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In this paper, a matheuristic iterative approach (MHIA) is proposed to solve the line planning problem, also called network design
problem, and frequency setting on the Chinese high-speed railway network. Our optimization model integrates the cost-oriented
and passenger-oriented objectives into a profit-oriented objective. Therefore, the passenger travel time is incorporated in the ticket
price using a travel time value. As a result, transfers and detours will result in lower ticket prices and thus lower revenues for the
operator. When evaluating the performance of a given line plan, the way in which passengers will travel through the network needs
to be modelled. This passenger assignment is typically a time-consuming calculation. The proposed line planning approach
iteratively improves the line plan using easy-to-determine indicators. During the process, a mixed integer linear programming
model addresses the passenger assignment and optimizes the frequency setting in order to maximise the operational profit.
Extensive computational experiments are executed to show the effectiveness of the proposed approach to deal with the real-world
railway network line planning problem. Through extensive computational experiments on the small example network and real-
world-based instances, the results show that the proposed model can improve the profits by 22.4% on average comparing to their
initial solutions. When comparing to an alternative iterative approach, our proposed method has advantage of obtaining high
quality of solutions by improving the profit 10.8% on average. For small, medium, and large size networks, the obtained results are
close to the optimal solutions, when available.

1. Introduction

The Chinese high-speed railway (HSR) network has devel-
oped rapidly during the past decade. More railway lines will
be constructed in 2020 to accomplish a comprehensive
connection between 80% of the cities of China. Currently,
the basic backbone of the HSR network contains 4 “vertical”
and 4 “horizontal” tracks (4V4H). The practical HSR op-
eration in China is different from Europe and Japan because,
in China, a large number of long-distance HSR trains
operate every day to satisfy as many passenger travel demand
as possible. However, the average passenger travel distance is
usually much shorter compared to the HSR line lengths. For

instance, the average passenger travel distance on the two
main HSR lines is about 558 km (Beijing-Guangzhou HSR)
and 621 km (Beijing-Shanghai HSR), while the lengths of the
lines are 2281 km and 1318 km, respectively [1]. This might
lead to the inefficient use of railway resources such as train
capacities and line capacities. For example, the average
passenger load factor of HSR trains is less than 40% in some
extreme cases [2].

The line planning for the HSR network is a complicated
task because of the large-scale size, the high transportation
demand, and the limited network capacity. Developing an
efficient line plan to improve the whole network’s opera-
tional performances is becoming urgent.
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This paper aims to design a line plan for the 4V4H HSR
network and to determine the frequency of the lines, op-
timizing operational cost and passenger travel time, while
considering transfers when necessary. In order to obtain
this, a profit-oriented objective function is applied. When
the passenger demand (or potential) is considered as given
and fixed, the operator’s profit is determined by the operator
costs and the revenue from selling train tickets. The (vari-
able) operator costs are determined by the lines that are
operated. The selling price of the train tickets is assumed to
decrease when passengers need to make a transfer or detour
to reach their destination. This is explained in detail in
Section 3.3. Therefore, a trade-off will have to be made
during line planning between, on the one hand, operating
more and longer lines and, on the other hand, transfers and
longer trips for the passengers.

This paper proposes an iterative approach combined
with a mixed integer linear programming (MILP) model for
maximizing the operator’s profit during line planning. The
iterative approach aims to determine better lines by heu-
ristically modifying the current set of lines based on a fast
evaluation of the current line plan. The MILP optimizes the
frequency setting of the lines based on the expected routes
the passengers will take, the so-called “passenger assign-
ment” (or “transit assignment”). The two stages are opti-
mized iteratively by what we call a matheuristic iterative
approach.

The detailed contributions of this paper are as follows:

(i) A profit-oriented objective is proposed using a time
value parameter in order to consider the travel time
in the ticket price.

(ii) A matheuristic iterative approach is designed to
solve the line planning problem.

(iii) Different local search improvements are considered
to improve the current set of lines, such as extending
aline, reducing a line, inserting a line, and removing
a line. Fast and heuristic evaluation methods are
designed to choose the most promising neigh-
bourhood solution in order to obtain a better line
plan.

(iv) MILP optimizes the frequency setting of the lines
based on the expected passenger assignment.

(v) An alternative solution approach is also developed
in order to illustrate the effectiveness of our
approach.

(vi) A number of benchmark instances of different sizes
are designed and made available together with
detailed information about the best available
solutions.

The remainder of this paper is structured as follows. In
Section 2, the existing literature concerning the LPP is
reviewed. After that, we present a mathematical model to
define our profit-oriented line planning problem in detail in
Section 3. This model will also be used to solve the passenger
assignment and frequency setting problem. In Section 4, our
matheuristic iterative approach is proposed. Several case
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studies and numerical experiments are shown in Section 5 to
evaluate the performance and effectiveness of the proposed
approach. Finally, the performance of our approach, our
results for the Chinese HSR network, and our further work
are summarized in Section 6.

2. Literature Review

The planning process in public transportation is typically
divided into consecutive planning phases. Desaulniers and
Hickman [3] consider network design, i.e., building the
infrastructure, as the first phase, usually followed by line
planning, timetabling, and then vehicle and crew scheduling.
During operations, disturbances and disruptions might
occur. Therefore, real-time rescheduling is required in order
to minimize passenger inconvenience. As a crucial com-
ponent of public transportation planning, the line planning
problem (LPP) has attracted more and more attention re-
cently [4-7]. Basically, the LPP decides which stops will be
served by which line and in which order. Then, the frequency
setting is about determining how often each line is operated.
Many different variants of line planning, with different
assumptions and objectives, are available in the state of the
art. We will discuss a selection of the most relevant papers in
this section and define the variants we will tackle mathe-
matically in the next section.

Canca et al. [7] probably describe a problem closest to
the problem discussed in this paper. However, the main
differences are the components of the objective function and
the planned time period. In [7], the objective function
consists of ticket revenue, operational cost, and network
infrastructure construction cost which are all based on the
operator’s point of view. Conversely, our model combines
passenger-oriented and cost-oriented objectives into a
profit-oriented objective. The method we used in our model
considers a ticket price that depends on the passenger travel
time which is not included in [7]. In terms of planning
period, Canca et al. [7] consider revenue over a long period
of time (i.e., years), while the LPP in this paper considers a
much shorter duration (i.e., per day). Since the passenger
demand scenario per day used in our model represents the
regular pattern of the demand during a long period of time,
our objective represents the profit over a longer period of
time, typically three months, six months, or a year. If also the
investment of building railway infrastructure is considered,
as in [7], the considered time horizon is typically multiple
years at least.

When comparing to [7], the similar components in the
objective function are the revenue function, the variable
operation cost, and the acquisition cost (i.e., fixed cost in our
model). Our revenue function considers a ticket price that
depends on the travel time, and this is not considered in [7].
Besides, the variable cost in both models include operation
costs related to the line length, but crew cost is added in [7].
The crew cost shown in [7] is related to the line (i.e., fre-
quency) and the yearly crew cost per train. We consider the
crew cost as a fixed cost per train in our model. In addition,
the acquisition cost in [7] formulates the purchase of each
train model, while the fixed cost in our MILP includes the
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depreciation expenses, material expense, fuel expense, crew
cost, and other related cost per train.

In summary, our model not only considers ticket rev-
enue but also includes the passenger travel time into the
profit-oriented objective so as to minimize the passenger
travel time and to make a better trade-off between the cost-
oriented and passenger-oriented objectives. We consider
this model to be more useful for profit-oriented line plan-
ning in practice.

Line planning models can be divided into two groups
according to the objective function: a cost-oriented objective
and a passenger-oriented objective. For the cost-oriented
line planning problems, the objective function aims to
minimize the operational cost [8-11]. The passenger-ori-
ented line planning problems focus on maximizing the
number of direct travellers [12, 13] or reducing the passenger
travel time and/or the number of transfers [14, 15]. In those
problems, the operator costs are considered as constraints,
such as a limited number of lines. This is confirmed by
Nachtigall and Jerosch [16], who propose that the cost-
oriented objective and passenger-oriented objective can be
considered by transforming one of them into constraints.

Obviously, some approaches try to combine the two
aspects into a single problem. Pfetsch and Borndorfer [17]
presented a weighted sum of the cost-oriented and pas-
senger-oriented objective function. Rosalia [18] proposed an
approach to optimize the operational cost and passenger
travel time iteratively on a city road network.

A crucial challenge in passenger-oriented line planning
is that, for evaluating the performance of the line plan, the
passenger route choice or passenger assignment needs to be
modelled. This will also determine the number of pas-
sengers on each line. This leads to a bilevel optimization
problem which solves the line planning problem on the
upper level and optimizes passenger assignment on the
lower level [1, 5]. Friedrich et al. [19] investigated a cost-
oriented line planning model with a passenger assignment
evaluation process. Since the objective is cost-oriented, the
solutions focus more on the operational cost, which has a
negative effect on the service quality. Borndérfer and
Karbstein [20] integrated line planning and passenger
routing optimization by using a direct connection ap-
proach, which encourages direct connections and penalizes
transfers. In addition, Karbstein [21] applied a variant of
the 2-terminal Steiner connectivity problem to handle the
transfers when integrating line planning and passenger
routing. The complexity of the integrated line planning and
passenger routing is investigated in Schmidt and Schébel
[22]. It is shown that the resulting problem is NP-hard even
in very special cases.

When it comes to solving the LPP, an early approach
uses a skeleton model, described by Silman et al. [23],
which assembles routes from short pieces iteratively. After
adding stops, the short pieces are connected by the shortest
paths to form the line plan. Many approaches to line
planning assume that a limited pool of possible lines is
available or calculated beforehand, e.g., [14, 19]. Many
models and algorithms to construct the line pool have been
proposed and can be found in Kepaptsoglou and Karlaftis

[24]. Other approaches to solve the LPP construct and
modify lines instead of using a pool of lines [25-28]. These
methods usually consider a (minimum and) maximum line
length for each line. Considering heuristic approaches in
the LPP becomes a tendency to reduce computation time
while promising high quality solutions. The analysis of
different heuristic methods applied on urban line planning
is studied by Ahmed et al. [29]. Schmid [30] decomposed
the bus rapid transit line planning using a large neigh-
bourhood search to calculate the line planning design
subproblem and using a linear programming model to
obtain the results of passenger assignment and frequency
setting. Several instances considering a single corridor are
tested to show the efficiency of the proposed approach.
Goerigk and Schmidt [31] used a bilevel optimization to
model the line planning with passenger route choice and
proposed two different techniques, binary variables and
“big-M-constraints,” to transfer the bilevel model into a
single level model. But when the instance becomes large,
say 250 stations, a genetic algorithm is required and per-
forms well in determining a trade-off between passenger
travel time and operational costs. In [7], an ALNS meta-
heuristic method is proposed to solve the line planning
problem in railway rapid transit. At each iteration, a
branch-and-cut algorithm is called to solve the passenger
assignment given the results of operation information such
as frequencies, train types, and fleet sizes. More details on
the LPP can be found in the overviews by Schébel [32] and
Schmidt [33].

In this paper, instead of choosing between a cost-ori-
ented and a customer-oriented objective, we propose a
profit-oriented line planning model which maximizes the
ticket price income minus the operational cost. The ticket
price (and thus the operator revenues) is reduced when
passengers need a transfer or a detour and have no direct
train from their origin to their destination. This is to
compensate a passenger facing a detour or transfer and an
incentive for the railway operator to offer direct services as
much as possible. Moreover, the operational costs consider
fixed and length-dependent costs for operating the different
lines. The profit-oriented line planning also turns the bilevel
problem of line planning and passenger route choice into a
single level problem. We have published preliminary results
for profit-oriented line planning in a conference paper [34].
However, in that paper, passenger assignment is done
heuristically, while this paper applies MILP to optimize the
passenger assignment. Moreover, in the current paper, a
better structure for implementing the local search operators
allows to further improve the performance of the solution
approach.

3. Profit-Oriented Line Planning

This section starts by discussing the assumptions of the line
planning problem considered in this paper as well as the
input data required. Then, the problem is defined mathe-
matically with a mixed integer linear programming model.
Finally, a small example network is introduced to illustrate
the profit-oriented line planning problem.



3.1. Assumptions and Input Data. In this paper, the proposed
profit-oriented line planning focuses on optimizing the line
plan while considering passenger assignment and line plan
design in a single model. The integrated model aims to make
a trade-off between a cost-oriented objective, related to the
number and length of the lines operated, and the passenger-
oriented objective, related to minimising the travel incon-
venience. This travel inconvenience is defined here as the
additional travel time compared to the travel time of having
a direct connection along the shortest path in the infra-
structure network. In order to formulate the integrated
model, the following assumptions are made throughout this

paper:

(i) Stopping pattern: since only major stations are
considered as nodes in the network, which attract
the majority of the HSR passenger demand and are
the backbone of the HSR network, the stopping
pattern of the line plan is considered as an all-stop
pattern for these major stations. The passenger
demand of small stations can be assigned to the
major stations in a precalculation phase.

(ii) Demand: passenger demand is assumed symmet-
rically. All demand in the network must be served
with at most two transfers. In this network of
limited size (only considering the major stations),
two transfers should be more than enough.
Transfers are penalized by a penalty time value.

(iii) Train type: trains are considered homogeneous, i.e.,
a double train set with 1000 seats, and its operation
speed is 300 km/h. Including trains with different
speeds is considered as future work.

(iv) Passenger route choice: passengers will always
choose the shortest travel time path no matter what
the price of the path is. Passengers of the high-speed
railway normally pay more attention to the travel
time rather than the ticket price. Moreover, many
research papers on railway line planning
[12, 15, 25, 31] assume that passengers travel
according to their shortest path (with or without
transfers).

(v) Line attributes: there is no limitation on the line
length considered and lines can start and end in any
station. Each line operates in both directions.

(vi) Feasible lines: all paths on the infrastructure net-
work are allowed to be lines (except for cycles) and
the possible passenger travel paths or train lines are
not fixed in advance but determined during the line
planning process. We consider no limitation on the
number of lines (or their frequency) that can use a
certain edge, but we take into account the capacity
of the trains.

Actually, there are two types of trains operating on HSR.
However, only few papers in literature [1, 7, 11, 34] consider
a heterogeneous fleet during the line planning stage.
Therefore, we will consider the different types of trains in
future work. Moreover, the trend of HSR is to operate a
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single train speed so that the possibility of improving the
HSR capacity utilization can be enhanced in the near future.

When considering the shortest path assignment for
passenger route choice, more realistic models [35-37] have
been proposed, but the LPP is already very challenging even
with this simplification [22]. The additional assumption that
passenger will not select a longer path (with detours and/or
transfers) to get a reduction on the ticket price is based on
the corresponding behaviour of most high-speed train
customers. We assume they buy a more expensive high-
speed ticket in order to get a shorter trip. In future work,
these assumptions can be relaxed.

This is considered as input:

(i) Passenger OD matrix: the number of passengers
traveling between any origin station and destination
station is given in a symmetrical OD matrix. The
passenger OD matrix represents the daily passenger
demand.

(ii) HSR network topology: the available stations (nodes)
and tracks (edges) are fixed, and the length of each
edge between two stations is known beforehand.

The line planning solution is represented as a set of lines
associated with certain frequencies. A line consists of a
sequence of nodes.

3.2. Mathematical Model for Profit-Oriented Line Planning.
A MILP model is presented to address the profit-oriented
line planning. In order to keep the model understandable
(and solvable in reasonable time), it assumes that a limited
pool of possible lines is given. So the model will determine
which lines from the pool to operate and at which frequency.
It should be noted that the LPP we are solving for the
Chinese HSR, and also the approach presented in Section 4,
does not require such a limited pool of lines and allow to
operate any feasible line.

3.2.1. Variables and Notations. The physical network to-
pology is considered as the undirected graph G = (S, E). The
node set is defined as S = {sl, Sy .. ’SIS\} and represents the
stations. The edge set is described as E = {e,e € Sx S} and
represents the connections of two stations in the network.
When solving the LPP, a train service network (TSN) (Fu
et al. [1]) is also needed to take the transfer times into ac-
count and to depict the itineraries of passengers. This is also
called the Change & Go network in Schébel and Scholl [14].
In this network, each station is duplicated per line it serves.
See Figure 1(c) for an example of TSN. In the model, [s;,!]
indicates the duplication of station s; online /.

Let W = {wl,...,w|w|} €S xS be the set of OD pairs
w; = (5%, s?es). The number of passengers for a certain OD
pair is denoted as d,, . A pool of possible lines L, is given as
input to the MILP model. The length k; of line [ € L, is
assumed to be known.

These variables are used in the model:

Inc: the total operational income

Cos: the total operational cost
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FiGure 1: The infrastructure of the small example network (a); an example line plan with two lines (b); the corresponding TSN for this line
plan (c).

Cap: the capacity of each train represented by the Ti}:y: the shortest path travel time of each OD pair w;

number of seats

L.,,: the pool of possible lines

cur*
CFx: the fixed cost for operating a line with frequency
one

CV: the variable cost per line per kilometre for fre-
quency one

IdeInc: the ideal income, if each passenger would have a
direct connection on his/her shortesthpath in the
physical network; i.e., IdeInc = ZwiewTiiy *V,xd,

d,,: the number of passengers for a certain OD pair w;

with respect to the physical network independent of the
line plan

V,: the travel time value (the ticket price per unit of
time) to convert the passenger travel time into the ticket
price

TISN: the shortest path travel time of each OD pair w;
on the TSN, including a fixed time penalty for each
transfer

TISNW); the total driving time and stopping time in
TTSN
w;



TISN(); the total transfer time in TTSN
t.: fixed stopping time at a station

t,: fixed transfer time between two lines at the same
station

V .+ the penalty time value: the value of time for detours
or transfers

The train service network (TSN) notations are as follows:

Agqr set  of driving arcs, Ay ={a= ([s,1],
[5;,11), I € Lo,»s;and s in S, indexi < j}; the cost of
each driving arc equals the travel time of the edge, i.e., , ;)

te(s): the driving time of arc a on edge e

Ay set of transfer arcs,
Ay ={a= ([sp1], [, I']D: 11, sel, siel’, s;in S}y the
cost of each transfer arc is set to a fixed penalty cost; i.e.,
ttS

A set of origin arcs, A, = {a = (575, [s;,1]):5;in S};

i
the travel time cost of each origin arc is 0

Ages:  set  of  destination arcs, Ay ={a=
([sj,l],sj-les), s;in S}; the travel time cost of each des-
tination arc is 0

A(w): arc set A = {AdriUAtSUA
A used by OD pair w;

Ay (D): the driving arcs from Ag,; used by line /

UAdeS}, the arcs from

org

! : this parameter equals 1 when station s; is covered by
line I; otherwise, 0

yé(a): this parameter equals 1 when edge e is covered by
line [ as arc a; otherwise, 0

The decision variables are as follows:
f;: the frequency of line I (which can be zero if the line
is not actually operated)

Xa': binary variable equals 1 when the passenger OD
. _ org  des X .
pair w; = (s; %, s;%) uses arc a; otherwise, 0

3.2.2. Objective. 'The objective is to maximise the operational
profit, which equals the difference between revenues and
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operational costs. The operational cost consists of a fixed cost
per line (of frequency one) and a variable cost related to the
length of the line and its frequency. By introducing the travel
time value parameter, the passenger travel time is converted
into operational income. Thus, the operational income can
be formulated as the passenger total travel time multiplied
with the travel time value and minus the penalties for
transfers and detours:

max Z = Inc — Cos, (1)
TSN ~+Ph
Inc = Idelnc - Z (Tw,- - thy) #V,wdy, (2)
w;eW
Fix . ~Var
COS= Z(C +C a *kl)*fl. (3)

leL .

Equation (2) gives specific information about the rev-
enue considering the penalties. The left side of the minus is
the ideal income, obtained when each passenger travels
along the shortest path in the physical network, with a direct
connection. It should be noted that the ideal income is a
fixed value and could be omitted from the objective function.
However, since the ideal income is part of the profit
components, we want to include it in order to make the
objective function more readable and understandable. The
right side of the minus is the penalty for transfers and
detours the passengers require in the TSN. This assumes that
the ticket price is reduced to compensate for the discomfort
of having a longer travel time (than the ideal shortest path).
The operational cost is presented as equation (3), which is
related to the number of lines and its associated frequencies.
An example of the objective function calculation will be
presented in Section 3.3.

3.2.3. Constraints. We assume that all the lines in the given
pool of lines are selected, but some lines might have a
frequency of zero. The constraints included in the MILP
model are listed below:

Ve Z%a» VYI€Lyy,a€ Ay, w €W, (4)

I.
yls’j +yd22x, k#j,Vs; €8, a€ A, w eW, (5)
Yo2xY, Vs, €8, 1€ Ly @ € AggUAgeq w; €W, (6)

w; _
x, =1, VYw;, eW, )
acA, NA(w)
Z xZ).' _ Z xtan =0, Vs € S\{S?rg’ S;les}, a € A(w), w; €W, (8)
acst (s,-)ﬂA(W) aeé” (si)nA(w)

xii=1, Yw; €W, 9)

acAyeNA(w)
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Xl:i <2, Vwi ew, (10)
acA NA(W)
: _ - TSN(dri)
xZ} (te(a)+ts)_ts _Tw,- it Vw, e W, (11)
acAzNA (W)
: _ e TSN(ts)
Z XZ} (tts - ts) - Twi 7, Vw;, e W, (12)
aeA, ,NA(W)
TSN(dri) | ~<TSN(ts) _ =TSN
T, 4T, =T, , YweW, (13)
Z (.xZ’ X dwi) Sfl X Cap, Ya € Adri (l), l € Lcur, (14)
w;eW
fireN, VieLg, (15)
X e{0,1}, VaeA w eW. (16)

Equations (4)-(6) assure the TSN construction based on
a line plan. The three constraints indicate that only nodes
and edges that are covered by the possible lines are con-
sidered as the nodes and arcs of the TSN; ie., edges be-
longing to the lines can be selected as the driving arc of
passenger routes (4) and nodes (stations) covered by more
than one line are chosen as potential transfer arcs (5). Origin
and destination arcs are connected to each node covered by a
line in the TSN (6). These constraints assume that driving arc
a in the TSN corresponds to edge e in the physical network
(4) that transfer arc a corresponds to a transfer between /;
and [; (5) and that station s; is an endpoint of an origin or
destination arc a (6).

Equations (7)-(9) are network flow conservation con-
straints, which require that each passenger OD pair should
have a feasible path on the TSN based on the given line plan.
Equations (7) and (9) assure that only one origin arc and
destination arc can be selected for each passenger OD pair.
On the contrary, for each passenger OD pair, there must be
one origin arc and one destination arc. Equation (8) ensures
the conservation of passenger flows on the intermediate
nodes. If there is no travel path for any of the OD pairs or the
number of transfers is more than two, the model will turn
out to be infeasible.

Equation (10) limits the number of transfers for each OD
pair to 2. Equations (11)-(13) calculate the actual travel time
for each OD pair. Equations (11) and (12) compute the actual
total driving time and total transfer time for a certain OD
pair. Equation (14) ensures the capacity of a line on a driving
arc is sufficient to meet the passenger demand on that
driving arc; i.e., all passengers are served taking into account
the capacity of the trains. The frequency of the train is
calculated based on the number of passengers taking that
train. Constraint (15) and constraint (16) are variable value
constraints.

The main purpose of this model is to clarify the profit-
oriented line planning problem considered in this paper.
Moreover, this model will be used in the line planning

approach we present in Section 4. However, the pool of
possible lines L_,. considered in the MILP model above will
be replaced by the lines of the line plan under evaluation. As
a result, it will optimize the passenger assignment and the
frequencies of the line plan under evaluation.

3.3. Small Example Network. Here, a small network is in-
troduced in Figure 1(a) which will be used to illustrate the
calculation of the objective function. In this small example,
the number besides each arc corresponds to both the dis-
tance (km) and the travel time (min). In this example, the
data of Table 1 are assumed to be given.

A brief explanation of the objective function calculation
is presented based on the example line plan in Figure 1(b). In
order to consider the transfers and depict the itinerary of
passengers, the TSN (see Figure 1(c)) is constructed based on
the given line plan in Figure 1(b). As indicated in the figure,
both lines have frequency 1 per unit time (for example, 1 per
hour or 1 per day). The operational cost of the blue line is
(15, 000 + 150 x (10 + 10+ 10+ 10)) x 1 = 21,000 RMB.
For the red line, this is 21,750 RMB, so the total operational
cost is 42,750 RMB. The revenue is calculated by the ideal
income minus the penalties caused by transfers and detours.
In order to simplify the calculation process, we assume that
the passenger demand of each OD pair is 100. The ideal
income is calculated as the price that all the passengers pay
for their direct connections on their shortest paths. For
instance, the ideal income of passengers from nodes 1 to 3
(the path (1, 2, and 3)) is (10+1+10) x2.5x 100 =
5250RMB. The total ideal income can be calculated as
105,750 RMB. When computing the penalty fees of transfers
and detours, the penalty time equals the difference between
the actual travel time and the shortest possible travel time.
For example, the penalty fee of passengers from node 1 to
node 3, requiring a transfer in node 2 (instead of a stop),
equals ((10+5+10)— (10+1+10))x0.55% 100 = 220RMB.
Another example includes the passengers from node 2 to
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TaBLE 1: Data of the small example network.
Name Value Unit
Transfer time penalty 5 min
Station stopping time 1 min
Travel time value 2.5 RMB/person, min
Penalty time value 0.55 RMB/person, min
Fixed line operating cost 15,000 RMB/train
Variable line operating cost 150 RMB/train, km
Train capacity 1000 Seats/train

node 5, requiring a detour through node 3. The penalty time
value multiplied with the detour time and the passenger
demand equals ((10+1+15)—10)x0.55x 100 = 880 RMB.
The total penalty fee of the passengers with transfers
and detours (OD pairs 0-3, 0-5, 1-3, 1-5, and 2-5) is 2640.
The final profit of this line plan is 105,750-2640-
42,750 = 60,360 RMB.

4. A Matheuristic Iterative Approach for
Line Planning

After generating an initial line plan, our approach decom-
poses the LPP into two subproblems, improving the design
of the lines and the passenger assignment together with
frequency setting. The two subproblems are optimized it-
eratively based on a heuristic evaluation of possible
neighbourhood solutions in the first subproblem and a
MILP model to address the second subproblem. We call this
approach MHIA, and it is illustrated in Figure 2 and dis-
cussed in detail in the next sections.

4.1. Initial Line Plan Generation. The basic idea of the initial
line plan generation is to select those lines that serve di-
rectly as much passenger demand as possible. According to
the classical approach for line planning introduced in
Bussieck et al. [12], we first search the shortest paths for
each OD pair on the physical network by the
Floyd-Warshall algorithm [38]. This results in a set of
candidate lines. The initial line plan generation consists of
two stages, namely, heuristic construction and repair,
determining which lines to include in the initial solution.
During the heuristic construction process, the line set is
built by selecting one line at a time from the candidate lines
until all the nodes are covered. The choice of the lines obeys
the rule that the selected line serves the most passengers on
their shortest paths without transfers, not only from the
starting towards the ending station of the line but also from
and towards all stations in between on that line. When
selecting the next line to include, all passengers already
served directly by the already selected lines are no longer
considered. For example, the first line is selected based on
the calculation of the direct passengers served by each line.
Then, the passengers served by that line are eliminated
from the OD matrix. The next line is then selected from the
candidate lines based on the remaining unserved passen-
gers. The selection procedure continues until all the nodes
of the network are covered.
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Since the construction stage focuses on direct connec-
tions, it does not guarantee that all passengers have a path
and have less than two transfers. For this reason, the MILP
model of the previous section is used to check the line plan
feasibility by using the Floyd—Warshall algorithm to cal-
culate all the shortest paths for the OD pairs. If there exists
any OD pair for which no path with two or less transfers is
available in the TSN, then the shortest path on the physical
network of that OD pair is selected as a new line and added
to the initial line plan.

To illustrate the initial line plan generation, we return to
the small example network of Figure 1(a). The list with the
shortest path of each passenger OD pair (in one direction) is
given in Table 2.

We assume each OD pair corresponds to 100 passengers.
Based on serving directly as much demand as possible, the
first line will be (0, 2, 1, 4, 6) or (0, 2, 5, 4, 6), both serving
1000 passengers. Then, those served passengers are removed
from the OD matrix, and the second line is selected from the
rest of the paths in the same way. If we choose (0, 2, 1, 4, 6) as
the first line, then (3, 5, 4, 6) becomes the second line with
500 passengers served directly. Now, all the nodes on the
network are covered by the selected lines. After the feasibility
check (travel path, number of transfers, and node coverage),
the selected lines meet all the constraints and an initial line
plan is generated.

4.2. Line Plan Evaluation and Modification. In this line plan
modification and evaluation process, illustrated in Algo-
rithm 1, two subproblems are considered: line plan design
(modification) and passenger assignment and frequency
setting (evaluation). Clearly, the passenger assignment is a
crucial part of the line plan evaluation. However, passenger
assignment typically requires a lot of calculation time, and
the smallest change in the line plan could significantly
change the passenger assignment and thus the passenger
travel times. Therefore, we try to limit the number of times
the passenger assignment is calculated. It would be, for
instance, too time-consuming to calculate the passenger
assignment for every possible modification to the current
line considered below. Therefore, we try to improve the line
plan based on easier-to-calculate heuristic evaluation indi-
cators. Only for the most promising modifications, the
passenger assignment and frequency setting are applied
using the MILP model discussed in Section 3.

In the plan design or modification part, a framework
with four modification operators is developed to iteratively
improve the current line plan. The detailed modification and
evaluation process are illustrated in Figure 2. The four
modification operators are reducing a line (Reduction),
extending a line (Extension), removing a line (Removal), and
inserting a line (Insertion). Reduction and Extension work as
intensification or improvement modifications, while Re-
moval and Insertion are used as diversification of the search.
Each type of modification leads to a set of possible line plans,
the neighbourhood of the current line plan.

The Reduction neighbourhood of a current line plan
contains all line plans where one terminal node of one line is
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FIGURE 2: The process of MHIA for line planning optimization.

TaBLE 2: The shortest paths for passenger OD pairs on the small
example network.

O D The shortest paths
0 1 0,2, 1

0 2 0, 2

0 3 0,2, 3

0 4 0,2, 1,4/0,2,5, 4
0 5 0,2,5

0 6 0,2,1,4,6/0,2,5 4,6
1 2 1,2

1 3 1,2,3

1 4 1, 4

1 5 1,4,5/1,2,5

1 6 1,4,6

2 3 2,3

2 4 2,1,4/2,5,4

2 5 2,5

2 6 2,1,4,6/2,5,4,6
3 4 3,54

3 5 3,5

3 6 3,5,4,6

4 5 4,5

4 6 4,6

5 6 54,6

removed. The Extension neighbourhood contains all line
plans where one node, adjacent to a terminal node in the
physical network, is added to one of the lines. When it comes
to Insertion, each of the lines corresponding to OD pairs
without a direct connection in the current line plan are
considered to be inserted in the current line plan. For Re-
moval, the neighbourhood contains all line plans where a
line of the current line plan is removed. In each neigh-
bourhood of the four operators, only feasible line plans are
considered.

When considering Reduction, the load factors of ter-
minal edges of each line are calculated as the evaluation
indicator of the current line plan. The load factor is the actual
passenger volume on the edge of a line divided by the total
capacity (the number of seats) of the corresponding line. A
low load factor might indicate a part of a line which is not
profitable. The load factor is calculated for each terminal
edge, and then, the terminal edge with the lowest load factor
is removed from its line. The MILP model is then applied to
optimize the frequencies and to optimally assign the pas-
sengers to the new line plan. Only when the total profit is
actually increased by removing this edge, the new line plan is
accepted and the algorithm continues with considering
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(1) Nger = 0;
(2) Repeat
(3) ine = 0, Npeg = 0, Next = 05
(4) Repeat
(5) Reduction method
(6) Mipp = Mipe + L
(7) Select the L,; and calculate the profit of L,.; by MILP;
(8) if Znei > Zcur do
(9) Lcur — Lnei> Zcur — Znei’ Mieq = 0;
(10) if Z,>Z.y do
(1 1) Lbest — Lnei’ Zbest — Znei;
12) else
(13) Preq = Mpeq + L
(14) if ;. > MaxNumberOfIterations
(15) go to step 36;
16) else if n,.4 > MaxNeighbours
17) go to step 20;
(18) else
19) go to step 5;
(20) Extension method
(21) Mg = Mg + 13
(22) Select the L,; and calculate the profit of L,.; by MILP;
(23) if Z>Z,, do
(24) Lcur — Lnei’ Zcur — Znei’ Mext = 0;
(25) if Znei > Zbest do
(26) Lbest — Lnei’ Zbest — Znei;
(27) else
(28) Ryt = Mg + 15
(29) if ;. > MaxNumberOflIterations
(30) go to step 36
(31) else if n. > MaxNeighbours
(32) go to step 5;
(33) else
(34) go to step 20;
(35)  until the terminal conditions are satisfied
(36) Disturb
(37) Removal or Insertion
(38) Nger = Nger + L
(39) Select the L,; and calculate the profit of L .; by MILP;
(40) Lcur (_Lnei’ Zcur — Znei’ go to step 3
(41) until ny,, = Max Diversifications
(42) Output the best line plan and objective profit

ALGORITHM 1: Pseudocode of the MHIA of line planning.

Extension. However, when removing this edge would de-
crease the profit, the reduction is cancelled and the algo-
rithm considers to remove the edge with the next lowest load
factor. This continues until an edge is found that actually
improves the profit or until the number of neighbours
considered reaches a predefined maximum number (Max-
Neighbours). In both cases, Reduction is ended, and Ex-
tension is considered.

Extension evaluates how many passengers that cur-
rently need a transfer could be transported directly due to
extending a line with an additional edge. The edge that can
provide the most additional direct connections is added.
Again, the MILP model is applied to optimize the fre-
quencies and optimally assign the passengers to the new
line plan. Only when the total profit is actually increased by

extending this line, the new line plan is accepted and the
algorithm continues by going back to Reduction. However,
when adding this edge would decrease the profit, the ex-
tension is cancelled and the algorithm considers to add the
next most promising edge. As with Reduction, this con-
tinues until an edge is found that actually improves the
profit or until the number of neighbours considered rea-
ches a predefined maximum number (MaxNeighbours). In
both cases, Extension is ended, and Reduction is considered
again.

In order to limit the total computation time of Re-
duction and Extension, we explicitly limit the total
number of times the MILP model is used. When the
MILP model is used MaxNumberOfIterations times or
when no more improvements can be found by Reduction
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or Extension, the algorithm continues with the diversi-
fication phase.

In order to diversify the algorithm, two ways of dis-
turbing the search are implemented as well: Removal and
Insertion. First, however, when some lines have a frequency
of zero after the frequency setting, these nonoperated lines
will be removed. Then, the new line plan is selected ran-
domly from all possible Removal and Insertion neighbour-
hood solutions. The solution of the disturbance is always
accepted. The number of diversification iterations (Max-
Diversifications) is fixed beforehand as a stopping criterion
for the algorithm. After that, the best solution obtained
during the search process will be presented as the final
solution.

An alternative implementation would be to consider all
the four moves at the same time. However, this would be too
time-consuming and not efficient. So we choose the
aforementioned operator execution order to optimize the
line plan. The Reduction and Extension are used to search for
the approximate local optimal solution by small changes in
the input line plan. These two operators are crucial operators
in the good performance of the algorithm and are considered
as intensification moves. However, the Insertion or Removal
is selected randomly to diversify the solution search space.
These should be regarded as large changes to the input line
plan.

Since the initial line plan is generated by choosing the
lines that can serve as many direct passengers as possible,
this typically leads to long lines. In order to avoid such
negative effects of the initial line plan, the Reduction is
applied first. After a limited number of iterations with Re-
duction and Extension, the random Insertion or Removal
provides other search directions.

Compared to using large neighbourhood search (LNS)
[35, 39], the approach proposed in this paper is different in
the following aspects. In LNS, a temporary solution is given
by first applying a destroy method and then a repair method.
For the proposed approach in this paper, the temporary
solution is given separately by Reduction, Extension, Re-
moval, or Insertion. Specifically, the destroy method in LNS
destructs randomly a part of the current solution, and then,
the repair method reconstructs the destroyed part. However,
our proposed approach based on four operators, respec-
tively, modifies the current solution by a heuristic evaluation
and selects the most promising one as the temporary
solution.

The notation used in Algorithm 1 is as follows:

Z.,, the profit of the current line plan

cur*®

Zpest: the best profit among the calculated line plans
Z .+ the profit of a neighbourhood solution of the

nei-
current line plan

L, the selected neighbourhood line plan

nei*
A ndir: the set of OD pairs of passengers with a longer
travel time than their ideal travel time
Nge: the current number of MaxDiversifications

iterations
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N,.q: the current number of Reduction

N the current number of Extension

1, the current number of intensification iterations

4.3. An Alternative Iterative Approach. It is very time-con-
suming to obtain an optimal passenger assignment and
frequency setting using the mathematical model when the
network becomes larger. This is mainly due to the expo-
nentially increasing number of possible lines that should be
considered. So, an alternative iterative approach (AIA),
avoiding this extensive use of the mathematical model, is
now presented. It will be mainly used for evaluating the
performance of MHIA. The AIA framework is shown in
Figure 3.

ATA uses the same modification operators and heuristic
evaluation methods as MHIA. However, the calculation time
of the passenger assignment is significantly reduced by using
the assignment results of the former line plan. We call this
“heuristic passenger assignment.” If passengers have a direct
connection on their shortest path, the passenger paths are
assumed to remain the same as in the former line plan. The
algorithm only searches for shorter paths for those who do
not have a direct connection or make a detour and then it
calculates the required frequency of each line. Another
difference is that the MaxNeighbours in AIA is limited to
one, while the MaxNeighbours in MHIA is limited to ten.
Therefore, only the most promising Reduction (Extension) is
evaluated (and implemented when successful) before con-
tinuing to Extension (Reduction).

5. Computational Experiments

In this section, several experiments are executed to show the
performance of the proposed MHIA on solving the profit-
oriented LPP. The proposed method is implemented in C#
and runs on an Intel(R) Core (TM) i7-3770 CPU 3.40 GHz
and 16.0 GB computer. The MILP is implemented in CPLEX
version 12.6.3, using the C# application program interface of
the solver with the default parameter values. The input data
include the network infrastructure, passenger demand OD
matrix, and other operational parameters, such as track
travel time (depending on the fixed train speed), fixed cost,
and variable cost elements. The parameters used throughout
the experiments are given in Table 3. It should be noted that
some of these values are different (more realistic) compared
to the values used in Table 1. In order to make the small
example network more realistic, all link lengths were
multiplied by 20. As a result, the distance between node 0
and node 2, for instance, is 200 km. Due to the lack of real-
world data (which is confidential for the HSR network in
China), the passenger demand OD matrices are generated
randomly, and different demand scenarios are considered.
All instance data are made available at https://www.mech.
kuleuven.be/en/cib/lp/mainpage#section-4.

After preliminary experiments with different combina-
tions of the maximum number of MaxNeighbours,
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FiGure 3: The alternative iterative approach framework for line
planning optimization.

TaBLE 3: Experiment parameter setting.

Name Value Unit

Train speed 300 km/h
Transfer time penalty 30 min
Station stopping time 3 min

Travel time value 2.5 RMB/person, min
Penalty time value 0.55 RMB/person, min
Fixed line operating cost 15,000 RMB/train
Variable line operating cost 150 RMB/train, km
Train capacity 1000 Seats/train

MaxNumberOﬂ terations, and MaxDiversiﬁcations, we set
the number to 10, 20, and 30, respectively.

In the line planning problem, the transfer time is typ-
ically modelled as a penalty value [1, 7, 19-21, 29-31, 33-35].
Because the train departure times are not known during line
planning, the exact transfer time is unknown and estimated
by a transfer penalty. Here, we set the transfer time (penalty)
to 30 minutes taking into account both the inconvenience of
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passengers and the practical situation in China high-speed
railways.

The travel time value is used to calculate the ideal in-
come. Here, we transform the ticket price of high-speed
trains into a time-related price to link the operational
revenue and the passenger travel time. However, the transfer
penalty time value is used to compensate the inconvenience
of making transfers.

5.1. Small Example Network Experiments. In this experiment
on the small example network introduced in Section 3.3, the
performance of MHIA is compared to the optimal solution
obtained by using the MILP model presented in Section 3.2.
In order to obtain the best possible profit-oriented line
planning for this network, the MILP model starts with a pool
of lines containing all 62 feasible lines that could be gen-
erated for this network. By doing this experiment, we can
measure how close MHIA can get to the optimal solution for
small networks.

This experiment considers three different passenger
demand scenarios (PDS), based on three randomly gener-
ated OD matrices. Actually, the profit-oriented line planning
problem as we propose it here has not been addressed in
literature before. This makes a comparison with methods for
literature [1, 7, 27, 28, 31] impossible.

The results of 10 runs of both ATA and MHIA are
given in Table 4. The optimal solutions are calculated by
the MILP model since all possible lines are considered. In
all the tables, “PDS” refers to a passenger demand sce-
nario. Table 4 reports the profit of the initial solution (IS)
generated by AIA or MHIA, the best profit (BS) obtained
by AIA and MHIA, the average profit (AveS) over all the
runs, the average computation time (ACT) of one run of
the approach, and the number of lines (Lines) included
in the best result (BS). For MILP, BS is the optimal
solution. In this experiment, the gap is the difference
between the optimal solution and the best solution given
by MHIA (or AIA), ie., gap= (BSyup—BSuuia
(or BS514))/BSyipp-

From Table 4, it can be seen that the best results of MHIA
are very close to the optimal solution, with an average gap of
only 2.9%. Moreover, the best results of MHIA for this small
example network are much better than the results given by
the AIA. The computation time for all the approaches re-
mains limited for this very small network, but, obviously,
ATA is faster than MHIA and both are many times faster
than MILP. We conclude here that, for a very small network,
MHIA guarantees high quality solutions for the profit-
oriented LPP in limited computation time. In this case, the
heuristic passenger assignment used by AIA has the same
initial results as the accurate passenger assignment applied
in MHIA.

All detailed information about the best solutions ob-
tained for each demand scenario (lines, frequencies, and
profit calculations) and the 62 feasible lines are made
available  at  https://www.mech.kuleuven.be/en/cib/lp/
mainpage#section-4. Also the results discussed in the next
sections are made available there.
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TaBLE 4: Comparison between different approaches on the small
example network.

ACT . Gap

PDS IS BS AveS (s) Lines (%)

1 — 638,670 — 26,950 4 —

MILP 2 — 676,490 — 6680 4 —
3 — 826,630 — 28,285 4 —

1 362,073 538,630 519,352 2 3 15.7

AIA 2 98,773 576,724 541,066 0.9 5 14.7
3 241,145 708,695 698,884 1 4 14.3

1 362,073 621,244 582,370 33 5 2.7

MHIA 2 98,773 658,336 641,944 11 3 2.7
3 241,145 799,111 759,788 16 4 33

5.2. Real-World HSR Network Experiments. After studying
the performance of the MHIA on the small example net-
work, we now apply it to three real-world HSR networks in
China, a small network (11 nodes and 110 OD pairs), a
medium network (26 nodes and 650 OD pairs), and a large
network (34 nodes and 1122 OD pairs).

Given the complexity of the problem, the optimal so-
lutions for profit-oriented line planning are not available and
too time-consuming for these HSR networks, using the
MILP. This makes it difficult to properly assess the per-
formance of MHIA on these networks. Therefore, in order to
test the performance of MHIA in this section, the best
solutions found by MHIA will be compared with both the
initial solutions found by MHIA and the best solutions
found by AIA. In Section 5.3, the best solutions found by
MHIA will be compared with the best results that can be
obtained by solving the MILP model of Section 3.2 for these
networks.

Figure 4 shows the topology of the small HSR network.
We run all the experiments based on the parameters given in
Table 3. The results of 10 runs of each approach are pre-
sented in Table 5. Here, the gap corresponds to
gap = (BSypyya — BSa12)/BSpa-

It should be noted that the initial solution for AIA and
MHIA corresponds to the same line plan, but higher profits
are calculated for MHIA due to the different passenger
assignment calculations. Since AIA uses a heuristic calcu-
lation of the passenger assignment, its profits are lower than
the optimal passenger assignment of MHIA on the small
HSR network. Compared to AIA, MHIA can increase the
operational profit by 10.7% on average while taking around
ten times more computation time due to the accurate
passenger assignment. The best results obtained by MHIA
improve the initial solution with 40.0% on average. Taking
passenger demand scenario 1 as an example, the detailed
information about the best result of MHIA is shown in
Figure 5 and Table 6. The numbers next to the coloured lines
are the frequencies of those lines.

The high frequency on the line parts (4-9, 9-8, 8-7, and 7-
6) in this solution corresponds nicely with the fact that 49%
of the shortest paths include these line parts which indicate
that passengers are more likely to choose these line parts.
This illustrates that the best result found by MHIA is
consistent with the passenger demand. The reason why line
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FIGURE 4: The topology of the small HSR network.

(4, 9, 8, and 10) has the highest frequency is that all the
passengers who want to travel to destination 10 have to use
that line. According to the passenger demand OD matrix,
the number of passengers ending at station 10 is 2336. This
indicates that 3 trains are required in order to serve all the
passengers taking that train, considering the train capacity.

When the size of the considered network grows, the
calculation time of looking for the optimal passenger as-
signment of the network will become very time-consuming.
Therefore, we set the optimality gap parameter of the CPLEX
solver to 5%, which means the solver will give the current
best solution as a result when the gap between the current
best solution and the current upper bound is lower than 5%.
This significantly speeds up the passenger assignment and
frequency setting. The network topology of the medium HSR
network is given in Figure 6 (only the black edges), and the
results of 5 runs are shown in Table 7. It should be noticed
that the computation times are now expressed in minutes.
The gap used here is gap = (BSyyya — BSa1a)/BSara-

With the increasing size of the network, MHIA shows
advantages in solving the profit-oriented LPP. In Table 7, the
reason that the profit of the initial line plan of AIA is dif-
ferent from that of MHIA is again that AIA uses heuristic
passenger assignment, while MHIA applies the optimal
passenger assignment. On average, MHIA performs 8.3%
better than AIA, and the best solution of MHIA improves
the initial solution with 16.5%.

When applying MHIA to the large HSR network, cor-
responding to the entire 4V4H network (the black and grey
edges in Figure 6), the calculation time becomes too long.
Therefore, in order to make an evaluation of the calculation
process, the sensitivity of algorithm parameters is tested for a
single demand scenario. Since the MaxDiversification is one
of the main parameters that determines the algorithm cal-
culation time, different values for MaxDiversification are
tested. In order to accelerate the algorithm calculation speed,
another two values for MaxDiversification are considered: 10
and 20 (originally 30). The results of 5 runs for each value of
MaxDiversification —are given in Table 8. Here,
gap = (BSyppa 30) ~ BSmmia (100r20))/BSnra ao)-

The results in Table 8 show that the solution quality
remains almost the same when reducing MaxDiversification
of MHIA. At the same time, the computation time decreases
from 12.0 hours to 4.1 hours, a reduction of 63%. So, we
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TaBLE 5: Comparison between AIA and MHIA on small HSR network.

PDS IS (%10°) BS (#10°) AveS (%10°) ACT (s) Lines Gap (%)
1 2.41 3.51 3.43 12 7 —
ATA 2 2.05 3.40 3.27 10 5 —
3 2.43 3.23 3.18 11 5 —
1 3.10 3.94 3.81 113 5 12.3
MHIA 2 2.08 3.74 3.70 118 4 10.0
3 3.08 3.55 3.51 91 5 9.9
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TABLE 6: Best line plan information of PDS 1 obtained by MHIA on
the small HSR network.

Line Distance (km) Frequency
54,2,0,1,3,7,6 2397 2
0,1,8,7,6 1608 2
2,0,1,8,7 1200 1
4,9, 8, 10 1167 3
3,1,89 891 1

think it is appropriate to reduce the number of diversifi-
cations when solving the LPP on the large HSR network.

Finally, we run MHIA with the new parameter setting on
the other two demand scenarios for the large HSR network.
The parameters used in this experiment for MHIA are 5%
optimality gap in CPLEX and 10 MaxDiversification. Also,
for AIA, only 10 MaxDiversification are considered. The
results of this setting are listed in Table 9.

For the large network case, MHIA shows an excellent
ability in obtaining high quality solutions and controlling
the computation time. The initial solutions of MHIA for all
demand scenarios are better than the best results obtained by
AJA. On average, the best results of MHIA are 13.3% better
than the best results of AIA on the large HSR network.
However, the computation times for AIA are clearly shorter.

These computation times mainly indicate the difficulty of
the problem, not the efficiency of the algorithm. Actually,
these kinds of computation times are normal for LPP of this
size considering passenger assignment. Moreover, for
practical applications, such computation times are accept-
able, since the line planning is typically only changed in the
long term.

9 Fuzhou

C Xiamen
Kunming Guangzhou

Hongkong

Nanning Shenzhen

FIGURE 6: The topology of the medium (only black edges) and large
(the black and grey edges) HSR network.

Besides, since the problem we considered is new, the
performance of the algorithm cannot be compared to other
approaches from the state of the art. Therefore, we show the
efficiency of the algorithm by comparing the results with
optimal solutions obtained using CPLEX (only possible on
smaller instances) and with AIA on all instances.

5.3. Comparison between MHIA and MILP on the HSR
Network. As mentioned above, in this section, the best
solutions found by MHIA will be compared with the best
results that can be obtained by the MILP model of Section
3.2, for the small, medium, and large HSR network. To
obtain these best results by the MILP model, all the lines
obtained in the results of the different runs of MHIA (and
AIA for the small HSR network) in Section 5.2 are included
in the line pool for the MILP. Obviously, this does not
guarantee that an optimal solution will be found, but at least
a significant number of high quality lines are now considered
in this line pool.

First, for the small HSR network and for each demand
scenario, we use all the lines of the line plans from the result
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TaBLE 7: Comparison between AIA and MHIA on medium HSR network.
PDS IS (%107) BS (%107) AveS (x107) ACT (min) Lines Gap (%)
1 1.66 2.24 2.21 13 7 —
AIA 2 1.96 2.27 2.20 9 11 —
3 1.76 2.14 2.11 9 10 —
1 2.03 2.45 2.37 172 7 9.3
MHIA 2 2.18 2.40 2.37 214 7 5.7
3 1.98 2.35 2.31 175 9 9.8
TaBLE 8: Results for different values of MaxDiversification on the large HSR network.
MaxDiversification BS (%107) AveS (¥107) ACT (hour) Lines Gap (%)
10 6.79 6.64 41 11 -1.6
20 6.80 6.68 7.8 13 -1.8
30 6.68 6.61 12.0 11 —
TaBLE 9: Comparison between AIA and MHIA on the large HSR network.
PDS IS (%107) BS (x107) AveS (107) ACT (hour) Lines Gap (%)
1 4.71 5.79 5.60 0.4 13 —
AIA 2 5.16 6.11 6.02 0.3 13 —
3 4.60 5.67 5.46 0.7 13 —
1 6.05 6.79 6.64 4.1 11 17.3
MHIA 2 6.22 6.86 6.64 4.8 11 12.3
3 5.71 6.25 6.09 5.2 11 10.2

of each of the 10 runs of MHIA and AIA as the line pool for
the MILP model. The results are shown in Table 10.

The results show that the MHIA performs well in
reaching the solutions calculated by MILP on the small HSR
network for different demand scenarios. The gaps are very
small. When the PDS 1 is taken as an example, there are 35
lines considered in the line pool and the detailed information
about the results of both MHIA and MILP are given in
Table 11. The column “Frequencies (MHIA)” presents the
frequencies of the best solution found by MHIA, and the
column “Frequencies (MILP)” refers to the best result the
MILP model can obtain.

By comparing the frequencies in the second column and
the third column, we can see the frequencies of the line in
MHIA solution are typically reduced and replaced by slightly
modified lines. For example, the frequency of the first line (4,
9, 8, 10) is reduced from 3 to 1, but instead, the MILP
solution operates two very similar lines (4, 9, 8,7, 6 and 4, 9,
8, 7). This could be an indication that the performance of
MHIA can be improved by considering more (slightly)
different lines instead of higher frequencies for fewer lines.
Maybe these better solutions can also be obtained by in-
creasing MaxNeighbours, MaxNumberOflterations, or
MaxDiversification. However, the quality improvement
would be around 1.0%, while the computation time might
significantly increase. For the current solutions, MHIA re-
quires 113 s and MILP requires 261,445 s. We conclude that
MHIA performs well in making a trade-off between the
solution quality and the computation time. Moreover,

TaBLE 10: Results of MHIA and MILP (with a given line pool) for
the small HSR network.

PDS  BS (x10°) ACT (s) Lines  Gap (%)
1 3.94 113 5 1.0
MHIA 2 3.74 118 4 0.8
3 3.55 91 5 0.6
1 3.98 261,445 8 —
MILP 2 3.77 5412 8 —
3 3.57 6857 7 —

having more (slightly) different lines might also make it
more difficult for the passengers to understand the network.
Probably, the network obtained by MHIA is even more
realistic than the result obtained by MILP.

Now we apply the same comparison between MHIA and
MILP on the medium and large HSR networks. Here, only
the lines included in the line plans obtained by MHIA in
different PDS are included. Otherwise, the pool of lines
becomes too large to solve the MILP model. The differences
between MHIA and MILP are shown in Table 12. The
optimality gap of the CPLEX solver used in MILP is the same
as in MHIA, i.e., 5% for both HSR networks.

The numbers between brackets in Lines column indicate
the number of lines considered in the line pool of MILP,
while the regular number indicates the number of lines
involved in the results. In theory, the solutions obtained by
MILP should be no less than the results obtained by MHIA.
However, due to the 5% optimality gap of the CPLEX solver,
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TaBLE 11: Results for the given line pool for MHIA and MILP on
the small HSR network.

Lines in MILP Frequencies (MHIA) Frequencies (MILP)
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TaBLE 12: Results of the given line pool for MILP on medium and

large HSR networks.

HSR BS ACT . Gap
networks Approaches PDS (+107)  (min) Lines (%)
12
1 2.40 2.7 (16) —
MILP 2 250 5347 2 —
’ ’ (34)
Medium 17
3237 53 a5
1 2.45 172 7 -2.0
MHIA 2 2.40 214 7 4.0
3 2.35 175 9 0.8
17
1 669 66 1y o~
MILP ) 6oa 53 2
Large (27)
& 3 — — (36 —
1 679 246 11 -15
MHIA 2 6.86 288 11 1.2
3 6.25 312 11 —
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it can happen that the profit of MHIA is higher than the
profit of MILP, leading to a negative gap. This happens for
the first demand scenario both for the medium and large
networks. The calculation of PDS 3 in large network by
MILP could not be obtained since the solver runs out of
memory due to the size of the network and the large line
pool.

For both networks, we can see in Table 12 that the
optimal results given by MILP are very close to the best
results obtained by MHIA for all demand scenarios. It il-
lustrates that MHIA obtains high quality results.

6. Conclusions

In this paper, we present a matheuristic iterative approach
(MHIA) for profit-oriented line planning and frequency
setting, applied to a high-speed railway (HSR) network.
Profit-oriented line planning considers both the operator’s
cost and the passenger travel time. The passenger travel time
is considered by reducing the ticket price (and thus operator
revenues) in case of detours or transfers. A mathematical
model is discussed to define the problem in detail. MHIA
integrates heuristic improvements of the line plan with an
exact approach for passenger assignment and frequency
setting. Two intensification and two diversification moves
are considered during the algorithm.

The performance of MHIA is assessed experimentally on
networks of different sizes and with different passenger
demand scenarios. On the smallest network with only 7
nodes, MHIA has an average gap with the optimal solution
of 2.9%. On several real-world instances based on the
Chinese HSR network, MHIA improves the profit with
10.7%, 8.3%, and 13.3% on average of different size networks
compared to an alternative iterative approach (AIA) which
does not use the exact passenger assignment and frequency
setting. Besides, MHIA increases the initial solutions of
small, medium, and large networks with 40.0%, 16.5%, and
10.7%, respectively. The average computation times for the
small, medium, and large network instances are 117.3 sec-
onds, 187 minutes, and 4.7 hours, respectively.

The experiments also provide useful insights into the
parameter settings when the network becomes large. With
adapted parameters for larger networks, MHIA acquires
high quality solutions within reasonable computation times.
This confirmed by comparing the performance with the
exact solution approach MILP. The best profits for all three
networks are very close to the optimal solutions using MILP,
when all MHIA lines are included in the line pool. For the
small, medium, and large HSR networks, the gaps between
the best MHIA solution and best MILP solution are 0.8%,
0.9%, and —0.2%, respectively, when taking the high-quality
lines as line pools.

The large HSR network with 34 major stations where
tracks split or join is considered in this paper. Comparing to
all the stations of this network (more than 800 stations), the
number of stations considered is still small. But all the 4V4H
high-speed tracks are involved. The intermediate stations
between the major stations are not considered explicitly, but
stopping there could be included in the travel time between
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two major stations. This provides the possibility for further
study on the optimal stopping pattern and other subsequent
issues.

Further work could consider different train sizes and
speeds and an optimization of the stopping patterns. It
would also be interesting to find out how the profit-oriented
line planning can be used or modified for operator-oriented
or passenger-oriented line planning. Another possibility
would be to integrate AIA and MHIA in order to find an
approach that can further reduce the computation time
while keeping the same solution quality.
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