashes
occurred during the “dark and not lighted” condition, but
most of them were severe AK crashes. +erefore, the se-
verity of crashes must be considered in identifying the real
risky conditions. Note that the curve of “AK crash dis-
tribution %−total crash distribution %” in Figure 1 indi-
cates that the “dark and not lighted” condition has the
highest value, and it is followed by the “dark and lighted”
condition. +e “daylight” condition has the lowest value.
+us, the crash risk conditions can be identified quite well
by this curve. Similar results also have been obtained when
analyzing other crashes risk factors, such as roadway
alignment conditions and the condition of the surface of
the roadway [2].

According to these findings, the AK percentage method
and the distribution difference method were proposed. In
the AK percentage method, the major selection criterion is
the AK crash percentage, which is defined by equation (2) as
follows:

AK crash percentage �
segmentAK crash frequency
segment total crash frequency

.

(2)

In the distribution difference method, the major selec-
tion criterion is the difference between the AK crash dis-
tribution percentage and total crash distribution percentage,
which is defined by equation (3) as follows:

distribution difference � AKcrash distribution percentage

− total crash distribution percentage,

(3)

where

AK crash distribution percentage �
segmentAK crash frequency

AK crash frequency in the study area
, (4)

total crash distribution percentage �
segment total crash frequency

total crash frequency in the study area
. (5)

3.3. Procedure for Implementing the Proposed Detection
Methods for Crash Hotspots. +e proposed methods for
detecting crash hotspots can be implemented by using two
GIS platforms, i.e., QGIS and ArcGIS. QGIS is used for the
purpose of splitting the existing roadway links into seg-
ments that have approximately equal distances (500
meters in this study). +e rest of the data processing is

performed in ArcGIS, a geographic information system
for working with maps and geographical information. +e
entire procedure can be divided into the following four
steps:

Step 1: Input roadway network layers into QGIS to split
the road links into segments
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Input the roadway network layer to QGIS, and use the
“split” function to split the roadway links into roadway
segments.+ey are the fixed segments.+e length of the
segments should be determined based on the specific
research area and the scope, which can vary for dif-
ferent projects. In this study, the length of the roadway
segment was specified to be 500 meters according to
Chengye and Ranjitkar [19]. When the split is done, a
new roadway network layer is produced, and its length
is equal to or less than the given length of the segment.
+e new layer is imported into ArcGIS in Step 2.
Step 2: Derive the crash frequencies of the small road
segments by using ArcGIS
Input historical crash data and the QGIS processed
roadway network layer to ArcGIS, and map the crashes
to the split roadway segments using the “spatial join”

function. +e joining results must be examined care-
fully to ensure the correct joining between the crash
points and the roadway segments based on the roadway
information contained in the attribute table of the
joined layer.
Step 3: Prescreen the roadway segments based on their
crash frequencies
For all of the proposed methods, for detecting crash
hotspots, prescreening based on the frequency of
crashes is conducted to ensure that the frequencies of
crashes on the selected segments are statistically higher
than the frequency of crashes on the majority of the
roadway segments in the study area. +e prescreening
threshold is given by the following equation (6):

crash frequency ≥ average crash frequency + 1 standard deviation of crash frequency. (6)

Prescreening is used to identify the candidate roadway
segments that will be analyzed further. In this step, to
determine the member of the standard deviation in
equation (6), a trial and error method was used. It was
found that using one standard deviation can produce
the appropriate amount of hotspot candidates for
further analysis, while using two standard deviations
will result in insufficient hotspot candidates (some-
times even less than 20).
Step 4: Calculate the major selection criteria, and select
the riskiest road segments

Different methods for detecting crash hotspots have
different major selection criteria. +e selection criterion for
the AADT normalization method is given by equation (1),

the selection criterion for the AK percentage method is given
by equation (2), and the selection criterion for the distri-
bution difference method is given by equation (3). In ad-
dition, for the baseline method, the selection criterion is just
the frequency of crashes for each segment. By sorting the
candidate roadway segments based on the calculated major
selection criteria, the segments that have high values of the
selection criteria are identified as the crash hotspots.

4. Evaluation and Validation

4.1. Study Areas and Data. To evaluate and validate the
proposed crash hotspot methods, two areas in Texas, i.e., the
Houston–Galveston area and the Eagle Ford Shale area, were
selected to identify the top 20 hotspots of crashes involving
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Figure 1: Truck crash risk analysis for different lighting conditions. Figure 1 is based on the truck crash data collected from the CRIS system
in Texas for the period from 2011 through 2015.
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trucks. Figure 2 shows the locations of these two repre-
sentative areas.

+e Houston–Galveston area represents a big met-
ropolitan area with a high population and a high volume
of truck traffic. Houston is the fourth largest city in the
United States, and the Houston-Galveston area is a major
freight traffic hub with the fourth largest port in the
nation. Nearly 200 million tons of cargo move through the
region annually in addition to commercial traffic gener-
ated by the numerous chemical facilities and petro-
chemical refineries.

+e Eagle Ford Shale area represents a suburban or rural
area with high truck traffic volume. It covers more than 25
counties in South Texas. Due to the availability of various
techniques, such as horizontal drilling and hydraulic frac-
turing, the Eagle Ford Shale area has become one of the most
active drilling areas in the world, resulting in an economic
boom in the area. Unfortunately, one of the impacts of this
boom has been a dramatic increase in truck traffic and
crashes involving trucks.

+e data that were used to identify crashes that involved
large trucks included historical crash data and roadway
network data. Data from the crashes that involved large
trucks for the period of 2011–2015 were obtained from
TxDOT’s Crash Records Information System (CRIS). +e
truck crash data that were available included crash severity
levels and road characteristics, such as curves, grades, and
whether the crashes occurred in rural areas or elsewhere.+e
GIS roadway network layer with the AADT attribute was
downloaded directly from TxDOT’s official website.

4.2. Evaluation Criteria. To evaluate the performance of the
proposed crash hotspot methods, the following evaluation
criteria were used.

Evaluation criteria: the numbers of identified hotspots
that are recognized as types of high-risk locations

Based on a previous study conducted by employees of
the University of Kentucky [20] and the traffic safety sta-
tistics [1], the following specific types of roadway locations
were identified as the riskiest locations for truck crashes:

Grades
Curves
Rural roads
Intersections
Interchanges

In this study, these types of locations are referred to as
recognized high-risk locations for trucks. If an identified
hotspot belongs to one of the recognized high-risk locations,
it is more likely that this spot presents high risks for trucks.
+erefore, the total numbers of identified hotspots that
belong to each type of the recognized high-risk location are
the measurements for the correction of the detection results.
Higher values of this criterion indicate better detection
results.

5. Results and Discussion

+e proposed three methods for detecting hotspots, along
with the baseline method that only considers the crash
frequency, were used to identify the top 20 hotspots for truck
crashes in the two study areas. As mentioned earlier, one of
the problems in the existing hotspot analysis method is that
many of the detected hotspots are near a truck distribution
center (TDC). +ese spots usually are not very risky, and the
high crash rates more likely were due to the high volume of
truck traffic. +erefore, if most of the identified hotspots are
close to a TDC, it indicates that the detection result is biased
and not reliable. In this study, 1000 meters was selected as
the threshold for determining whether or not a hotspot was
close to a TDC, and the number of identified hotspots that
were close to truck distribution centers was counted. +e
statistic description of the numbers of identified hotspots
close to a TDC is presented in Table 1. According to Table 1,
it can be observed that the baseline method, i.e., crash
frequency, has the highest number of observations close to
the TDC in both studied areas. Additionally, the distribution
difference method has the lowest number of observations
close to TDC. +ese results potentially indicate that the
distribution difference method can detect the crash hotspots
by considering the impacts of traffic exposures.

5.1.Houston–GalvestonArea. For this study area, the results
of the hotspots that were identified by three different
methods are presented in the maps in Figure 3. It is apparent
that the identified hotspots are different.+e top 20 hotspots
identified by the three proposed methods are farther apart

Houton–galveston area

Eagle ford shale area

Texas

Figure 2: +e two study areas that were selected.
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than the 20 hotspots that were identified by the baseline
method that only considers the frequency of crashes.

By closely examining the detected results, the number of
identified hotspots that belong to each type of recognized
high-risk location was derived for each method. +e results
are presented in Table 2. If an identified hotspot belongs to
one of the recognized high-risk locations, it is more likely
that this spot presents high risks for trucks. +erefore, the
more detected hotspots belonging to the identified high-risk
location types, the better the detection result.

In Table 2, by comparing the detection results of different
hotspot detection methods, the best results were identified
and marked in green, and the worst ones were also identified
and marked in red. It can be seen that, overall, the distri-
bution difference method has the best performance because
it identified more hotspots than the other methods that
belong to the recognized high-risk location types, including

at curves, at locations where there were grades, in rural areas,
and at interchanges. However, the distribution difference
method detected fewer hotspots at intersections, but the AK
parentage method detected more hotspots at intersections.
+e baseline method identified the fewest hotspots at curves
and in rural areas.

5.2. Eagle Ford ShaleAreas. For this study area, the results of
the identified hotspots by four different methods are pre-
sented in the maps in Figure 4. +e differences in the spatial
patterns are even more conspicuous in this area. +e hot-
spots identified by the three proposed methods are not near
each other, whereas the hotspots identified by the baseline
method were clustered at one location at which the volume
of truck traffic was relatively high.

+e results of the four methods in the Eagle Ford Shale
area are presented in Table 3.

Table 1: Numbers of identified hotspots close to TDC.

Close to TDC
Eagle Ford Shale Houston–Galveston

Baseline method: crash frequency only 16 5
AADT normalization method 2 4
AK parentage method 4 2
Distribution difference method (AK%−TC%) 1 2

(a) (b)

(c) (d)

Figure 3: Hotspots identified in the Houston–Galveston area by four different methods for detecting crash hotspots. (a) Hotspots identified
by the baseline method. (b) Hotspots identified by the AADTnormalization method. (c) Hotspots identified by the AK percentage method.
(d) Hotspots identified by the distribution difference method.
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(a) (b)

(c) (d)

Figure 4: Hotspots in the Eagle Ford Shale area as identified by four different methods for detecting crash hotspots. (a) Hotspots identified
by the baseline method. (b) Hotspots identified by the AADTnormalization method. (c) Hotspots identified by the AK percentage method.
(d) Hotspots identified by the distribution difference method.

Table 3: Geographic features of the hotspots in the Eagle Ford Shale area.

Evaluation criteria
Number of

identified hotspots
at the curve

Number of identified
hotspots at a location

with grade

Number of identified
hotspots at
intersection

Number of
identified hotspots
in the rural area

Number of identified
hotspots at the
interchange

Baseline method: crash
frequency only 6 7 19 5 1

AADT normalization
method 7 4 17 19 0

AK parentage method 6 7 19 18 1
Distribution difference
method (AK%−TC%) 7 13 10 20 3

Table 2: Geographic features of the hotspots in the Houston–Galveston area.

Evaluation criteria
Number of

identified hotspots
at the curve

Number of identified
hotspots at a location

with grade

Number of identified
hotspots at
intersection

Number of
identified hotspots
in the rural area

Number of identified
hotspots at the
interchange

Baseline method: crash
frequency only 8 12 8 10 12

AADT normalization
method 10 12 8 17 10

AK parentage method 8 6 12 12 7
Distribution difference
method (AK%−TC%) 11 14 7 15 12

Journal of Advanced Transportation 7



+e results in Table 3 indicate that the distribution
difference method still outperformed the other three de-
tection methods, since it identified more hotspots that
belong to the recognized high-risk location types, including
at curves, at locations where there were grades, in rural
areas, and at interchanges. However, it also was found that
the distribution difference method detected less hotspots at
intersections. Similar to the results in area 1, the AK
percentage method can detect more hotspots that are at
intersections. In addition, the baseline method identified
the fewest hotspots at curves, in rural areas, and at
interchanges.

6. Conclusions

In this study, we proposed three hotspot detection methods
that can consider the impacts of exposure variables or the
severity levels of crashes, i.e., the AADT normalization
method, the AK percentage method, and the distribution
difference method. To evaluate their performances, these
three hotspot detection methods, along with a baseline
method that only considered the frequency of crashes, were
used to identify the top 20 truck crash hotspots in two
representative areas in Texas. Based on the detection results,
the following key findings were obtained:

(1) If only the crash frequency is considered in the
process of identifying crash hotspots, the identified
hotspots are likely to cluster in one area where there
is a high volume of traffic

(2) Overall, the distribution difference method out-
performed the baseline method, the AADT nor-
malization method, and the AK percentage method
because it was able to detect more spots associated
with locations that are recognized as risky for trucks
and to detect fewer spots that are near a TDC

(3) +e AK percentage method is recommended for
detecting hotspots at intersections

+is research provides useful ideas on the detection of
crash hotspots and a new type of criteria for evaluating the
performance of crash hotspot detection methods. One
limitation of this study is that the proposed methods for
detecting crash hotspots were evaluated based only on their
detection results in two representative areas. To further
validate and refine the proposed methods, more locations
with different traffic and roadway network conditions
should be selected as study areas in the future.
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