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Along with the increasing number of the electric vehicles (EVs), an urban transportation network with a large number of EVs will
come true in the near future. Sincemany countries encourage EVs due to their environmental-friendly benefits, the environmental
costs of vehicles have attracted much attention in recent years. In this paper, besides the environmental costs, we take into account
the issues of the stochastic user equilibrium (SUE), the elastic demand (ED), and the driving range of EVs in the network. We
propose an SUE with ED (SUEED) problem to consider these issues in the urban transportation network with EVs. An SUEED
model is developed. We also propose a method of successive average (MSA) to solve the SUEED problem. )e computational
feasibility of the algorithm is tested in a large-scale network. )rough a comparison analysis, we show the benefits of introducing
EVs into the urban transportation network in the SUEED circumstance. Moreover, a sensitivity analysis is conducted to reveal the
potential values of EVs against the development of EVs. )e results suggest that EVs may help to reduce both the travelers’ travel
costs and the environmental costs of the entire network.

1. Introduction

)e electric vehicle (EV) is one of the most popular topics in
recent years. One of the reasons is that many governments
around the world are promoting EVs. For example, France,
Germany, and the Netherlands claimed that they would
substitute gasoline vehicles (GVs) with EVs in a few decades.
By the time of January 2018, more than six developed
countries and 18 states in the U.S. had joined the group of
promoting EVs. )ere is no doubt that such a large number
of EVs will lead to a revolution in the driving behavior. A
considerable market penetration rate of EVs is thus con-
sidered in this paper. In the literature, an urban trans-
portation network where a large number of EVs and GVs
exist simultaneously is referred to as the EV network [1, 2].

Besides the governmental promotions, EVs are be-
coming more and more popular for many reasons. For

example, compared with GVs, EVs show their benefits in
reducing operation costs, maintenance costs, and fuel
consumption, of which the former two are concerned by
the drivers and the others are concerned by the gov-
ernments and the public. Many works have paid attention
to these benefits of EVs [1–4]. For example, Jiang and Xie
proposed a generalized travel cost function that considers
the travel time costs and the operating costs of EVs [2].
Besides these costs, the vehicles’ environmental impacts
are drawing much attention recently [5–9]. Some works
focused on the environmental impacts on special vehicles
and carriers [10, 11]. However, very few works analyze the
environmental costs of the private vehicles. A recent
study takes into account the environmental costs in the
EV network and provides promising results [1]. )rough
a sensitivity analysis, it suggests that the drivers prefer
EVs if they care about the environment or if the
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government improves people’s environmental awareness
and alleviates EVs’ environmental costs. )rough a
comparison analysis, it suggests that introducing EVs
into urban transportation networks can reduce the
generalized travel costs for both EV drivers and GV
drivers.

)e implementation of EVs into an urban trans-
portation network would affect travelers’ behaviors and in
turn the traffic assignment flow pattern which is vital for
traffic planning and management. Although EVs have
many advantages, the driving range of EVs is much
smaller than that of GVs, which may lead to a difference in
the driving behavior and the route choice behavior of the
travelers. Moreover, the stochastic user equilibrium (SUE)
route choice behavior and the elastic demand (ED) are
frequently taken into account in the conventional
transportation network to build up a realistic traffic as-
signment model. Although these aspects greatly influence
drivers’ travel behavior and affect people’s choice of EVs
to some extent, they are not well considered in the EV
network or multimodal networks [12, 13]. A recent work
takes into account the stochasticity of travelers’ percep-
tion of the generalized travel costs [1]. However, it does
not consider the variable travel demand and the limited
driving range of EVs, which may lead to an unrealistic
flow pattern.

We thus focus on the problem of the driving range of
EVs and the elastic demand for the EV network in this
paper. )e contributions of this paper are listed as follows:

(i) We develop a formulation to consider the envi-
ronmental cost, the driving range, the ED, and the
SUE route choice behavior simultaneously in the EV
network. To achieve this, the theory of urban
transportation network is employed. We propose a
logit-based SUE with ED (SUEED) model for the
EV network. In this model, the travelers’ environ-
mental cost and route choice behavior are fully
considered. )e equivalence, existence, and
uniqueness of the solution of the proposed model
are demonstrated. )is model can be easily ex-
tended to incorporate other logit-based models,
such as C-logit and nested-logit.

(ii) We propose an algorithm to solve the SUEED
problem. )e original method of successive average
(MSA) is revised for the proposed model. With the
proposed algorithm, the solution of the proposed
model can be guaranteed, and the SUEED problem
can be addressed.

(iii) We test the computational feasibility with a large-
scale network to show the satisfactory computa-
tional efficiency of the proposed algorithm. A
comparison analysis is conducted to illustrate the
impacts of the introduction of EVs and EVs’ dis-
tance limit, namely, the driving range of EVs, on
travelers’ choice behavior. We also conduct a sen-
sitivity analysis to estimate the potential value of
EVs along with the growth of EV market.

2. Methodology

2.1.Notation. )e following notations are used in this paper.

Sets:

A: set of links, where A � a{ }

I: set of the travel modes, where I � i{ }, i � e denotes
electric vehicle trips, and i � g denotes gasoline
vehicle trips

Kw: set of paths between O-D pairs w, where Kw � k{ }

N: set of nodes, where N � n{ }

W: set of origin-destination (OD) pair nodes, where
W � w{ }

Parameters:

Sw
i : the expected minimal perceived travel cost of
mode i between OD pair w

da: physical length of link a

D: distance limit for electric vehicles
Dw

i (·): travel demand function of mode i between OD
pair w

lwk : length of path k between OD pairs w, where
lwk � 􏽐adaδ

w
a,k

qw
i : travel demand of mode i between O-D pair w

qw
i : upper bound of travel demand of mode i between

OD pair w

δw
a,k: link-path incidence parameter, where δw

a,k � 1 if
link a belongs to path k; otherwise, δw

a,k � 0
θi: travel cost perception errors of travelers with mode i

Variables:

cw
k,i: travel cost of mode i on path k between OD pair w

fw
k,i: path flow of mode i on path k between OD pair w

Pw
k,i: route choice probability for travelers with mode i

to choose path k between OD pair w

xa,i: link flow of mode i on link a

2.2. ProblemStatement. In this section, we propose a model
to describe our problem in the electric vehicle network.
)e most concerned problems of EV network in this paper
are the effects made by the distance limit of EVs and the
property of elastic demand (ED). As we know, the traffic
network is a complex nonlinear system. )is is because the
flow pattern of a traffic network is determined by neither a
single traveler nor a single road. It is determined by the
choice behavior of all the travelers in the network. )at is
to say, a slight change in the travelers’ route choice be-
havior and the circumstance of the network will make a big
difference to the flow pattern of the network [14, 15].
Moreover, it is also the reason why the theory of urban
traffic network, which is famous for its traffic assignment
problems (TAPs), was first proposed in the 1960s [16, 17].
)e elastic demand and the distance limit of EVs (which
are travelers’ behavior and networks’ circumstance, re-
spectively) are both not-so-small changes. )us, we em-
ploy the theory of urban traffic network to describe our
problem.

2 Journal of Advanced Transportation



2.2.1. Electric Vehicle Network. Let G � (N, A) denote an
urban transportation network with EVs, i.e., the EV net-
work, where N denotes a set of nodes and A denotes a set of
links. Let W denote the set of origin-destination (OD) pairs.
Kw represents the set of paths between OD pair w ∈W. In
the EV network, two travel modes, namely, EV trips and GV
trips, are taken into account. We thus let i ∈ I � e, g􏼈 􏼉 de-
note a set of travel modes, where i � e represents EV trips
and i � g represents GV trips. Accordingly, the travelers are
classified into two types, i.e., the travelers with mode e and
those with mode g. We let fw

k,i denote the flow of mode i on
path k between OD pair w; the traffic flow conservation is
given by

􏽘
k

f
w
k,i � q

w
i , ∀w, ∀i, (1)

where qw
i denotes the travel demand of mode i between OD

pair w. We let the vector f � (fw
k,i, k ∈ Kw, w ∈W, i ∈ I)T

denote the path flow hereafter.
Many works take into account the vehicle driving range

and regard it as the biggest difference between the EVs and
GVs [1, 2]. For instance, considering the fact that the driving
range of EVs is much shorter than that of GVs, Jiang and Xie
defined a distance limit to describe the limited driving range
of EVs [2]. In this paper, we inherit this point of view and
improve it. Since the technique of EV manufacturing is
advancing rapidly, we will examine both the willingness to
drive an EV and how commuters make their travel decisions
in terms of the varying distance limit in the circumstances of
SUEED. )e distance limit of EVs is given by

D≥ lwk⟹fw
k,e ≥ 0, ∀w, ∀k,

lwk >D⟹fw
k,e � 0, ∀w, ∀k,

⎧⎨

⎩ (2)

where D denotes the driving range of EVs; lwk � 􏽐aδ
rs
a,kda

denotes the length of path k between OD pair w; δw
a,k is the

link-path incidence parameter, δw
a,k � 1 if link a is on path k,

and otherwise δw
a,k � 0; da denotes the physical length of link

a. equation (2) can be rewritten as the following comple-
mentarity condition:

D − l
w
k( 􏼁f

w
k,e ≥ 0, ∀w, ∀k. (3)

Different from the conventional transportation network
where only GVs are considered, both EVs and GVs con-
tribute to traffic congestion in the EV network. )erefore,
the traffic flow xa on link a in the EV network is defined as
follows:

xa � 􏽘
i

xa,i, ∀a,

xa,i � 􏽘
w

􏽘
k

δw
a.kf

w
k,i, ∀a, ∀i,

(4)

where xa,i denotes the link flow of mode i on link a. We let
the vector x � (xa,i, a ∈ A, i ∈ I)T denote the link flow
hereafter. )e Bureau of Public Roads (BPR) function is
frequently used to depict the travel time in the conventional
transportation network. Accordingly, the BPR function for
the EV network is revised as follows:

ta(x) � da 1 + α
􏽐ixa,i

Ca

􏼠 􏼡

β
⎛⎝ ⎞⎠, ∀a, (5)

where the parameters α � 0.15 and β � 4 in general; Ca

denotes the capacity of link a.

2.2.2. Environmental Cost. Since the environmental impacts
of transportation are gaining much attention among the public
and the governments, we take into account the environmental
costs of the vehicles in the EV network.)e environmental cost
was first proposed for the EV network by Ma et al. [1]. It
describes the environmental impactsmade by the vehicles in an
EV network. Tu et al. later extended the environmental cost to
the conventional transportation network [18]. In the EV
network, both EVs and GVs produce the environmental cost
whose amount depends on the unit environmental cost and the
travel distance.)erefore, the environmental cost of mode i on
link a can be incorporated into the BPR function:

ta,i
′ (x) � da 1 + α

􏽐ixa,i

Ca

􏼠 􏼡

β
⎛⎝ ⎞⎠ + daEi, ∀a, ∀i, (6a)

where the second term daEi on the right-hand side is the
environmental cost of mode i on link a; Ee and Eg denote the
unit environmental cost of EVs and GVs, respectively. In
general, Ee <Eg. )is is because the GVs produce envi-
ronmental cost by burning gasoline which releases more
harmful gases, while the environmental cost of EVs is much
less because of consuming electricity. Moreover, a large
proportion of electricity is produced by clean energy in
many countries, such as nuclear energy and wind energy.
For example, more than 70% of electricity in France is
produced by nuclear; the United States has the most wind-
generated electricity in the world [19].

Note that the travel cost function (6a) is applicable only
for the network, not for the travelers. )is is because
travelers only care about their own benefits. However, the
environmental cost is an external cost and does not directly
hurt their benefits. )at is to say, if the travelers do not have
any environmental awareness, the environmental cost
means nothing to them. To deal with this problem, we thus
define the environmental awareness and the generalized
travel cost function for the travelers in the E network:

ta,i
″ (x) � da 1 + 0.15

􏽐ixa,i

ca

􏼠 􏼡

4
⎛⎝ ⎞⎠ + daAEi, ∀a, ∀i,

(6b)

where A denotes the average level of travelers’ environ-
mental awareness in the EV network. An interesting dis-
cussion about the unit environmental cost Ei and the
environmental awareness A can be seen in [1].

In general, there are multiple paths between an OD pair
for the travelers to choose. Due to the definition of the
generalized travel cost function, the path costs become in-
tuitive and equal to the summation of the costs of the links
that consist of the paths. )e path cost of mode i on path k
between OD pair w is given by
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c
w
k,i � 􏽘

a

􏽘
i

δw
a.kta,i
″ (x), ∀w, ∀k, ∀i. (7)

2.2.3. Stochastic User Equilibrium. Many researchers pro-
posed various user equilibrium (UE) and SUEmodels for the
conventional transportation network [20–23]. )e SUE
model takes into account the stochasticity of travelers’
perception of the travel cost. One of the most famous SUE
models, named the logit-based SUE model, is revised for the
EV network herein. )e logit-based SUE model assigns the
travelers onto the path sets for an OD pair in terms of the
generalized travel costs of these paths. Details of the logit-
based SUE model can be found in many works (e.g., Dag-
anzo and Sheffi [20]). However, the original logit-based SUE
model cannot be directly applied for the EV network because
of the different path alternatives for the EVs and the GVs.
Since the distance limit of EVs make some paths unavailable
for the EVs, the path set for EVs differs from that for GVs.
We thus propose a revision of the original logit-based SUE
model for the EV network. Because of the travelers’ per-
ception error, the perceived path travel cost is given by

C
w
k,i � c

w
k,i + εw

k,i, ∀w, ∀k, l ∈ Kw,i, ∀i ∈ I, (8)

where Cw
k,i denotes the perceived path travel cost and εw

k,i

denotes a random perception error with zero mean and
constant variance. We assume that εw

k,i is independently and
identically Gumbel-distributed, and then the route choice
behavior follows the Logit model. )us, the route choice
probability is

P
w
k,i �

exp − θic
w
k,i􏼐 􏼑

􏽐lexp − θic
w
l,i􏼐 􏼑

, ∀w, ∀k, l ∈ Kw,i, ∀i ∈ I, (9)

where Pw
k,i denotes the route choice probability for travelers

with mode i to choose path k between OD pair w and θi

denotes the travel cost perception of the travelers with mode
i. Equation (9) is a slight revision of the logit-based SUE
model. It divides the path sets into the path sets for EVs and
those for GVs and calculate the route choice probabilities for
EVs and GVs, respectively. Accordingly, the path flow of
mode i on path k between OD pair w can be obtained by

f
w
k,i � q

w
i P

w
k,i, ∀w, ∀k ∈ Kw,i, ∀i ∈ I. (10)

Note that the assumption of independence from irrel-
evant alternative (IIA) underlies the logit model. Many other
logit-based models, such as C-logit and nested-logit, were
proposed to relax the IIA assumption [24–28]. Our model
can easily incorporate these logit-based models as well, while
we choose the logit model as an example for generality.

2.2.4. Elastic Demand. )e elastic demand (ED) describes a
realistic circumstance where the travelers with mode i be-
tween OD pair w make their travel decisions in terms of the
satisfaction for mode i between OD pair w, i.e.,

q
w
i � D

w
i S

w
i( 􏼁≤ qw

i , ∀w, ∀i ∈ I, (11)

where Sw
i denote the satisfaction for mode i between OD pair

w; Dw
i (·) is a upper bounded strictly monotone decreasing

function with respect to the satisfaction Sw
i ; qw

i denotes the
upper bound of the function Dw

i (·). We let the vector q �

(qw
i , w ∈W, i ∈ I)T denote the travel demand hereafter.

According to the logit-based SUE model [16, 29], the sat-
isfaction is defined by

S
w
i � −

1
θi

ln 􏽘
k∈Kw,i

exp − θic
w
k,i􏼐 􏼑, ∀w, ∀i ∈ I. (12)

When the satisfaction for mode i between OD pair w

increases, the amount of travelers (i.e., travel demand) de-
creases. )is relationship is called the ED function. More-
over, equations (9) and (11) constitute the SUEED
conditions.

2.3. Stochastic User Equilibrium Model with Elastic Demand
for EV Network. After introducing above problem state-
ments, we subsequently propose the SUEED model for the
EV network as follows:

EV-SUEED:

minZ(f) � 􏽘
i

􏽘
w

􏽘
k

􏽚
fw

k,i

0
c

w
k,i(ω)dω − 􏽘

w

􏽚
qw

i
(f)

0
D

w− 1
i (ω)dω⎡⎣

+
1
θi

􏽘
w

􏽘
k

f
w
k,i lnf

w
k,i − 1􏼐 􏼑

−
1
θi

􏽘
w

q
w
i (f) ln q

w
i (f) − 1( 􏼁⎤⎦,

(13)

subject to

D − l
w
k( 􏼁f

w
k,e ≥ 0, ∀w, ∀i ∈ I, ∀k ∈ Kw,i, (14)

f
w
k,i ≥ 0, ∀w, ∀i ∈ I, ∀k ∈ Kw,i, (15)

where equation (13) is the flow conservation constraint;
equation (14) is the distance limit constraint; equations (15)
and (16) are the nonnegative constraints which guarantee
the nonnegative flow and demand. One may note that
equations (9) and (11), i.e., the SUEED conditions, are not in
the above constraints. )is is because they have been in-
tegrated into the objective function [14]; details can be seen
in Section 3.

2.4. Equivalence, Existence, and Uniqueness. Herein, we
demonstrate the equivalence, existence, and the uniqueness
of the SUEED solution based on the model [EV-SUEED].

2.4.1. Equivalence

Proposition 1. Any solutions to the model [EV-SUEED]
fulfill the SUEED conditions.

Proof. )e Karush–Kuhn–Tucker (KKT) condition for the
model [EV-SUEED] implies that
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Pw
k,i �

exp − θic
w
k,i􏼐 􏼑

􏽐lexp − θic
w
l,i􏼐 􏼑

, ∀w, ∀k, l ∈ Kw,i, ∀i ∈ I,

􏽐
k

fw
k,i � Dw

i −
1
θi

ln 􏽘
k∈Kw

exp − θic
w
k,i􏼐 􏼑⎛⎝ ⎞⎠, ∀w, ∀ i ∈ I,

D − lwk( 􏼁fw
k,e ≥ 0, ∀w, ∀i ∈ I, ∀k ∈ Kw,i,

fw
k,i ≥ 0, ∀w,∀i ∈ I, ∀k ∈ Kw,i,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(16)

which is exactly the SUEED conditions and other constraints
for the SUEED problem for the EV network. □

2.4.2. Existence and Uniqueness

Proposition 2. <e model [EV-SUEED] has a unique
solution.

Proof. We observe that the objective function of model
[EV-SUEED] is strictly convex, and its feasible set is convex
and compact. According to the theory of convex pro-
gramming, the existence and uniqueness of the solution are
guaranteed. □

3. Algorithm

Herein, we modify the method of successive average (MSA)
and propose an algorithm, named EV-MSA algorithm, to
solve the SUEED problem for the EV network. Moreover, we
propose a novel step size sequence to speed up the calcu-
lation. )e proposed EV-MSA algorithm meets the Blum
theorem to ensure the convergence [30].

Step 1 (initialization): generate the sets of efficient paths
with existing algorithms. Here, we use a K-shortest al-
gorithm proposed by Yen [31] to generate the path set
for eachOD pairw. .)e path sets are denoted byKw

e for
electric vehicles and Kw

g for gasoline vehicles. If the
length of a specific path 􏽥k is lw􏽥k

>D, we kick it out of Kw
e .

Let x(0) � 0, calculate the initial free-flow link cost t(0)
a

and the path cost c
w,(0)
k,i , where i � e for electric vehicles

and i � g for gasoline vehicles. Calculate S
w,(0)
i and q

w,(0)
i

according to equations (12) and (11), respectively. Ob-
tain the initial path flow f

w,(0)
k,i by equations (9) and (11).

Step 2 (update): calculate x(n+1)
a � 􏽐i􏽐w􏽐kf

w,(n)
k,i and

update t(n+1)
a , c

w,(n+1)
k,i , and C

w,(n+1)
i .

Step 3 (finding the search direction): according to
S

w,(n+1)
i obtained in step 2, we calculate the auxiliary
demand v

w,(n+1)
i and then the auxiliary path flow

g
w,(n+1)
k,i according to equations (11) and (9),

respectively.
Step 4 (moving): calculate the travel demand and path
flows as follows:

αn �
2n

(n + 1)2
,

f
w,(n+1)
k,i � f

w,(n)
k,i + αn g

w,(n+1)
k,i − f

w,(n)
k,i􏼐 􏼑,

q
w,(n+1)
i � q

w,(n)
i + αn v

w,(n+1)
i − q

w,(n)
i􏼐 􏼑,

(17)

where αn � (2n)/(n + 1)2 is a proposed step size se-
quence which speeds up the calculation.
Step 5 (convergence criterion): if

�����������������������

􏽐i􏽐w􏽐k f
w,(n+1)
k,i − f

rs,(n)
k,i􏼐 􏼑

2
􏽱

􏽐i􏽐w􏽐kf
w,(n)
k,i

≤ ε, (18)

where ε is a pregiven accuracy, then the algorithm stops and
f

w,(n+1)
k,i􏽮 􏽯 is the set of equilibrium flow pattern. Otherwise,

return to step 2.
To verify the proposed model and test the computational

efficiency of the proposed algorithm, we conduct a nu-
merical experiment in a large-scale network in Section 4.

4. Numerical Examples

In this section, we illustrate the proposed model and al-
gorithm through a large-scale network. )e computational
feasibility of the algorithm is tested. We also conduct a
comparison analysis and a sensitivity analysis in this section.

4.1. Computational Feasibility. TAPs are, in general, large-
scale problems that are computationally expensive. We
hence use the Sioux-Falls network which is one of the most
famous large-scale networks for the numerical experiment.
)e Sioux-Falls network has 24 nodes, 76 links, and 528 OD
pairs. For more details, see Figure 1. To test our problem, we
generate 10 paths for each OD pair, which means the no-
tation δw

a,k actually denotes 5,280× 76 parameters. Moreover,
since there are two types of private vehicles, the numbers of
variables and parameters double than usual. All of these
issues make the scale of this example to become quite large.
)us, we take special care about the computational feasibility
and efficiency of the proposed method.

To show that the algorithm is efficient enough, we test
our example on an ordinary personal computer with a
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2.60GHz CPU, an 8GB RAM, and Windows 8.1 Enterprise
64-bit operating system.

To build up an elastic demand circumstance for the
numerical experiment, any nonincreasing elastic demand
functions can be applied. Herein, we use one of the fre-
quently used elastic demand functions as an example:

q
w
i � D

w
i S

w
i( 􏼁 � qw

i − S
w
i , ∀w, ∀i ∈ I. (19)

Since many countries have made effort to encourage
EVs, the market penetration rate of EVs, namely, the ratio of
EVs to private vehicles, will increase to a considerable
number in the near future. Hence, we assume a market
penetration rate of EVs, whose value can be obtained by
survey, in the numerical experiment. )e travel demand for
EVs and GVs is thus calculated by

qw
i �

λqw, i � e,

(1 − λ)qw, i � g, ∀w,
􏼨 (20)

where λ denotes the market penetration rate of EVs and qw is
the total potential travel demand between OD pair w. )e
values of the demand qw and the parameters for the BPR
function can be found in [32]. We set the accuracy ε � 10− 6

and the travel cost perception parameters θe � θg � 0.5. )e
algorithm converges to the solution rapidly (see Figure 2 and
Table 1).

Figure 2(a) shows the process of convergence. From
Figure 2(a) and Table 1, we observe that the algorithm

converges quickly. At the 10th iteration, it has already
achieved an accuracy of 0.8%. After the 25th iteration, the
convergence slows down. Figure 2(b) is a closer look into
Figure 2(a). We observe that the whole convergence curve is
smooth. No “zig-zag” is observed during the convergence
process, which means that the gap between successive in-
termediate solutions is always getting smaller along with
increasing iterations. Figure 2(c) illustrates the variations of
the iterations and computational time against the accuracy
levels at which the proposed algorithm achieves. )e al-
gorithm takes only 0.71 seconds and 213 iterations to
converge at an accuracy of 9.9E − 7.

Table 2 compares the iterations for the MSA and EV-
MSA to converge at multiple accuracy levels. )e results
suggest that the proposed step size sequence greatly speeds
up the calculation. )e proposed EV-MSA is much more
efficient than the MSA.

4.2. Comparison Analysis. Besides the computational effi-
ciency, we also care about the impacts of the introduce of
EVs and EVs’ distance limit on the urban transportation
network.

Many works have proved that once the travel demand
varies, the flow pattern and, in turn, the generalized travel
cost will change nonlinearly [21, 22, 33]. In a former work,
we found that the introducing EVs into urban transportation
network can reduce the generalized travel costs for both EV
drivers and GV drivers [1]. We are concerned about whether
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Figure 1: Sioux-Falls network.
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this conclusion still holds when the ED and SUE route choice
behavior are taken into consideration in the EV network.

Similar to the former work [1], we define the denomi-
nator of the right-hand side of equation (9) as the sum-
mation of the utilities of all paths between OD pair w for
mode i, i.e.,

u
w
i � 􏽘

l∈Kw,i

exp − θic
w
l,i􏼐 􏼑, ∀w, ∀i ∈ I.

(21)

We refer to uw
i as the utility of mode i between OD pair w

hereafter. It can be seen that (a) if the generalized travel cost
of a specific path is reduced, the utility will be larger, and (b)
in general, the more used paths between OD pair w for mode
i, the larger utility uw

i . )erefore, the utility uw
i can, to some

extent, reflect the service level of mode i for OD pair w. Note
that, according to the theory of utility maximization [16, 34],
the satisfaction function Sw

i is the expectation of the max-
imum utility alternative (i.e., the path with minimal gen-
eralized travel cost) which is strictly monotone with respect
to utility uw

i . )erefore, satisfaction function Sw
i also reflects

the service level of mode i for OD pair w. Herein, we use the
utility of each OD pair calculated by equation (21). We use
uw

i,0.8 to represent the utility of mode i for OD pair w in the
case that 80% of vehicles are EVs, and uw

g,0 denotes the utility
of GVs for OD pair w when no EVs are in the network. )e
test results can be seen in Figure 3.

For better readability, we rank these OD pairs in terms of
a decent order of uw

g,0. )e dashed, dotted, and solid lines
denote the utilities uw

g,0, uw
g,0.8, and uw

e,0.8, respectively, in a
logarithmic coordinate. )e bars represent the ratios of the
gaps uw

g,0.8 − uw
g,0 to uw

g,0 in a common coordinate. Figure 3
suggests that the utilities for EVs are much higher than those
for GVs, which is as expected. )is is because EVs have
much lower environmental costs than GVs. Besides, we
observe that the utilities for GVs are also improved. )e
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Figure 2: Convergence curves of the EV-MSA algorithm (ε � 10− 6).

Table 1: Accuracy at specific iterations.

Iteration Accuracy Iteration Accuracy Iteration Accuracy
1 5.1E − 1 25 5.7E − 4 150 2.8E − 6
5 7.0E − 2 50 7.5E − 5 200 1.2E − 6
10 8.0E − 3 100 9.5E − 6 213 9.9E − 7

Table 2: Iterations of MSA and EV-MSA at multiple accuracy
levels.

Accuracy 10− 3 10− 4 10− 5 10− 6 10− 7 10− 8 10− 9 10− 10

MSA 44 138 433 1369 4338 13753 43608 138268
EV-MSA 21 46 99 213 460 990 2132 4594
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average increments of GVs’ utilities are much higher than
the average decrements, and, for most OD pairs, GVs’
utilities are higher than before. )at is to say, EVs reduce the
generalized travel costs for both modes in the network. )is
conclusion holds when the ED and SUE route choice be-
havior are considered. )is finding provides strong justifi-
cation to promote EVs because it suggests that EVs are not
competitors but cooperators of GVs in reducing travelers’
generalized travel costs.

Another issue we are concerned about is the distance
limit. Empirically speaking, the battery technique is in a leap-
type development.)at is to say, the driving range of EVs will
be as large as that of GVs in the near future. From this point of
view, we conduct a comparison analysis for the cases with and
without distance limit. We set the distance limit D � 26, and
let uw

g,L and uw
e,L denote the utilities for GVs and EVs with

distance limit, respectively. )e other settings and parameters
remain unchanged. )e results can be seen in Figure 4.

In Figure 4, the dashed and solid lines represent the
utilities for GVs and EVs with distance limit, i.e., uw

g,L and
uw

e,L, respectively. Figure 4 shows that, after we remove the
distance limit, the increments of the utilities are quite lower
compared with those in Figure 3. It suggests that the impact
of the distance limit is quite small compared with that of the
introduction of EVs. )at is to say, although the distance
limit is the largest shortcoming of EVs, it cannot deny the
benefits that EVs bring to the travelers. Although the driving
range limits EVs to a certain degree, introducing EVs into
the urban transportation network is still a wise move.
Moreover, once the battery industry removes the obstacle of
distance limit in the near future, EVs will play a greater role
in the urban transportation network.

4.3. Sensitivity Analysis. Different from the leap-type de-
velopment of battery technique, the market penetration rate

of EVs grows step by step. Since some governments plan to
ban GVs in the future by law [35], EV’s market penetration
rate will eventually reach a high level. Hence, we investigate
the impacts of EV’s market penetration rate on the travelers
in the network and see the potential benefits that EVs will
bring to the environment. To achieve our goals, we conduct a
sensitivity analysis in this section.

We let the market penetration rate λ vary from 20% to
80% to imitate the growth of EV market. We are concerned
about the benefits of EVs for both the travelers and the
environment. Moreover, due to the former comparison
analysis, we have already known that the influence of the
distance limit of EVs is quite small and can be ignored. We
hence remove the distance limit when doing the sensitivity
analysis for the market penetration rate. )e results are il-
lustrated in Figure 5.

)e dashed and solid lines represent the total envi-
ronmental costs Tec and the total utilities Tu of the overall
network, respectively, where

Tec � 􏽘
a

􏽘
i

xa,idaEi,

Tu � 􏽘
w

􏽘
i

􏽘
l

exp − θic
w
l,i􏼐 􏼑.

(22)

Note that when calculating the total environmental
costs of the network, we use daEi instead of daAEi to denote
the generalized costs of each link. As mentioned in Section
3, this is because the environmental cost of the network is a
fact that does not depend on people’s environmental
awareness.

Figure 5 shows that along with the growth of EVs, the
total environmental costs decrease and the total utilities keep
increasing. It suggests that the growth of EVs can reduce
people’s generalized travel cost and mitigate harm to the
environment.
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5. Conclusions and Future Expectations

In this paper, we take the environmental cost, EV’s driving
range, SUE route choice behavior, and ED into consider-
ation and investigate the impacts of EVs on the travelers and
the environment. We establish an EV network and propose a
generalized travel cost for EVs and GVs in the network.
Moreover, a logit-based SUEED model is proposed. By
doing these, a more realistic model than existing works for
EV networks is established. We also propose an algorithm to
solve the proposed SUEED problem in the EV network. Its
computational feasibility and efficiency are tested in a large-
scale network. )rough a comparison analysis, we find that
introducing EVs into the urban transportation network can
reduce the generalized costs for not only EV drivers but
also GV drivers in the SUEED circumstance. )is finding is

interesting because it provides strong justification to
promote EVs. Moreover, although the limited driving
range of EVs is still a realistic problem, it cannot wipe out
the benefits of EVs. Introducing EVs into the network is
still a wise move. We conduct a sensitivity analysis to
investigate the impacts of the market penetration rate of
EVs on the travelers and the environment. We find that,
along with the growth of EVs, both the travelers’ costs and
the environmental costs of the network decrease. It sug-
gests that if we keep promoting EVs as many countries are
doing, we will travel in a better circumstance with more
satisfaction.

Future challenges may include: (i) the consideration on
the uncertainty of the generalized travel costs and the
degradability of the EV network; (ii) more travel modes for
the travelers to choose; and (iii) the situation that a traveler
may possess both EVs and GVs.
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