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�is paper analyses loss aversion mechanism (LAM) of the shipping company’s decision-makers about the risk-based decision (RBD) 
for slow steaming and generalizes a novel optimization model for the sailing speed through the trade-off between fuel consumption, 
SOx emissions and delivery delay. �e value functions against the benchmark speed were constructed based on physiological expected 
utility (PEU) to reveal the features of loss aversion, and the objective function was derived from these value functions with the aim 
to optimize the sailing speed. A�er that, a Genetic Algorithm (GA) solution with fitness function and special operators was built to 
solve the proposed model. Finally, the model was applied to pinpoint the PEU for the optimal sailing speed against the benchmark 
speed, and the sensitivity of the model was discussed with different benchmark speeds, value function weights and input parameters. 
�e analysis shows that the proposed model can assist the slow steaming RBD based on the inner feelings of the shipping company’s 
decision-makers, offering a novel tool for sailing speed optimization.

1. Introduction

Maritime transport carries more freight than any other mode 
of transport. It is the lifeline of trade and economic cooperation 
around the world. �e environmentally sustainable operations 
in maritime shipping, essential to the health of maritime 
supply chains [1], are bottlenecked by the uncontrolled 
emissions of sulphur oxides (SOx). According to the 
International Maritime Organization (IMO), the average 
annual global fuel consumption of maritime shipping was 325 
million tons in 2007−2012, resulting in 13% of the total annual 
SOx emissions [2]. To curb the air pollution from ships, the 
IMO issued the MARPOL Annex VI–prevention of air pollution 
from ships in 2005, and delineated sulphur emission control 
areas (SECAs): the SOx emissions must be reduced from 1% 
to 0.1% by 2015 in such SECAs as the Baltic Sea, the North 
Sea, and the North American Area (coastal areas of the United 
States and Canada) and to 0.5% globally by 2020. Similarly, 
China established SECAs in its coastal areas in 2015, imposing 
a sulfur limit of 0.5%. However, considering the currently 
insufficient supply networks of low sulfur fuel oil and 
overwhelmed shipyard capacity of retrofitting scrubbers, the 
shipping companies may fail to use compliant fuel occasionally 

and therefore violate the regulations. In order to deter potential 
violaters, there have been penalty policies reflecting the 
seriousness of the violation in the SECAs. For instance, the 
penalty against SOx emissions in China can be up to 100 
thousand RMB. Suffice it to say that complying to the limits 
of SOx emissions is a strategic task for the shipping company 
involved in maritime supply chains.

Recent years has seen an increasing interest in the creation 
of sustainable maritime supply chains from the operation per-
spective. For the shipping company offering transport services 
between different ports, slow steaming is an effective way to 
improve the operational level. �is operation has been prac-
ticed on all kinds of commercial ships, ranging from tankers, 
bulk carriers to containerships [3]. Considering the nonlinear 
relationship between sailing speed and fuel consumption [4], 
a ship moving at a slow speed enjoys low fuel consumption 
and SOx emissions. For instance, a Maersk Triple E-class con-
tainership, designed to move at a speed (17.8 knots) below the 
normal range of 22−25 knots, emits 50% less SOx than the 
average level on the Asia-Europe trade lane [5]. However, the 
sailing speed cannot fall below a certain threshold, or the ship’s 
main engine may stall. As a result, the sailing speed of a ship 
has a rather complex impact on operating cost and SOx 
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emissions. �e sailing speed also affects the round-trip time 
of the ship route [6]. Suppose the round-trip time of a con-
tainership route is 48d at the sailing speed of 22 knots. �at 
time might surpass 48d if the containership sails at a lower 
speed. �erefore, when a shipping company decides to reduce 
fuel consumption and SOx emissions through slow steaming, 
the sailing speed reduction could exert an adverse impact on 
the punctuality of shipment delivery, leading to poor service 
level and customer dissatisfaction [7]. To sum up, the sailing 
speed is a key decision variable in slow steaming [8], in addi-
tion to fuel price, SOx emissions, delivery schedule, cargoes 
onboard, etc.

To optimize the sailing speed, the shipping company must 
make a trade-off, or risk-based decision (RBD), between dif-
ferent operational objectives, such as fuel consumption, SOx 
emissions, and delivery delay. �e empirical studies have 
shown that loss aversion is ubiquitous for real-world RBDs in 
various uncertain conditions, which goes against the rational 
agent hypothesis in expected utility theory or axioms of pref-
erence [9]. �e concept of loss aversion first appeared in 
“Prospect theory: an analysis of decision under risk” [10] and 
has been applied in many studies focusing on the RBDs in 
different domains. In addition, neuroeconomics provides a 
new theoretical framework for the human decision-making 
process, using modern techniques and tools in brain science. 
Both the related literature and the physiological findings make 
it possible to analyse the loss aversion mechanism (LAM) of 
the shipping company’s decision-makers and give a logical 
explanation to the RBD in slow steaming.

1.1. Objectives. Hailed as the world factory, China is an 
important link in maritime supply chains. �e ships entering 
and leaving the ports along China’s coastline both bring 
cargoes and exacerbate the air pollution in and around the 
ports. �e NRDC White Paper on Prevention and Control of 
Shipping and Port Air Emissions in China states that the daily 
emissions of a medium or large containership using fuel oil 
with 3.5% sulphur are comparable to those of 500,000 trucks 
that conform to China IV emission standards and drive 
164 km per day. Considering the cost-effectiveness of the 

SECAs in emission control, the Chinese Ministry of Transport 
released the Implementation Plan for SECAs in the Waters of 
Pearl River Delta, Yangtze River Delta, and Circum-Bohai Sea 
Area (Beijing-Tianjin-Hebei) in December 2015, which lays 
down an increasingly strict standards or alternative measures 
on sulphur content in fuel oil for ships engaging in port-based 
operations (Table 1).

In the quest for environment friendly solutions, slower 
sailing speed is  a common answer to the reduction of total 
SOx emissions. However, the slowdown of sailing speed may 
cause the delay of shipment delivery. �e resulting inventory 
cost can be viewed as a loss, which should not be overlooked 
if punctuality is required. Hence, it is necessary to make a 
trade-off between fuel consumption, SOx emissions, and deliv-
ery delay in sailing speed optimization problem. In general, 
the previous models for this problem only pursue the minimal 
fuel consumption, SOx emissions or delivery delay (e.g., pen-
alty charges), failing to treat the minimal total cost as an 
explicit objective [11]. Such an approach could leave a negative 
impact on post-optimization analysis. �erefore, this paper 
aims to determine the optimal sailing speed of the ship on a 
fixed route considering the trade-off between fuel consump-
tion, SOx emissions, and delivery delay.

An o�en neglected, yet essential concept is the inner 
feeling as the shipping company’s decision-makers in slow 
steaming operations. In many cases, the company has thought 
of an empirical sailing speed before the decision-making 
process. �e functional magnetic resonance imaging (fMRI) 
study by Breiter et al. [12] demonstrates that the human 
nervous system carries the neurological feature of physiological 
expected utility (PEU) in the calculation and evaluation for 
RBD. It could be enlightening to take the loss aversion model 
in prospect theory as a PEU function before exploring the 
LAM of the shipping company’s decision-makers with 
different degrees of personal preference in the RBD for slow 
steaming [13]. �e existing studies on sailing speed 
optimization problem seldom examine practical issues like 
the PEU against the benchmark speed of slow steaming. �us, 
this paper also attempts to disclose the LAM of the shipping 
company’s decision-makers, considering such three 

Table 1: Implementation plan for SOx emissions control in China SECAs.

Ports in SECA In force Sulphur limit Application

Key ports in Yangtze River delta 2016.4.1 <0.5% m/m
All ships—change over to low  
sulphur fuel a�er the berthing  

before the departure.

Key ports in Pearl River delta 2016.10.1 <0.5% m/m
All ships—change over to low  
sulphur fuel a�er the berthing  

before the departure.

Key ports in Circum-Bohai sea area 2017.1.1 <0.5% m/m
All ships—change over to low  
sulphur fuel a�er the berthing  

before the departure.

All ports in above 3 SECAs 2018.1.1 <0.5% m/m
All ships—change over to  

low sulphur fuel prior to the  
berthing.

All ports in above 3 SECAs 2019.1.1 <0.5% m/m
All ships—change over to low  
sulphur fuel prior to entering  

any SECA.



3Journal of Advanced Transportation

operational objectives in slow steaming as fuel consumption, 
SOx emissions and delivery delay, and determine its impact 
on the RBD of the shipping company.

1.2. Contributions. �e main contributions of this paper to 
environmentally sustainable operations in maritime shipping 
are as follows:

(1)  An analytical framework was established to examine 
the LAM of the shipping company in the RBD for 
slow steaming, with the aim to maximize the PEU 
against the benchmark speed.

(2)  �is paper enables the shipping company to deter-
mine the optimal sailing speed of the ship on a fixed 
route based on the trade-off between fuel consump-
tion, SOx emissions and delivery delay.

(3)  �e proposed sailing speed optimization model for 
slow steaming (SSOM-SS) was verified in a case study 
on the RBD for slow steaming of the Orient Overseas 
Container Line (OOCL) containership operating 
between Dalian and Kaohsiung across the SECA in 
Chinese coastal regions.

�e rest of the paper is organized as follows: Section 2 reviews 
the previous studies on the research topic; Section 3 presents 
the PEU-based value function that reflects the LAM about the 
RBD for slow steaming; Section 4 creates a mathematical 
model for the RBD on sailing speed and proposes a solution 
based on genetic algorithm (GA), considering the conflicting 
objectives of fuel consumption, SOx emissions and delivery 
delay; Section 5 applies the proposed model to simulate the 
RBD for slow steaming of the OOCL containership operating 
between Dalian and Kaohsiung; Section 6 wraps up this paper 
with some meaningful conclusions.

2. Literature Review

2.1. Slow Steaming: Concepts and Models. Slow steaming is 
the most popular and most effective decision-making method 
for environmentally sustainable operations in maritime 
shipping [14]. In 2007, Maersk Line, the world’s largest 
containership company, conducted slow steaming trials on its 
110 containerships, proving that it is safe to reduce the sailing 
speed to as low as 10%. �ree years later, Maersk Tankers 
reduced the speed of their very large crude carriers (VLCCs) 
by half. China Ocean Shipping Company (COSCO), together 
with its partners in the OCEAN Alliance were also reported 
to introduce slow steaming on certain ship routes.

Several conflicting operational objectives need be consid-
ered for slow steaming. For example, the minimal SOx emis-
sions, an indicator of environmental sustainability, cannot be 
achieved simultaneously with the minimal operating cost and 
minimal inventory cost, two economic metrics o�en realized 
by lowering fuel consumption and improving service level. 
Fuel consumption, operating cost, and SOx emissions are non-
linearly correlated with the sailing speed. In fact, the daily fuel 
consumption is a cubic function of sailing speed [15] for most 
types of ships, such as tankers, bulk carriers, and container-
ships. However, this relationship does not apply to some large 

containerships or near-zero sailing speed. Obviously, SOx 
emissions are proportional to the fuel burned, and the ratio 
depends on the type of fuel [16]. A simple way to determine 
the ratio is to multiply the sulphur content (e.g., 3.5% for heavy 
oil and <0.5% for low-sulphur oil) with the daily fuel consump-
tion. �e operational objectives of slow steaming are easily to 
meet if there is no penalty for delivery delay or reward for 
timely delivery. In real-world slow steaming problems, the 
decision-maker must carefully weigh between the minimal 
fuel consumption, minimal SOx emissions and minimal deliv-
ery delay.

As stated earlier, the sailing speed is a key decision variable 
in the expressions of fuel consumption, SOx emissions, and 
delivery delay. Many scholars have examined the sailing speed 
and its impacts on various factors, including but not limited 
to Wang et al. [17], Wen et al. [18]. More recently, Psara�is 
and Kontovas [8] summed up the existing sailing speed opti-
mization models, most of which take the sailing speed as an 
input to the decision-making problem [19, 20]. Otherwise, the 
optimal sailing speed can only be determined empirically. 
According to the Pareto frontier, the empirical value may only 
bring a marginal benefit in some areas at the cost of other 
objectives. Here, the Pareto frontier is treated as a surface as 
in a hypothetical sailing speed decision problem. It should be 
noted that all the models in the literature on sailing speed have 
not considered the utility of decision maker. �e previous 
studies adopted minimizing total cost as the objective of the 
model, however, they neglected that the aversion of cost is 
derived from the inner feelings of the decision-makers. 
Directly charactering utilities and attitudes of the deci-
sion-makers, as used in this paper, may be superior in selecting 
the choice that best fit the preferences of shipping 
companies.

2.2. Loss Aversion: Prospect �eory and Application. Loss 
aversion is one of the anomalies that economists first 
discovered that human behaviour logic is inconsistent with 
positivists’ mathematical logic. Kahneman and Tversky [10] 
held two views in their prospect theory. First, the reference 
point determines the attitude of the decision-maker for the 
RBD. �e decision-maker is interested in the gains or losses 
of the benchmark decision, rather than the absolute amount of 
profit or cost. �e value function is concave in the case of gains, 
indicating that the decision-maker is risk-avert, and convex in 
the case of losses, indicating that the decision-maker is risk-
loving. �is goes against the axioms of preference about gains 
or losses in neoclassical economics. Secondly, the decision-
maker is loss-averse. When the RBD leads to losses against the 
reference point, the decision-maker react more fiercely than 
the case if the RBD leads to gains against the reference point, 
that is, the losses bring greater pain to the decision-maker 
than the pleasure from an equal amount of gains. �us, the 
value function of the decision-maker is steeper in the loss 
region than the gain region. Based on the properties above, 
Tversky and Kahneman [21] put forward a two-part power 
value function, which can be expressed as:

(1)
v(�푤) = {(�푤 − �푤0)�훼, if �푤 ≥ �푤0,−�휆(�푤0 − �푤)�훽, if �푤 < �푤0,



Journal of Advanced Transportation4

3. Slow Steaming Objectives Based on LAM

3.1. LAM of Slow Steaming Operations. Both the automatic 
processing and emotional processing of the human brain 
enables the decision-maker to maximize his/her preferences 
under constraints. In the RBD for slow steaming, the PEU 
about gains or losses is affected by three risk factors, i.e. fuel 
consumption, SOx emissions, and delivery delay (Table 2). 
�e potential failure effect indicates the type of gains or losses 
generated by each risk factor, while the potential failure mode 
describes the possible failure scenarios for each risk factor. 
�e three risk factors, together with their priority, importance, 
and impact, were adopted to measure the PEU about gains 
or losses. Unlike the expected utility in positivists’ decision-
making theory, the PEU in value-based choice exists as the 
computing and comparison between value functions.

As stated in Section 2.2, although the classical studies on 
loss aversion are based on the experiment over outcomes of 
money rather than the three risk factors listed in Table 2, we 
can designate amounts of money to the risk factors. For exam-
ple, in practice, the risk factors are usually measured as fuel 
cost, the penalty against SOx emissions and the compensation 
to consumer. In this way, the subjective feelings of the shipping 
company about the gains/losses of slow steaming are quanti-
fied by monetary outcomes. Since the prospect theory and loss 
aversion have been demonstrated as widely existed for the 
attitude towards money, they can also be valid for the risk 
factors linked with monetary outcomes.

�e previous fMRI test results on slow steaming were 
adopted to further verify the rationality of the loss aversion 
features of the RBD for the sailing speed under the risk factors 
of fuel consumption, SOx emissions, and delivery delay. �e 
previous research has shown that different types of deci-
sion-making information are processed by different nervous 
systems [30]. Specifically, Brodmann area (BA) 9, BA10 and 
the like mainly perform cognitive functions like thinking, 
intuition, information processing, and emotion interpretation. 
�ese regions are closely related to the marginal part of the 
forebrain. �e positive emotions are generated and adjusted 
by the le� dorsal lateral prefrontal cortex, while the negative 
emotions by the right dorsal lateral prefrontal cortex. In the 
case of gains (+), the decision-maker always tends to choose 
the risk-avert strategy with the increase of fixed gains; the 
blood oxygen level near the le� dorsal lateral prefrontal cortex 
of the decision-maker is obviously suppressed. In the case of 
losses (−), the decision-maker generally tends to be risk-loving 
but turns to risk-avert when the losses exceed a certain thresh-
old; the blood oxygen level near the right dorsal lateral pre-
frontal cortex is obviously suppressed. It is easy to conclude 

where w0 is the benchmark decision, i.e., the reference point 
of the decision-maker; � and � are risk attitude coefficients 
(�훼 < 1, �훽 < 1); � is the loss aversion coefficient (�휆 > 1) [22]. 
�e decision-maker will be pleasant if there are gains against 
the benchmark decision and painful if there are losses. �e 
value function with convexity in loss and concavity in gain 
may not be applicable to all individuals, however, it can be 
confirmed at an aggregate level, i.e., at least fit for the mean or 
median values of all the individuals [21, 23]. Furthermore, 
Fang and Niimi [24] reveals that the importance of loss aver-
sion is beyond the mean. In fact, their results show that loss 
aversion exists as a panel quantile regression results, indicating 
that the effect is at least valid for the majority.

�e studies above have demonstrated the commonly loss-
averse attitudes of decision-makers towards gains and losses 
of money, and the value function stated has been widely 
adopted in the research of assets management [25, 26]. �e 
value function of loss aversion can also be used to describe 
the attitude towards various things in other domains, if the 
gains and losses can be designated with amounts of money. 
For example, Bleichrodt and Pinto [27] measured the utilities 
of health outcomes, which may seem greatly different from 
financial assets though, by converting the health states to mon-
etary outcomes of gains and losses. It turns out that the param-
eters of the value function in Tversky and Kahneman [21] also 
fit the utilities of health states well, which indicates that the 
prospect theory and the classical monetary value function are 
widely applicable and can be used in different 
domains [22].

As result, there is an emerging trend in introducing loss 
aversion of decision-making to the research field of transpor-
tation. Masiero and Hensher [28] estimated the asymmetric 
preferences in freight transportation and demonstrated the 
existence of loss aversion when making choices among differ-
ent transportation alternatives. Others proposed behaviour 
models by incorporating the notion of LAM and aimed at 
investigating some useful relationships between human 
choices and various factors. Fetene et al. [29] found charging 
decisions of electric vehicle owners are influenced by electric-
ity price using the behaviour models based on LAM. However, 
the literature on transportation applying LAM is still poor, 
especially the maritime sector. �is paper enriched the liter-
ature mainly in the combining of LAM with the RBD of slow 
steaming practice for shipping companies. It is one of the few 
attempts to investigate the decision-making process of ship-
ping companies with the consideration of the decision-makers’ 
utilities, and more studies of maritime transportation focusing 
on inner feelings of decision makers are in need to  
spring up.

Table 2: Gains or losses generated by main risk factors of slow steaming.

Risk factors Potential failure effects Potential failure mode
Fuel consumption Increase operation cost (−) Weight inexperience of risky decision-making in 

slow steaming operations; improper decision on 
sailing speed

SOx emission Emit unnecessary SOx and violate the regulation (−)
Delayed of shipment delivery Vessel delay and decrease customer dissatisfaction (−)
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4. SSOM-SS

4.1. Assumptions and Modelling. �e proposed SSOM-SS 
targets a ship on a fixed route between port A and port B. 
�e ship route is predetermined during the route design and 
fleet deployment. �e entire route is divided into multiple 
legs between the origin port, the destination port, and the 
intermediate ports. �e ship visits all these ports following 
a preset sequence. Let �푁 = {1, 2, . . . , �푛} be the set of all ports 
on the route, �퐷�푖�푗(�푖∈�푁,�푗∈�푁) (nautical mile) be the inter-port 
distances, ��� (ton) be the cargoes onboard from port � to port �푗(�푗 ̸= �푖), and the ��� (day) be the agreed delivery schedule from 
port � to port �. It is assumed that the set of cargoes onboard 
is fixed and each cargo is an indivisibles distinct commodity. 
Under these assumptions, it is necessary to decide on the 
proper sailing speed � (knot) for slow steaming.

4.1.1. Fuel Consumption Function. �e fuel consumption 
function is a cubic function between fuel consumption and 
sailing speed [15]. �us, the daily fuel consumption per ship �퐹�(�푉) can be expressed as:

�e total fuel consumption of the ship �퐹(�푉) operating at 24 V 
nautical miles per day across the route can be expressed as:

where �� is the design speed of the ship; �� (ton/d) and �� 
(ton/d) are the daily fuel consumption of the main engine(s) 
and the auxiliary engine(s), respectively.

4.1.2. SOx Emissions Function. �e SOx emissions is linearly 
proportional to fuel consumption. �e proportionality is 
known as the actual sulfur content �(%). �e regulations or 
SECAs on SOx emissions are different from country to country. 
Here, the volume difference of SOx emissions between port � 
and port �, �퐸��(�푉) is expressed as:

where ��� is the sulfur limit, an indicator of regulation strict-
ness on SOx emissions between the two ports. �e value of this 
indicator is negatively correlated with the strictness. �en, the 
total SOx emissions across the route �퐸(�푉) can be expressed as:

(6)�퐹�푑(�푉) = �퐹�푀( �푉
�푉�푑

)3 + �퐹�퐴.

(7)�퐹(�푉) = ∑
�푖∈�푁,�푗∈�푁

(�퐹�푑(�푉) × �퐷�푖�푗

24�푉)

= 1
24 ∑

�푖∈�푁,�푗∈�푁
�퐷�푖�푗(�퐹�푀�푉3

�푑
�푉2 + �퐹�퐴�푉 ),

(8)�퐸��(�푉) = (�휎 − �휔��) × �퐹�(�푉) × �퐷��

24�푉 ,

(9)

�퐸(�푉) = ∑
�푖∈�푁,�푗∈�푁

(�퐸�푖�푗(�푉))

= 1
24 ∑

�푖∈�푁,�푗∈�푁
(�휎 − �휔�푖�푗)�퐷�푖�푗(�퐹�푀�푉3

�푑
�푉2 + �퐹�퐴�푉 ).

that, the dramatic difference in Brodmann areas of the ship-
ping company’s decision-makers with varied preferences fac-
ing the gains/losses of slow steaming can characterize the LAM 
about the RBD for slow steaming [31, 32].

3.2. PEU-Based Objective Function. �e previous analysis 
proves that the PEU �(∗) can characterize the RBD on 
sailing speed in slow steaming, provided that the latter 
carries loss aversion features. Let � be the fuel price ($/ton), � be the penalty against SOx emissions ($/ton), and � be the 
compensation to consumer ($/d·ton), i.e., the inventory cost. 
�en, derived from Tversky and Kahneman [21], the value 
functions of the three risk factors fuel consumption �1, SOx 
emissions �2 and delivery delay �3 can be expressed as:

As suggested by Tversky and Kahneman [21] and testified by 
various studies (e.g., [22, 27]), the risk attitude coefficients � 
and � were set to 0.88 and the loss aversion coefficient � to 
2.25. �e value functions with the provided parameters are 
sufficient in describing most of the preferences of shipping 
companies. �en, the sailing speeds � (knot) were determined 
by RBD considering the PEUs of �1, �2, and �3, respectively, 
and contrasted with the benchmark speed �0 (knot), i.e., the 
reference point. In this way, the author obtained the deviation 
of each sailing speed from the benchmark speed. In the above 
equations, �(�0) and �퐹(�푉) are the fuel consumption (ton) 
before and a�er slow steaming, respectively; �(�0) and �퐸(�푉) 
are the SOx emissions (ton) before and a�er slow steaming, 
respectively; �(�0) and �푆(�푉) are the delivery delays (d) before 
and a�er slow steaming, respectively.

�e goal of slow steaming is to find the optimal sailing 
speed that maximizes the cost-effectiveness and environmen-
tal friendliness in terms of PEU. �e objective function is the 
weighted average of the above three value functions:

where �1, �2, and �3  are the empirical weights for the trade-off 
between the three objective functions (�푤1 + �푤2 + �푤3 = 1); � 
is controlled between the maximum speed �

max
 (knot), i.e., 

the design speed �� (knot) and the minimum speed �
min

 
(knot).

(2)

�푈1(�푝, �퐹(�푉), �퐹(�푉0))
= { �푝�훼(�퐹(�푉0) − �퐹(�푉))�훼, if �퐹(�푉) ≤ �퐹(�푉0),−�휆�푝�훽(�퐹(�푉) − �퐹(�푉0))�훽, if �퐹(�푉) > �퐹(�푉0),

(3)

�푈2(�푓, �퐸(�푉), �퐸(�푉0))
= { �푓�훼(�퐸(�푉0) − �퐸(�푉))�훼, if �퐸(�푉) ≤ �퐸(�푉0),−�휆�푓�훽(�퐸(�푉) − �퐸(�푉0))�훽, if �퐸(�푉) > �퐸(�푉0),

(4)

�푈3(�푐, �푆(�푉), �푆(�푉0))
= { �푐�훼(�푆(�푉0) − �푆(�푉))�훼, if �푆(�푉) ≤ �푆(�푉0),−�휆�푐�훽(�푆(�푉) − �푆(�푉0))�훽, if �푆(�푉) > �푆(�푉0).

(5)

Max
�푉

�푈(�푉) =�푤1�푈1(�퐹(�푉), �퐹(�푉0)) + �푤2�푈2(�퐺(�푉), �퐺(�푉0))
+ �푤3�푈3(�푆(�푉), �푆(�푉0)),
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4.2. GA-Based Solution. Inspired by the process of natural 
selection [33], the GA was adopted to solve the SSOM-SS 
because it can express multiple solutions, unlike simulated 
annealing or tabu search and has been successfully applied to 
sailing speed optimization. �e fitness function and special 
operators were combined to ensure the solution feasibility 
in the reproduction phase. Figure 1 shows the flow of the 
proposed GA, including solution representation, fitness 
calculation, selection, crossover, mutation, and infeasible 
solution adjustment.

Step 1. Solution representation: Considering the features of 
the decision variable, the chromosome for the SSOM-SS 
was subjected to binary representation. In other words, 
the solution was encoded as strings of zeros (0) and ones 
(1); then, each binary string was converted into a decimal 
number by Equation (14) and normalized to a real number � in the specified interval by Equation (15):

Step 2. Fitness function: Each solution meeting the con-
straints was viewed as a chromosome. If the reciprocal 
of the objective function serves directly as the fitness 
function, there will not be enough distinction in the 
selection probabilities of different chromosomes, which 
may weaken the selection operator of the GA. Since the 
SSOM-SS is a maximization problem, the fitness function 
was subjected to linear calibration by Equation (16) and 
the fitness is maintained as a positive number.

where �휉 = 1.

(14)(�푏1�푏2 ⋅ ⋅ ⋅ �푏CodeL)2 = (CodeL∑
�푠=1

2�푠�푏�푠)
10
= �푦�푡,

(15)�푉 = Min�푉 + �푦� (Max�푉 −Min�푉)
2CodeL − 1 .

(16)�푈�(�푉) = �푈(�푉) −min(�푈(�푉)) + �휉,

4.1.3. Delivery Delay Function. Delivery delay, an indicator of 
service level, is defined as the product between the total time 
delay (�푑) and the cargoes onboard, with the time delay being 
the difference between the actual sailing time �퐷��/24�푉 and the 
agreed delivery schedule ��� between port � and port �. Hence, 
the delivery delay function can be established as:

It is natural to see that the time delay is nonnegative. If the 
port operation time and time delay are negligible, the agreed 
delivery schedule ��� equals the �퐷��/24�푉� at the design speed, 
that is:

Hence, the maximum sailing speed �
max

 can be determined as

4.1.4. Mathematical Model. In light of the PEU-based objective 
function, the SSOM-SS can be formulated as a nonlinear 
programming model:

(10)�푆(�푉) = ∑
�푖∈�푁,�푗∈�푁

(( �퐷�푖�푗

24�푉 − �푇�푖�푗) × �푄�푖�푗).

(11)
�퐷��

24�푉 ≥ �푇�� = �퐷��

24�푉�
.

(12)�푉 ≤ �푉
max

= �푉�.

(13)

Max
�푉

�푈(�푉) = �푤1max{0, �푝0.88(�퐹(�푉0) − �퐹(�푉))0.88}
− �푤1max{0, 2.25�푝0.88(�퐹(�푉) − �퐹(�푉0))0.88}
+ �푤2max{0, �푓0.88(�퐸(�푉0) − �퐸(�푉))0.88}
− �푤2max{0, 2.25�푓0.88(�퐸(�푉) − �퐸(�푉0))0.88}
+ �푤3max{0, �푐0.88(�푆(�푉0) − �푆(�푉))0.88}
− �푤3max{0, 2.25�푐0.88(�푆(�푉) − �푆(�푉0))0.88}

s.t. 0 < �푉 ≤ �푉�푑.

Randomize a population for the sailing speed V
(the code L = 15)

Based on the binary representation, create
Size = 100 chromosomes

Test the �tness of each
chromosome

Find the optimal sailing speed V and calculate
the physiological expected utility U

Iterations = Gmax?
Yes

Parent population

Select two individuals

Crossover? (Pc)

No

Yes

Select one of he two individuals

No

Yes

Infeasible solution?

O�spring population

NoYes

Mutation? (Pm)

NoFitness function

Tournament
selection

One-point
crossover

Simple inversion
mutation

Exit

Figure 1: Flowchart of the proposed GA.
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will lead to a change in the utilities of decision-makers. 
�erefore, the benchmark speed �0 is set as 16.3 knots at first, 
and then changed within the range between 25.5 knots (the 
design speed Vd) and 8 knots (the minimum sailing speed  �
min

) for sensitivity analysis. As shown in Figure 3, the value 
of the objective function �푈(�푉) climbed up as the �0 increasing 
from 16.3 knots to ��; the value of �푈(�푉) decreased with �0 
and reached the minimum of −0.010 at the �0 of 14 knots, and 
then increased drastically when the �0 decreased to 8 knots. 
It can also be seen that the optimal sailing speed � was equal 
to or approximated the �0, when the latter was 14 knots and 
15 knots; in other cases, � stayed near 16 knots and less than �0, when �0 fell within {16.3, 17, 18, 19, 20, 21, 22, 23, 24, 25.5}
knots, or near 13 knots and greater than �0 if �0 was below 
14 knots (�푉0 = {8, 9, 10, 11, 12, 13}Knots). �e results reveal 
that slow steaming decisions should be made within a small 
interval based on the benchmark speed, perhaps due to the 
effects of conflicting objectives. It is intuitive that the value 
functions �1 and �2 for fuel consumption and SOx emissions 
are synchronized and negatively correlated with the PEU �3 
for delivery delay. Following this train of thought, the huge 
increase of the objective function �푈(�푉) and great deviation 
between the optimal sailing speed � and the benchmark speed �0 with the decrease in the benchmark speed �0 demonstrate 
that the shipping company is more sensitive to delivery delay 
of slow steaming when the reference sailing speed is relatively 
slow.

Step 3. Selection: Selection is the driver of genetic search. 
�e fitness function needs to be transformed for propor-
tionate roulette selection. To avoid the transformation, 
the tournament selection was adopted to select the best 
individuals in the current population and keep them in 
the next generation.
Step 4. Crossover: Crossover is a genetic operation that 
exchanges two individuals. First, the parent population 
meeting the crossover probability �� was selected; then, 
the crossover segments were randomly determined in the 
parent population; a�er that, the genes in these segments 
were exchanged by one-point crossover, forming the off-
spring population.
Step 5. Mutation: Mutation determines the local search 
ability of the GA and ensures the diversity of the popula-
tion. Here, the simple inversion mutation is performed to 
generate new individuals at the mutation probability ��.
Step 6. Infeasible solution adjustment: If the solution 
(chromosome) is infeasible a�er crossover and mutation, 
Steps 2–5 should be repeated until the termination 
condition is satisfied.

5. Computational Results and Sensitivity 
Analysis

5.1. Parameter Settings. �is section evaluates the applicability 
of the SSOM-SS and the efficiency of the GA using a real-world 
case of the OOCL. �e evaluation is followed by the sensitivity 
analysis involving the benchmark speed �0, the value functions �1, �2, and �3 and their weights �1, �2, and �3. �e object of 
the case study is the OOCL containership service between 
Dalian and Kaohsiung. �e ports along the fixed ship route 
include: (1) Ningbo, (2) Dalian, (3) Tianjin, (4) Qingdao, (5) 
Lianyungang, (6) Kaohsiung, (7) Taichung, and (8) Keelung. 
�e inter-port distances ��� and the limits on SOx emissions ��� for the ports within China’s SECAs are shown in Figure 2. 
�e daily fuel consumption of main engine(s) ��, the daily fuel 
consumption of auxiliary engine(s) �� and the design speed of 
the ship �� were configured according to those of 10,000TEUs 
containership. Moreover, the fuel price �, the penalty 
against SOx emissions �, the compensation to consumer  �, and the actual sulfur content � are listed in Table 3. �e agreed 
delivery schedule ��� was calculated based on the �퐷��/24�푉� and 
cargoes onboard ��� from port � to port � (Table 4). To output a 
realistic representation, the inherent structure of the real case 
data was maintained despite a few perturbations.

5.2. Sensitivity Analysis. �e first step of the sensitivity 
analysis is to explore the SSOM-SS performance at different 
benchmark speeds �0. Specifically, the PEU-based objective 
function �푈(�푉) was solved by the proposed GA with Matlab 
R2013 running on a personal computer (Quad Core 3.7 GHz 
Processor; 8 GB RAM). According to IMO [34], the average 
service speed for the size category where the tested ships 
located is 16.3 knots. Any deviation from the current speed 

D23 = 213NM;

D34 = 422NM;

D45 = 101NM; D12 = 647NM;

D56 = 889NM;

D81 = 331NM;

D78 = 108NM

D67 = 120NM

= 0.50%

= 0.50%

= 0.50%

= 3.50%

= 0.50%
= 3.50%

= 3.50%

= 3.50%

Legend (ECA)
Pearl River delta
Yangtze River delta
Circum-Bohai-sea

04080160
km

240 320

Figure 2:  �e OOCL containership service between Dalian and 
Kaohsiung.
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delivery schedule, and cargoes onboard. Here, the objective 
function �푈(�푉) and the optimal sailing speed � are determined 
at different combinations of �1, �2, and �3 for values functions �1, �2, and �3 with the benchmark speed of �푉0 = 16.3 knots.

As shown in Figure 4, the optimal sailing speed � was 
11.52 knots when �1 and �2 reached the maximum of 1, indi-
cating that the shipping company enjoyed the greatest PEU. 
Besides, when �3 reached the maximum of 1, the optimal 
sailing speed � equalled the maximum speed �

max
, i.e., the 

design speed �푉� = 25.5 knots. Comparing the objective func-
tion �푈(�푉) values of the two weight sets (1/2, 1/4, 1/4) and (1/4, 
1/2, 1/4), it is clear the shipping company is more sensitive to 
fuel consumption than to SOx emissions.

Next, the sensitivity of the SSOM-SS was analysed using 
other input parameters, such as the fuel price �, the penalty 
against SOx emissions �, the compensation to consumer �, the 
limits on SOx emissions ���, cargoes onboard ���, inter-port dis-
tances ���, and agreed delivery schedule ���. For demonstration 

In the above analysis, fuel consumption, SOx emissions 
and delivery delay are treated as equally important, i.e., the 
three factors share the same weight �푤1 = �푤2 = �푤3 = 1/3. In 
actual operation, the shipping company can adjust the weights 
according to factors like fuel price, limits on SOx emissions, 

Table 4: Agreed delivery schedule and cargoes onboard.

��� (day) Value ��� (TEU) Value
�12 1.926 �12 7000
�23 0.634 �23 8000
�34 1.256 �34 9000
�45 0.301 �45 9000
�45 2.646 �56 10000
�56 0.357 �67 6000
�67 0.321 �78 8000
�78 0.985 �81 10000
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Figure 3: Sensitivity analysis at different benchmark speeds �0.

Table 3: Containership information and other parameters.

Parameter Value Unit Source
�� 24.4 ton/d IMO [34]
�� 4.5 ton/d IMO [34]
� 366.49 $/ton Fuel price: IFO380, 2018-03-29
� 200 $/ton Environmental protection tax: SOx, 1.2RMB/0.95 kg
� 0.13 $/d ton Psara�is and Kontovas [8]
�� 25.5 knot IMO [34]
� 3.50 % Qian et al. [16]
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objective function �푈(�푉) was not so sensitive to the variation 
in the other parameters. To sum up, the shipping company is 
recommended to implement slow steaming at a high fuel price, 
low compensation to consumer or few cargoes onboard.

6. Conclusions

Slow steaming is an effective way for the shipping company to 
reduce SOx emissions and build sustainable maritime supply 
chains. It is a RBD under the risk factors of fuel consumption, 
SOx emissions, and delivery delay. In this paper, the LAM for 
personal preferences of RBD makers is investigated at different 
gains/losses in slow steaming, the PEU-based value functions 
against the benchmark speed were constructed to reveal the 
features of loss aversion about the RBD for sailing speed of the 
ship on a fixed route, and the objective function was derived 
from these value functions with the aim to maximize the sail-
ing speed. �en, the SSOM-SS was put forward to assist the 
slow steaming RBD based on the inner feelings of the shipping 
company. �is model is sufficiently flexible to include other 
indices of environmentally sustainable maritime operations, 
offering a novel tool for sailing speed optimization. A�er that, 

purpose, the weights were set as �푤1 = �푤2 = �푤3 = 1/3 and the 
benchmark speed �0 as 16.3 knots. During the analysis, one of 
the six input parameters was changed at a time, while the others 
were kept constant. �e analysis results are recorded in Table 5.

It can be seen from Table 5 that the objective function �푈(�푉) was extremely sensitive to the variation in � and ���, 
moderately sensitive to that in �, slightly sensitive to that in � 
and ���, and insensitive to ��� and ���; the optimal sailing speed � is positively correlated with �, ��� and ���, and negatively 
with � and �. �ese results offer a preliminary guide for the 
reaction of the shipping company to the variation in one of 
the six parameters during slow steaming: the optimal sailing 
speed � for slow steaming should increase when the compen-
sation to consumer (inventory cost) and cargoes onboard 
increase or the limits on SOx emissions are violated; mean-
while, optimal sailing speed � should decrease when the fuel 
price or the penalty against SOx emissions increase.

It is observed that the objective function �푈(�푉) and the 
optimal sailing speed � followed similar trends with the var-
iation in the set of the six parameters. �e similarity reveals 
that the PEU for the RBD on sailing speed tends to grow with 
the decrease of the compensation to consumer or cargoes 
onboard and with the increase of the fuel price. However, the 
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Figure 4: Sensitivity analysis using different weights of the value functions.

Table 5: Sensitivity analysis on other parameters.

Parameter changed
−50% −20% 20% 50%

� �푈(�푉) � �푈(�푉) � �푈(�푉) � �푈(�푉)
� 16.300 −0.030 16.300 −0.009 15.522 19.396 14.932 66.840
� 16.086 1.480 16.072 1.675 16.054 1.940 16.042 2.138
� 14.263 97.205 15.400 21.674 16.300 −0.008 16.300 −0.026��� 16.033 2.270 16.051 1.989 16.075 1.625 16.096 1.352
��� 14.263 97.205 15.400 21.674 16.300 −0.008 16.301 −0.026
��� and ��� 16.063 0.981 16.063 1.484 16.063 2.120 16.063 2.580
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