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�is study aims to discover hidden patterns and potential relationships in risk factors in freight truck crash data. Existing studies
mainly used parametric models to analyze the causes of freight vehicle crashes. However, predetermined assumptions and
underlying relationships between independent and dependent variables have been cited as its limitations. To overcome these
limitations and provide a better understanding of factors that lead to truck crashes on the expressways, we applied the Association
Rules Mining (ARM) technique, which is a nonparametric method. ARM quanti�es the interrelationships between the ante-
cedents and consequents of truck-involved crashes and provides researchers with the most in�uential set of factors that leads to
crashes. We utilized a freight vehicle-involved crash data consisting of 19,038 crashes that occurred on the Korean expressways
from 2008 to 2017 for this investigation. From the data, 90,951 association rules were generated through ARM employing the
Apriori algorithm. �e lift values estimated by the Apriori algorithm showed the strength of association between risk factors, and
based on the estimated lift values, we identi�ed key crash contributory factors that lead to truck-involved crashes at various
segment types, under di�erent weather conditions, considering the driver’s age, crash type, driver’s faults, vehicle size, and
roadway geometry type. From the generated rules, we demonstrated that overspeeding with medium-weight trucks was highly
associated with crashes during the rainy weather, whereas drowsy driving during the evening was correlated with crashes during
�ne weather. Segment-related crashes were mainly associated with driver’s faults and roadway geometry. Our results present
useful insights and suggestions that can be used by transport stakeholders, including policymakers and researchers, to create
relevant policies that will help reduce freight truck crashes on the expressways.

1. Introduction

�e demand for freight transportation has been increasing
concurrently with the growing population experienced globally
[1]. In order to meet the needs of consumers, the number of
trucks, which forms the most dominant modes of freight
transportation, keeps on increasing [2]. Even though freight
vehicles play crucial roles in the economies of countries,
substantial volumes of truck tra£c impose signi�cant safety
issues. While there may be fewer crashes involving freight
trucks on expressways, the unique features of trucks with
respect to their size and weight, and their operational char-
acteristics contribute to the signi�cant increase in fatalities and
loss of property [1, 3]. As such, freight truck safety analysis
continues to be a crucial topic in the transportation �eld [2].

Research on freight truck safety has focused on three
main areas, namely, truck-involved crash frequency, severity
in terms of damage caused and the degree of injury sustained
by people involved in freight truck crashes, and the likeli-
hood of truck-involved crash occurrence. In particular,
driver characteristics, environmental factors, vehicle fea-
tures, and geometric roadway design features have been
cited as signi�cant contributory of truck-involved crashes
[2, 4]. To achieve valuable insights into freight truck safety,
researchers employed a wide variety of methodologies, such
as parametric discrete-outcome modeling techniques and
nonparametric machine learning-based approaches. How-
ever, the majority of these studies typically focused on crash-
risk factors and their contribution to each truck crash. Since
every single crash is a result of a combination of interrelated
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factors, they are to be studied thoroughly in order to find
meaningful countermeasures for truck crashes [5].

Based on this recognition, recent studies have employed
association rules mining (ARM), a data mining technique to
identify interesting associations between contributory crash
factors that simultaneously impact crashes [6]. To achieve
this, the Apriori algorithm, which efficiently searches as-
sociation rules using straightforward and easy to understand
computations, has mainly been employed [7, 8]. Pande et al.
[8] argue that this technique is more favorable compared to
cluster analysis as it provides easily understood relationships
between crash-risk factors. Also, it is better when compared
to parametric methods because it does not require assigning
variables as dependent variables or independent variables,
and no predefined assumptions are underlying the rela-
tionships between dependent and independent variables.
Hence, there are no assumptions to be violated to cause
flawed estimation results [9].

Understanding truck crashes on the expressways re-
quires full knowledge of the factors that combine to form
those crashes. Expressways serve as essential links between
cities, and freight truckers are among the majority that plies
them. Due to the function of the expressways, they are
characterized by unique features that contribute to increased
crash severity and risk [10, 11]. *e primary objective of this
study is to identify patterns and relationships in expressway
freight truck crash-risk factors that are usually unknown to
researchers using ARM.

2. Literature Review

2.1. Factors Influencing Truck Crashes. Research has iden-
tified a wide variety of factors that influence truck-involved
crash frequency. Cantor et al. [12] investigated the contri-
bution of truck driver factors on the likelihood of truck-
involved crashes using a driver-focused crash prediction
model. Empirical results suggested that driver-specific
contributory factors such as weight, gender, and height are
related to the likelihood of crash occurrence. In line with
these findings, Zhu et al. [13] also identified that male drivers
had a higher chance of crash involvement as they often
engage in risky driving on highways. Regarding vehicle
maintenance, Cantor et al. [12] established that poorly
maintained trucks increased crash probability. Detailed
analysis by Dong et al. [14] demonstrated that the annual
average daily traffic significantly affected truck-involved
crash frequency and severity. Also, impaired drivers and
driving under the influence of alcohol or drugs were ob-
served to lead to a higher crash frequency. Furthermore, the
authors identified that inclement weather conditions and
intersection locations are linked with an increase in truck-
involved crash frequency.

Studies considering driver’s age has been characterized
by inconsistencies in the literature [3]. Young drivers are
associated with increased fatal and property damage only
(PDO) crashes [15, 16]. Other studies also portrayed that
younger drivers are more likely to have a decrease in no
injury truck-involved crashes [17]. Chen and Chen [18]
examined injury severities of truck drivers concentrating on

single-vehicle and multivehicle crashes on highways. *eir
study reports that drivers older than 50 years increase the
likelihood of fatal crashes in single-vehicle (SV) truck-in-
volved crashes, whereas the probability decreases in mul-
tivehicle (MV) truck-involved crashes.

Several study outcomes have been consistent in the
perspective of gender. Model estimations show that female
truck drivers have an increased chance of severe and fatal
injuries [17, 19, 20]. Using a highway truck crash data,
Khattak et al. [21] also found that dangerous driving be-
haviors such as drunk driving significantly increases the
injury severity risk of truck occupants. According to them,
the severity of injuries also increases in trucks carrying
hazardous materials. Speeding has been identified as one of
the significant influencers of injury severity [2, 21, 22]. In the
literature concerning occupant injury severity in rear-end
truck-involved crashes, Yuan et al. [23] demonstrated that
injury severity increases as speed increases. Also, Hao et al.
[24] studied truck-involved crashes at highway-rail grade
crossings in the US and found that injury severity decreases
with the presence of speed control features on the roads.

Other factors such as inclement weather [23–25], wet
road surface [15, 23], fatigued driving [24], poor visibility
and dark conditions [17, 23, 24], the weight and number of
vehicles involved in the crash [15], and truck driver at-fault
crashes [3] increase injury severity probabilities. Concerning
roadway features, Ahmed et al. [22] found that truck crash
severity increased when trucks crash into fixed objects on the
highway but reduce when they crash into guardrails. Results
also confirmed that truck crash severity increases when it
occurs on leveled road surfaces.

Park and Jovanis [26] investigated the influence of hours
of service of truck drivers on truck crash risk. Results showed
that crash risk increased from 50% to 260% compared to the
first hour of driving.*is result is in line with those observed
by Teoh et al. [27]. *ey analyzed a matched case-control
study using data comprising large truck-involved crashes
from 2010 to 2012 and demonstrated that long hours of
driving led to increased crash risk. Furthermore, their results
showed that crash risk increased by up to three times when
the truck had defects. Likewise, the truck crash probability
showed to have a positive correlation with drivers’ age and
working conditions. Regarding roadway geometry factors,
Yuan et al. [23] also noted that straight road sections of
expressways were known for having increased probabilities
of crashes.

2.2. Methodological Approaches Used in Freight Truck Crash
Analyses. To date, a variety of techniques have been applied
to understand the factors contributing to truck crashes.
Researchers have broadly classified them into two, namely,
parametric methods and nonparametric methods. Para-
metric models form the majority of models used in truck
crash analysis. Among these, several variants of ordered logit
and probit regression models are the most common. *ese
models essentially help to determine the contribution of
individual crash-risk factors to injury severities
[15, 17, 18, 22, 23]. Although parametric models have served
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well in research, analysts have criticized them for requiring a
set of predetermined assumptions and underlying rela-
tionships between independent and dependent variables.
*eir prediction accuracy may be affected and turn out as
low when these assumptions are violated [6, 28].

To overcome these challenges, some researchers have
resorted to using nonparametric techniques for investigating
traffic crash data. In particular, Lopez et al. [28] used decision
rules to study the patterns of SV crashes on rural highways, de
Oña et al. [29] employed decision trees to extract valuable
information from police crash reports, and Kashani et al. [30]
employed classification tree models to examine factors that
affect injury severity of occupants of vehicles.

In other studies, researchers proposed a combination of
parametric and nonparametric methods to achieve better
predictions than either of the two methods would have given
if used alone or separately [31]. In the field of road safety,
Rusli et al. [32] used a similar technique to model crash
severity. *e authors argue that combining both approaches
not only allows for the specification of nonlinearities and
interactions but also the main effects. *e parametric model
used in their study allowed for capturing unobserved het-
erogeneity, which has been mentioned by previous research
as being very important in accident analysis [10].

Nevertheless, some recent research studies have argued
that since some nonparametric methods require a vast
dataset for analysis, they may suffer from overfitting [6, 31].
*erefore, applying a nonparametric technique that can deal
with a small number of variables while determining im-
portant patterns in crash data as in the association rules
mining (ARM) approach is imperative. Also, unlike the
parametric approaches, it requires no predefined underlying
assumptions [6]. Its primary objective is to determine real
associations in crash data without specifying dependent and
independent variables [33]. Another advantage of an ARM is
that it enables researchers to find easy and readily under-
standable causal relationships among interrelated factors in
a crash database by way of good visualization [5].

Even though ARM is a popular nonparametric technique,
only a few studies in the area of traffic safety have used it in
their analyses. Das et al. [9] used it to identify patterns in
traffic crashes under rainy weather conditions. Weng et al. [6]
also used it to find patterns in work zone crashes. Yu et al. [31]
analyzed 63,325 crashes from Wisconsin using ARM and
identified that drivers aremore inclined to havingmore severe
crashes when the road surface is dry, and the weather is fine.
*ey explained that drivers are more likely to indulge in risky
driving under such good road surface and weather conditions.

Extending the ideas obtained from previous research, we
primarily seek to analyze risk factors of truck-involved
crashes that occurred on expressways in South Korea sys-
tematically using ARM and to identify significant associa-
tions between the truck-involved crash-risk factors and
characteristics.

3. Data Description

Traffic crash records are collected and stored in the Korean
Expressway Corporation (KEC) crash database system and

managed by specially trained crash investigators from the
KEC [34]. *us, problems such as missing variables were
absent. At the KEC, a reportable crash is one that causes
either damage to property, injuries, or death of any person.
Upon visiting the crash scene, the investigators give all
vehicles involved in one crash a unique identification (ID)
number irrespective of the fact that a driver was at fault or
not. *e association of a distinct ID number to each crash
observation ensures that there are no duplicates in the data.
*e officials then proceed to collect crash-related infor-
mation for each crash observation. *e collected crash-re-
lated data consist of information pertaining to variables such
as severity level, weather, vehicle characteristics, driver’s age,
time of day, roadway geometry, location, type of crash, and
cause of the crash. *e KEC classifies the severity of crashes
into four, from A through D. Level A represents fatal crashes
(all crashes where the number of deaths> 3, injured per-
sons> 20, or property damage cost> 1 billion Korean Won
KRW). Level B shows severe injury (represents all crashes
where 1< number of deaths≤ 3, 5< injured persons≤ 20 or
2.5 million KRW< property damage cost≤ 1 billion KRW).
Level C stands for evident injury (1< injured persons≤ 5 or
300 thousand won< property damage cost≤ 2.5 million
KRW), and Level D denotes property damage only (PDO)
(damage cost≤ 300 thousand KRW) [35].

In total, 107,173 observations representing crashes that
occurred from 2008 to 2017 on the expressways were ob-
tained from KEC. To achieve the aim of our study, we
extracted truck-involved crash observations from the da-
tabase containing all crashes on the expressway.*e number
of truck-involved crash observations spanning all 38 ex-
pressway routes within the study period in South Korea was
19,038. We arranged the causes of crashes into groups such
as vehicle faults (tire puncture) and driver’s faults (negli-
gence, overspeeding, and drowsy driving). Table 1 shows the
list of truck-involved crash information and summarizes the
frequency distribution of truck crash incidents.

*e crash database to be used for the ARM analysis
contains 17 explanatory items with 98 subitems. *e table
shows that truck frequency is lowest on Sundays but is
almost similar throughout the other days of the week. Also,
truck-involved crashes are persistent during the day (6 AM
to 11:59 PM: 30.3%; 12 PM to 5:59 PM: 35.2%). Considering
the variable for the months, it shows that the majority of the
crashes occurred during summer (June, July, and August). In
this study, horizontal alignment is grouped based on their
lengths. Horizontal alignment is termed straight when there
is no curve. Road surfaces which are horizontally aligned to
the left or right side are termed left or right curves, re-
spectively. *eir curve length, which ranges from 500m to
1000m, is also indicated. Vertical alignments are grouped
into upward slopes (crest curves) and downward slopes (sag
curves), and their slopes or grades are indicated as shown in
Table 1. Most of the crashes occurred on the mainline
(64.4%) and straight and flat roads (horizontal alignment,
straight: 75.9%; vertical alignment, no slope: 63.2%). Ap-
proximately 69.3% of all the truck-involved crashes were of
severity level D, and most crashes occurred under fine
weather conditions (63.2%). In terms of driver-specific
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variables, older drivers were observed to have more crashes
(age group in the 50s: 28.2%), and drivers’ negligence was
found to be the majority cause of truck-involved crashes in
Korea. Cargo trucks and heavy trucks were observed to be
among the trucks highly prone to crashes.

4. Methodology

Association rules mining (ARM) is a data mining technique
that involves identifying a set of items that occur together in
an event [33]. In terms of truck safety, it is seen as a
technique employed to determine groups of crash charac-
teristics that are observed in a truck crash. *e Apriori

Table 1: Summary of freight-vehicle crashes.

Factor Frequency %

Month

January 1,331 7.0
February 1,187 6.2
March 1,392 7.3
April 1,561 8.2
May 1,656 8.7
June 1,704 9.0
July 1,974 10.4

August 1,877 9.9
September 1,712 9.0
October 1,637 8.6
November 1,477 7.8
December 1,530 8.0

Time

12 AM–5:59 AM 3,105 16.3
6 AM–11:59 PM 5,776 30.3
12 PM–5:59 PM 6,695 35.2
6 PM–11:59 PM 3,462 18.2

Route

Gyeongbu-line 3,470 18.2
Sehaean-line 1,742 9.2

Youngdong-line 1,599 8.4
Namhae-line 1,501 7.9

Jungbunaeruk-line 1,403 7.4
Jungbu-line 1,394 7.3
Jungang-line 1,238 6.5

Others 6,691 35.1

Segment

Mainline 12,256 64.4
Toll gate 3,113 16.4
Ramp 2,548 13.4
Tunnel 744 3.9
Rest area 273 1.4
Others 104 0.5

Severity

A 36 0.2
B 808 4.2
C 5,000 26.3
D 13,194 69.3

Cause

Negligence 6,051 31.8
Overspeeding 3,683 19.3

Drowsy 3,039 16.0
Tire puncture 1,353 7.1
Falling detritus 1,140 6.0
Unsafe distance 591 3.1
Improper passing 241 1.3

Others 2,940 15.4

Week of day

Sunday 1,481 7.8
Monday 3,027 15.9
Tuesday 3,177 16.7

Wednesday 2,940 15.4
*ursday 2,943 15.5
Friday 3,040 16.0
Saturday 2,430 12.8

Weather

Fine 12,040 63.2
Rainy 3,516 18.5
Cloudy 2,800 14.7
Snowy 595 3.1
Others 87 0.5

Crash types

Vehicle-facility 11,619 61.0
Vehicle-vehicle 3,638 19.1
Type-others 3,617 19.0

Vehicle-pedestrian 164 0.9

Table 1: Continued.

Factor Frequency %

Number of vehicles Single-vehicle-involved 13,327 70.0
Multivehicle-involved 5,711 30.0

1Horizontal
alignment

Straight 14,450 75.9
RCL> 1, 000m 2,324 12.2
LCL> 1, 000m 2,155 11.3
RCL< 500m 46 0.2

500m ≤RCL ≤ 1, 000m 25 0.1
500m ≤ LCL ≤ 1, 000m 20 0.1

LCL< 500m 18 0.1

2Vertical alignment

No slope 12,038 63.2
1%≤DS ≤ 3% 1,957 10.3
1%≤US ≤ 3% 1,704 9.0

DS< 1% 1,048 5.5
US< 1% 968 5.1
DS> 3% 689 3.6
US> 3% 634 3.3

Median

Fixed wall (127 cm) 6,459 33.9
Fixed wall (81 cm) 3,953 20.8

Guardrail 1,624 8.5
Landscape 442 2.3
No median 4,141 21.8
Others 5,419 12.7

Shoulder

Guardrail 8,057 42.3
Concrete guard 1,783 9.4
Guard fence 129 0.7
Guard pipe 39 0.2
No guardrail 5,639 29.6

Others 3,391 17.8

Vehicle weights (ton)
>3.5 t and≤8.5 t 7,834 41.1
≤3.5 t 6,130 32.2
>8.5 t 5,074 26.7

Vehicle types

Cargo truck 11,241 59.0
Box truck 3,876 20.4

Logging truck 2,950 15.5
Tanker 971 5.1

Driver’s age group

20s 4,315 22.7
30s 2,540 13.3
40s 4,841 25.4
50s 5,369 28.2

Over 60s 1,973 10.4
1RCL and LCL indicate right curve length and left curve length, respectively.
2DS and US indicate downward slope and upward slope, respectively.
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algorithm is well known for discovering association rules
due to its exploratory and easy to understand nature [5, 9].
*e details of the algorithm are given as follows.

Assuming I � i1, i2, . . . , in  is a set of n crash attributes
called items (a set of crash characteristics for each truck
crash record) and D � t1, t2, . . . , tm  is a database of truck
crash information, such that each crash information inD has
a unique identification ID and each ti ∈ I represents each
truck crash recordmade up of a subset of items selected from
I. Following Agrawal et al. [7], we define a rule as an im-
plication of the form A⟹B (for example, {Driver’s age
group: 20s, Weather: Rainy}⟹ {Crash type: Vehicle-ve-
hicle}), where A (Driver’s age group: 20s, Weather: Rainy)
and B (Crash type: Vehicle-vehicle) are itemsets which
belong to D, A is the antecedent on the left hand side (LHS),
and B is the consequent on the right hand side (RHS) of the
rule, and A ⊂ I, B ⊂ I, and A∩B � { }.

Finding association rules using the Apriori algorithm
involves a “bottom-up” approach. *e Apriori algorithm
employs the philosophy that a k-itemset is frequent if and
only if each item in the itemset is also frequent [7]. Twomain
steps are involved when mining interesting rules from a
dataset. *e first step involves frequent itemset generation.
*e algorithm first scans the database to identify itemsets
which satisfy some predefined minimum support. In the
next stage, the algorithm generates rules above a pre-
determined minimum confidence.

*e support and confidence are essential concepts in
ARM used for selecting important rules from all possible
rules. *e support shows how frequently a combination of
antecedent and consequent of a rule occurs together in the
database, and the confidence measures the credibility or the
strength of the rule by estimating the probability P(A | B),
interpreted as the share of cases in which the consequent
occurs given that the antecedent has occurred [6, 8]. *e
support and confidence can be estimated using the following
equations:

support(A⟹ B) � P A∩B( ) �
A∪B| |

|D|
, (1)

confidence(A⟹ B) �
support(A⟹ B)

support(A)
�

P A∩B( )

P(A)
.

(2)

It is essential to know that, in a single rule, there could be
multiple itemsets as either antecedents and or consequents.
*e association rule A⟹B should satisfy predefined
minimum thresholds α and β such that
support(A⟹B)≥ α and confi de nce(A⟹B)≥ β. *ey
are to be adjusted until interesting rules are observed [36]. If
a rule A⟹B satisfies the minimum support condition with
support value s, then it can be interpreted as s% of the crash
records in the database D containing A∪B. Also, if a rule
A⟹B holds with confidence c, then c%of the crash records
in the database D that contain A also contain B [37].

Depending on the dataset being studied, ARM algo-
rithms may produce a large set of rules that satisfies the
predefined thresholds for both α and β [6]. Lee et al. [5]
argue that confidence fails to take the baseline frequency of

the consequent into consideration, rendering it deficient. As
such, another measure known as lift was proposed to
overcome the aforementioned limitations by including the
frequency of the consequent in its equation as in the fol-
lowing formula:

lift(A⟹B) �
confidence(A⟹B)

support(A)
�

P A∩B( )

P(A)P(B)
. (3)

*e lift of the rule A⟹B shows how much the
probability of B will increase if A occurs [5]. *ere are three
instances. When lift(A⟹B)> 1, then there exists a pos-
itive interdependence between the antecedent and conse-
quent and the rule is seen as valuable. When
lift(A⟹B)< 1, then there is a negative interdependence
between the antecedent and the consequent. Finally, when
lift(A⟹B) � 1, then A and B are independent, and there
is no correlation between them. *e higher the lift measure,
the higher the interestingness of the generated rules. With
the aid of this measure, we sorted the rules that met the
minimum support and confidence thresholds.

*e Apriori algorithm is explained in the flowchart il-
lustrated in Figure 1, and the steps taken in generating
interesting rules are summarized as follows:

(1) Initially, scan database and find all frequent items.
(2) Generate support for the items. Items are discarded if

they do not meet the minimum support thresholds
(α).

(3) *e remaining items that met the predetermined
support are used to generate all possible itemset
configurations.

(4) From the frequent itemsets, find temporal associa-
tion rules that satisfy the predetermined minimum
confidence (β).

(5) Generate lift for the frequent itemsets. Items with lift
greater that 1 are selected as strong association rules.

5. Results and Discussion

In this study, we employed the Apriori algorithm to generate
association rules from the characteristics and crash con-
tributory factors in the dataset. To obtain interesting rules,
determining optimum support α and confidence β thresholds
is very crucial. *us, we conducted several trials using various
combinations of α and β. As shown in Table 2, it is observed
that the number of rules decreases as the thresholds increase.
For α � 1% and β � 10%, a total of 851,955 rules were
generated. On the other hand, when α � 14% and β � 100%,
only 1 rule was obtained. Clearly, setting very low threshold
values will yield a huge number of uninteresting rules.

In traffic crash analysis, several researchers used mini-
mum support threshold values in the range of 1–4% and
minimum confidence threshold values in the range of
10–70% [6, 9, 36]. In our study, we observed an interesting
relationship between the number of rules produced and α
and β values. From the graphs in Figures 2(a) and 2(b), there
is a general sharp decline in the number of rules generated
when both α and β are very negligible. However, there is a
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Lift > 1

Figure 1: Flowchart of the association rule mining process.

Table 2: Number of rules by combination of minimum support and confidence.

α/β 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.01 851,955 783,385 705,858 641,263 570,749 473,965 340,999 206,040 102,130 6,471
0.02 215,951 202,489 183,575 167,520 149,725 90,951 86,910 51,382 24,605 803
0.03 90,379 85,715 78,150 71,446 63,969 53,177 36,305 21,123 9,674 228
0.04 46,854 44,698 40,979 37,524 33,692 27,962 18,619 10,525 4,421 97
0.05 27,952 26,847 24,753 22,690 20,474 17,096 11,187 6,237 2,484 56
0.06 13,775 13,182 12,242 10,934 9,815 8,101 5,417 3,366 1,462 25
0.07 9,183 8,840 8,232 7,334 6,639 5,529 3,641 2,220 835 16
0.08 6,475 6,263 5,827 5,184 4,718 3,932 2,561 1,525 512 9
0.09 4,741 4,600 4,301 3,835 3,507 2,929 1,873 1,110 358 7
0.1 3,626 3,531 3,312 2,941 2,699 2,267 1,458 872 285 4
0.11 2,763 2,712 2,547 2,266 2,076 1,750 1,115 662 205 1
0.12 2,153 2,122 2,002 1,766 1,629 1,371 858 494 145 1
0.13 1,688 1,667 1,575 1,396 1,284 1,082 656 366 95 1
0.14 1,306 1,288 1,214 1,089 1,001 842 501 273 64 1
0.15 1,073 1,059 1,003 905 831 698 407 207 43 —
0.16 884 876 835 756 696 576 326 160 32 —
0.17 720 713 688 626 578 484 272 135 24 —
0.18 587 582 566 510 479 394 208 95 16 —
0.19 507 505 492 447 421 351 181 84 13 —
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sudden change within the region of α � 2% and β � 60% in
Figures 2(a) and 2(b), respectively. At this point, the number
of rules generated is reduced to 90,951.

Since the number of truck-involved crash observations
used for this analysis is 19,038, the selected minimum
support threshold value (2%) means that, for a crash factor,
or a set of crash factors to be considered, it should appear in
at least 381 truck crash records. On the other hand, the
selected minimum confidence value (60%) means that a
generated rule is deemed as credible if it occurs at least 60
percent of the time. Even though the selection of these
threshold values is subjective, we are sure that the rules
obtained are stable, interesting, and noteworthy.

Statistics of average support, confidence, and lift values
for the generated rules given different sizes of itemsets are
shown in Table 3 and visualized in Figure 3. *e number of
rules generated increases with increasing itemset size, and
the difference between the total number of rules generated
and the number of rules greater than 1 is marginal. For
itemsets of size n � 2, only 583 rules were generated, of
which 517 were greater than 1, and for itemsets of size n � 3,
6,891 rules were generated with 6,323 rules having signifi-
cant interdependence between the antecedents and conse-
quents. From the table, the maximum number of items in an
itemset was n � 10.*e total number of rules was 90,951, out
of which 88,018 rules had a lift greater than 1. *is
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Figure 2: Distribution of association rules based on (a) minimum support (α) and (b) confidence (β) values.
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observation had the highest average lift value. According to
Weng et al. [6], the higher the lift value, the higher the
association between the antecedent and consequent. As the
average lift value increases with increasing itemset size, we
can say that the interestingness of the association rules
increases with increasing itemset size.

5.1. Key Contributory Patterns for Truck-Involved Crashes.
In the real world, many factors contribute to each distinct
crash. Hence, it is likely to have several items in either the
antecedent or consequent. Figure 4 visualizes the frequency
of items generated by ARM. Overall, the top ten frequent
items in the truck-involved crash database are {Median:
Guardrail}, {Horizontal Alignment: Straight}, {Number of
vehicles involved: Single vehicle-involved}, {Segment:
Mainline}, {Weather: Fine}, {Vertical Alignment: No slope},
{Crash type: vehicle-facility}, {Vehicle type: Cargo truck},
{Median� Fixed wall}, and {Cause: Negligence}, in that
order.

*e graph-based visualization provided in Figure 5 helps
us understand the patterns of the rules generated by ARM. A

vertex represents each item, and connections between every
pair of vertices represent the relationship between the an-
tecedent and consequent. *e link begins from the ante-
cedent and ends on the consequent. From the graph, items
with a larger circle have more association compared to the
items with a smaller circle. *e results show that driving
cargo trucks on a straight and flat mainline section on a fine
weather is likely to result in a single-vehicle (SV) crash where
the truck runs into a fixed wall or any roadway facility
(Figures 4 and 5)

To concentrate on attaining meaningful analysis, we
identify critical crash contributory factors that lead to truck-
involved crashes at various segment types (mainline, ramp,
and toll gate), under different weather conditions (fine and
rainy), considering the drivers age (20s and 30s), crash type
(vehicle to vehicle and vehicle to facility), driver’s faults
(negligence and overspeeding), vehicle weight (<3.5 t, 3.5 t
and<8.5 t, >8.5 t), and roadway geometry type (straight and
flat surfaces). *ese key variables were those that obtained
lift values greater than 1. For this study, we screened out the
top 5 rules for each subitem mentioned above and sorted
them by descending lift values.

Table 3: Average support, confidence, and lift values by subset sizes.

Size of subsets (n) Number of rules Number of rules lift >1 Average support values Average confidence values Average lift values
2 583 517 0.117 0.696 1.383
3 6,891 6,323 0.060 0.726 1.316
4 27,320 25,704 0.045 0.752 1.379
5 55,812 53,338 0.040 0.770 1.445
6 77,064 74,225 0.037 0.782 1.494
7 86,968 84,044 0.036 0.789 1.526
8 90,159 87,227 0.036 0.792 1.543
9 90,868 87,935 0.036 0.792 1.548
10 90,951 88,018 0.036 0.792 1.549
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Considering the association rules by the expressway
segment type shown in Table 4, it is easy to see that the
antecedents (LHS) of the high-lift rules relating to median

type, roadway geometry, and the number of vehicles in-
volved in a crash: {Median: fixed wall (127 cm)}, {Vertical
alignment: no slope}, {Horizontal alignment: straight},

Monday

Tuesday

Box truck

Negligence

Median

Over speeding

Up slope

Friday

Rainy

No slope
Fine

Ramp

Curve

Guardrail

Straight

Vehicle
facility

Single

Fixed wall

Toll
gate

Down slope

Mainline

Multi vehicle
involved
crashe

Cargo truck

Drowsy

Figure 5: Network graph for association among keywords.
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{Median: fixed wall (81 cm)}, and {Number of vehicles:
multi-vehicle involved} are highly associated with truck
crashes that occur on the mainline. At the ramp section of
the expressway, the most frequent items associated with
crashes include {Cause: overspeeding}, {Crash type: vehicle-
facility}, {Median: no median}, and {Number of vehicles
involved: single}.*ese crashes are mostly of severity level D,
which is consistent with findings in the literature [19]. At the
toll gate section, the items mostly associated with truck
crashes include {Crash type: vehicle-facility}, {Number of
vehicles: single vehicle}, {Vertical alignment: no slope}, and
{Vehicle weight: >8.5 t}. *e results show that heavy trucks
are more likely to crash into facilities around the toll booth
areas with flat (no slope) road surfaces. *ese crashes mostly
result in SV crashes with a severity level of D. In Table 4, the
rule with the highest lift value (5.99) is {Cause: negligence,
Crash type: vehicle-facility, Level: D, Median: others,

Number of vehicles: single vehicle, Shoulder: others, Vertical
alignment: no slope}⟹ {Segment: TG}.*is rule indicates
that if a single vehicle-facility low severity crash happened on
a roadway with no slope as a result of the driver’s negligence,
it is more likely to have occurred at the toll gate section of the
expressway.

Other interesting rules concerning the weather condi-
tion are exhibited in Table 5. *e analysis uncovers that
drowsy driving and driving from 12 noon to 5 PM are the
main factors associated with fine weather crashes. Also,
items highly associated with truck crashes during the rainy
weather are {Cause: over-speeding} and {Vehicle weight:
>3.5 t and<8.5 t}. Considering the weather condition, the
rule with the highest lift (4.2256) {Cause: over-speeding,
Crash type: vehicle-facility, Number of vehicles: single,
Segment: mainline, Vehicle weight: >3.5 t and<8.5 t, Vehicle
type: cargo truck}⟹ {Weather: rainy} shows that an SV-

Table 4: Association rules by segment types.

LHS RHS Itemset α β Lift
{Median: fixed wall (127 cm), Region: Daegu, Route:
Gyeongbu-line, Vertical alignment: no slope}

{Segment: mainline}

5-itemset 0.0200 1.0000 1.6127

{Horizontal alignment: straight, Median: fixed wall
(127 cm), Number of vehicles: multi-vehicle involved,
Route: Gyeongbu-line, Vertical alignment: no slope}

6-itemset 0.0261 0.9980 1.6094

{Level: D, Median: fixed wall (81 cm), Number of
vehicles: multi-vehicle involved, Shoulder: guardrail} 5-itemset 0.0228 0.9977 1.6090

{Horizontal alignment: straight, Median: fixed wall
(127 cm), Number of vehicles: multi-vehicle involved,
Route: Gyeongbu-line, Weather: fine}

6-itemset 0.0218 0.9976 1.6088

{Driver age: 20s, Median: fixed wall (127 cm),
Number of vehicles: multi-vehicle involved, Vehicle
type: cargo truck}

5-itemset 0.0207 0.9975 1.6086

{Cause: over-speeding, Crash type: vehicle-facility,
Median: no median, Number of vehicles: single
vehicle, Vehicle type: cargo truck}

{Segment: ramp}

6-itemset 0.0215 0.7518 5.7603

{Cause: over-speeding, Crash type: vehicle -facility,
Level: D, Median: no median, Number of vehicles:
single vehicle}

6-itemset 0.0242 0.7508 5.7524

{Cause: over-speeding, Level: D, Median: no median,
Number of vehicles: single vehicle} 5-itemset 0.0262 0.7500 5.7462

{Cause: over-speeding, Crash type: vehicle -facility,
Median: no median, Number of vehicles: single
vehicle}

5-itemset 0.0294 0.7477 5.7283

{Cause: over-speeding, Level: D, Median: no median,
Number of vehicles: single vehicle, Shoulder: no
guardrail}

6-itemset 0.0214 0.7459 5.7147

{Cause: negligence, Crash type: vehicle -facility, Level:
D, Median: others, Number of vehicles: single vehicle,
Shoulder: others, Vertical alignment: no slope}

{Segment: TG}

8-itemset 0.0202 0.9413 5.9979

{Median: others, Number of vehicles: single vehicle,
Shoulder: others, Vehicle weight: >8.5 t, Vertical
alignment: no slope}

6-itemset 0.0223 0.9361 5.9648

{Crash type: vehicle -facility, Median: others,
Shoulder: others, Vehicle weight: >8.5 t} 5-itemset 0.0201 0.9340 5.9512

{Cause: negligence, Crash type: vehicle -facility,
Median: others, Number of vehicles: single vehicle,
Shoulder: others, Vertical alignment: no slope}

7-itemset 0.0234 0.9329 5.9444

{Driver age: 50s, Median: others, Number of vehicles:
single vehicle, Shoulder: others, Vertical alignment:
no slope}

6-itemset 0.0218 0.9103 5.8002
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facility crash involving a medium-weight cargo truck that
occurred on the mainline due to over speeding is likely to
occur on a rainy day.

*e reason for this association could be that roads are
slippery on rainy days. Hence, overspeeding makes it dif-
ficult for drivers to control trucks in case of an emergency.
As the mainline segment of expressways is always busy,
drivers of heavy trucks who overspeed on rainy days are
highly likely to have single-vehicle crashes. *is observation
is consistent with previous research on truck safety [18, 35].

Rules with {Driver age: 20s & 30s} on the RHS were the
only ones with a lift value greater than 1. Again, we selected
the top 5 of the rules and arranged them in descending order,
as presented in Table 6. *e frequent items from all the rules
generated in this category are {Horizontal alignment:
straight}, {Region: Changwon}, and {Vertical alignment: no
slope}. *e rule with the highest lift value (3.6399) is
{Horizontal alignment: straight, Region: Changwon, Route:
Namhae-line, Vertical alignment: no slope}⟹ {Driver
age: 20s & 30s}. *is rule can be explained as 2.06% of the
truck-involved crashes that occurred on leveled and straight
expressway sections in the Changwon region of South Korea
and on the Namhae-line route are highly associated with
drivers in their 20s and 30s. Also, out of all the crashes in the
dataset which have crash records of the itemset {Horizontal
alignment: straight, Region: Changwon, Route: Namhae-
line, Vertical alignment: no slope}, 79.84% of the drivers
were between the ages of 20 and 30.

*ese results present interesting findings. It is worth
noting that Changwon city is home to the Changwon In-
dustrial Complex, which comprises a hub of heavy industrial
factories such as LG Electronics and GMKorea and employs
almost 100,000 people of which the majority are young. As
such, it is reasonable to infer that the young drivers in that

region are mostly involved in truck crashes since they form
the majority of the city’s dwellers. *e results also showed
that young drivers are associated with truck crashes on
straight and leveled roads, especially when the weather is
good.*e findings are consistent with research conducted by
Yu et al. [31], which mentions that drivers tend to indulge in
risky driving when the weather and road conditions are
right. *e rules discussed above are shown in Table 6.

Table 7 lists the top 5 rules that contain highly associated
crash characteristics for both vehicle-vehicle crash type and

Table 5: Association rules by weather condition.

LHS RHS Itemset α β Lift
{Cause: drowsy, Segment: mainline, Time: t12–17}

{Weather: fine}

4-itemset 0.0258 0.8466 1.3941
{Cause: drowsy, Horizontal alignment: straight,
Time: t12–17} 4-itemset 0.0235 0.8312 1.3688

{Cause: poor loading} 2-itemset 0.0214 0.8124 1.3378
{Crash type: vehicle- vehicle, Horizontal alignment:
straight, Number of vehicles: multi-vehicle involved,
Time: t12–17, Vertical alignment: no slope}

6-itemset 0.0226 0.8117 1.3367

{Cause: drowsy, Driver age: 20s} 3-itemset 0.0241 0.8024 1.3215
{Cause: over-speeding, Month: JULY}

{Weather: rainy}

3-itemset 0.0213 0.7879 4.3533
{Cause: over-speeding, Crash type: vehicle-facility,
Number of vehicles: single, Segment: mainline,
Vehicle weight: >3.5 t and<8.5 t, Vehicle type: cargo
truck}

6-itemset 0.0210 0.7648 4.2256

{Cause: over-speeding, Crash type: vehicle -facility,
Number of vehicles: single, Segment: mainline,
Vehicle weight: >3.5 t and<8.5 t}

6-itemset 0.0281 0.7535 4.1632

{Cause: over-speeding, Crash type: vehicle -facility,
Segment: mainline, Vehicle weight: >3.5 t and<8.5 t,
Vehicle type: cargo truck}

6-itemset 0.0230 0.7526 4.1580

{Cause: over-speeding, Crash type: vehicle -facility,
Horizontal alignment: straight, Number of vehicles:
single, Vehicle weight: >3.5 t and<8.5 t}

6-itemset 0.0246 0.7301 4.0338

Table 6: Association rules by driver’s age group.

LHS RHS Itemset α β Lift
{Horizontal
alignment: straight,
Region: Changwon,
Route: Namhae-line,
Vertical alignment:
no slope}

{Driver
age: 20s
& 30s}

4-
itemset 0.0206 0.7984 3.6399

{Horizontal
alignment: straight,
Region: Changwon,
Weather: fine}

4-
itemset 0.0212 0.7860 3.5835

{Horizontal
alignment: straight,
Region: Changwon,
Vertical alignment:
no slope}

4-
itemset 0.0246 0.7804 3.5578

{Region: Changwon,
Vertical alignment:
no slope}

4-
itemset 0.0247 0.7213 3.2885

{Region: Changwon,
Vehicle type: cargo
truck}

4-
itemset 0.0206 0.6907 3.1489
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vehicle-facility crash type. In the first category with {Crash
type: vehicle-vehicle} on the RHS, we observe that the most
common antecedents on the LHS are {Segment: mainline},
{Number of vehicles: multi-vehicle involved}, and {Cause:
drowsy}. For rules with {Crash type: vehicle-facility} on the
RHS, we observe items such as {Segment: TG}, {Horizontal
alignment: straight}, {Driver age: 50s}, {Number of vehi-
cles: single}, and {Cause: negligence}. *e frequent oc-
currence of these antecedents shows that drowsy driving is
the leading cause of vehicle-vehicle crashes, whereas
negligence is the main cause of vehicle-facility crashes.
Vehicle-vehicle crashes are more prone to occur on the
mainline, whereas vehicle-facility crashes are more prob-
able to occur around the toll gate section of the expressway.
*e highest lift value rules in both categories ({Level: B,
Number of vehicles: multi-vehicle involved, Segment:
mainline}⟹ {Crash type: vehicle-vehicle}; {Cause: neg-
ligence, Driver age: 50s, Horizontal alignment: straight,
Level: D, Number of vehicles: single, Segment: TG}⟹
{Crash type: vehicle-facility}). From these results, decision-
makers must make policies directed at checking driver
attitudes when driving and during work hours of truck
drivers.

Another set of interesting rules related to driver’s faults
are presented in Table 8. Two sets of consequents on the
RHS were the only factors that had lift values greater than 1.
We selected the top 5 rules under each category, as dis-
played in the table. From the rules with RHS {Cause:
negligence}, the common items on the LHS are {Segment:

TG}, {Vertical alignment: no slope}, {Horizontal align-
ment: straight}, and {Crash type: vehicle-facility}.*e study
results show that crashes that occurred at the toll gate
sections that have straight and leveled surfaces are often as
a result of driver’s negligence. As accounted by previous
studies, the tendency of indulging in risky driving increases
when driving on such roads. *is observation is because
drivers have a good field of view, and the probability of
becoming negligent then rises, causing crashes. As shown
in Table 8, the crashes which occur during rainy weather
are highly likely to be caused by overspeeding, and most of
these crashes result in severity level D. In contrast with
other studies focused on truck-involved crashes [15], our
study identified that crashes that occurred during rainy
weather and resulted in severity level D are associated with
overspeeding. It reminds us of the need to enforce speed
regulations and use speed control features as it is cited as
being highly efficient in decreasing the frequency and se-
verity of crashes [23].

Table 9 shows the association rules obtained under the
vehicle weight category. Under the category, the rule with
the highest lift has {Vehicle weight: >8.5 t} as its conse-
quent. Its antecedent {Vehicle type: logging truck,
Weather: cloudy} shows that logging trucks that are in-
volved in crashes are likely to be heavy vehicles, and SV
cargo truck crashes that occur at the ramp section
resulting in severity level D are likely to have lightweight
trucks involved (RHS is {Vehicle weight: <3.5 t}). Also,
cargo truck crashes on leveled roads that result in severity

Table 7: Association rules by crash type.

LHS RHS Itemset α β Lift
{Level: B, Number of vehicles: multi-vehicle involved,
Segment: mainline}

{Crash type: vehicle-vehicle}

4-itemset 0.0232 0.8384 4.5935

{Cause: unsafe distance, Number of vehicles: multi-
vehicle involved} 3-itemset 0.0216 0.8175 4.4787

{Cause: drowsy, Median: fixed wall (127 cm), Number
of vehicles: multi-vehicle involved, Segment:
mainline, Weather: fine}

6-itemset 0.0216 0.8175 4.4787

{Cause: drowsy, Horizontal alignment: straight,
Median: fixed wall (127 cm), Number of vehicles:
multi-vehicle involved, Segment: mainline}

6-itemset 0.0204 0.7918 4.3384

{Cause: drowsy, Horizontal alignment: straight,
Number of vehicles: multi-vehicle involved, Segment:
mainline, Vertical alignment: no slope}

6-itemset 0.0222 0.7645 4.1885

{Cause: negligence, Driver age: 50s, Horizontal
alignment: straight, Level: D, Number of vehicles:
single, Segment: TG}

{Crash type: vehicle-facility}

7-itemset 0.0209 0.9900 1.6794

{Cause: negligence, Driver age: 50s, Horizontal
alignment: straight, Level: D, Number of vehicles:
single, Segment: TG, Vertical alignment: no slope}

8-itemset 0.0207 0.9900 1.6793

{Driver age: 50s, Horizontal alignment: straight,
Number of vehicles: single, Segment: TG, Vehicle
type: cargo truck}

6-itemset 0.0210 0.9852 1.6711

{Driver age: 50s, Horizontal alignment: straight,
Number of vehicles: single, Segment: TG, Vehicle
type: cargo truck, Vertical alignment: no slope}

6-itemset 0.0209 0.9851 1.6710

{Cause: negligence, Median: no median, Number of
vehicles: single, Segment: TG, Vehicle weight: >3.5 t
and<8.5 t, Vehicle type: cargo truck}

7-itemset 0.0208 0.9851 1.6710
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level D are expected to be a medium-weight truck (RHS is
{Vehicle weight: >3.5 t and <8.5 t}).

*e antecedent {Route: Gyeongbu-line} is highly asso-
ciated with crashes involving heavy trucks. *e Gyeongbu
line is the longest expressway line in South Korea with a
speed limit of 100–110 km/h. Due to its importance, it
currently stands as themost used line with an annual average
daily traffic (AADT) of 1,335,770 [35]. It also has the highest
number of toll booths compared to all the other expressway
lines in South Korea. As illustrated in previous rules, the
high frequency of antecedents like {Segment: TG}, {Cause:
vehicle-facility}, {Cause: negligence}, and {Number of ve-
hicles: single} shows that many of these crashes are likely to
be SV crashes at the toll gate section, which is as a result of
the features of the Gyeongbu expressway line. According to
Hong et al. [35], many SV truck-involved crashes are ex-
pected to occur at toll gate sections, reflecting the results of
our study. *us, decision-makers and planners should pay
more attention when designing toll gate sections to ac-
commodate the heavy trucks better. Policymakers should
make regulations to ensure the safety of heavy trucks on such
vital roadways. Also, the results reiterate the reasons why
heavy truck drivers should be careful when using toll gate
sections of the expressway line.

Expressway design elements related to the horizontal
and vertical alignments have shown remarkable findings.
From Table 10, the antecedents on the LHS are somewhat
similar in both categories on the RHS ({Horizontal
alignment: straight} and {Vertical alignment: no slope}).
Based on the frequency of the antecedents, we observed
that {Segment: TG} and {Median: no median} are highly
associated with the consequent {Horizontal alignment:
straight}. On the other hand, {Horizontal alignment:
straight} and {Median: no median} are the most frequent
antecedents associated with the consequent {Vertical
alignment: no slope}. It is also significant to note that the
items {Vehicle weight: >8.5 t}, {Time: t6–11} and {Seg-
ment: TG} are common to both consequents {Horizontal
alignment: straight} and {Vertical alignment: no slope}.

*e association rules indicate that heavy trucks traveling
on the expressway in the morning hours of the day are likely
to be involved in vehicle-facility SV crashes at the toll gate
section when the roadway surface is straight with no slope.
Previous rules depict that drivers are negligent when plying
roads with leveled and slopeless surfaces due to their im-
proved field of view. Also, since many trips are made during
peak hours, AADT is expected to increase as truck drivers
rush to complete their trips. *is situation increases their

Table 8: Association rules by driver’s faults.

LHS RHS Itemset α β Lift
{Crash type: vehicle-facility, Horizontal alignment:
straight, Median: no median, Number of vehicles:
single, Segment: TG, Vehicle weight: >3.5 t and<8.5 t,
Vehicle type: cargo truck, Vertical alignment: no
slope}

{Cause: negligence}

9-itemset 0.0205 0.7377 2.4556

{Level: D, Median: no median, Segment: TG, Vehicle
weight: >3.5 t and<8.5 t, Vehicle type: cargo truck,
Vertical alignment: no slope}

7-itemset 0.0200 0.7257 2.4155

{Crash type: vehicle-facility, Driver age: 20s,
Horizontal alignment: straight, Number of vehicles:
single, Segment: TG, Vertical alignment: no slope}

7-itemset 0.0201 0.7254 2.4144

{Crash type: vehicle-facility, Driver age: 20s,
Horizontal alignment: straight, Segment: TG, Vertical
alignment: no slope}

6-itemset 0.0205 0.7196 2.3950

{Crash type: vehicle-facility, Horizontal alignment:
straight, Level: D, Segment: TG, Time: t12–17,
Vertical alignment: no slope}

7-itemset 0.0256 0.7001 2.3304

{Crash type: vehicle-facility, Number of vehicles:
single, Segment: ramp, Vehicle weight: <3.5 t,
Weather: rainy}

{Cause: over-speeding}

6-itemset 0.0202 0.8384 4.4023

{Crash type: vehicle-facility, Level: D, Number of
vehicles: single, Segment: ramp, Vehicle type: cargo
truck, Weather: rainy}

7-itemset 0.0227 0.8232 4.3223

{Crash type: vehicle-facility, Number of vehicles:
single, Segment: ramp, Vertical alignment: no slope,
Weather: rainy}

5-itemset 0.0215 0.8131 4.2694

{Crash type: vehicle-facility, Level: D, Time: t6–11,
Vehicle type: cargo truck, Weather: rainy} 6-itemset 0.0202 0.7237 3.7998

{Crash type: vehicle-facility, Number of vehicles:
single, Segment: mainline, Shoulder: guardrail,
Weather: rainy}

6-itemset 0.0283 0.7231 3.7969
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Table 10: Association rules by geometry.

LHS RHS Itemset α β Lift
{Median: no median, Segment: TG, Vehicle weight:
>8.5 t}

{Horizontal alignment: straight}

4-itemset 0.0222 1.0000 1.6416

{Median: no median, Segment: TG, Time: t6–11} 4-itemset 0.0243 1.0000 1.6416
{Driver age: 20s, Region: Changwon, Route: Namhae-
line, Vertical alignment: no slope} 5-itemset 0.0206 1.0000 1.6416

{Crash type: vehicle-facility, Driver age: 20s, Median:
no median, Segment: TG} 5-itemset 0.0202 1.0000 1.6416

{Crash type: vehicle-facility, Median: no median,
Segment: TG, Time: t6–11} 4-itemset 0.0227 1.0000 1.6416

{Driver age: 20s, Median: no median, Segment: TG,
Shoulder: no guardrail}

{Vertical alignment: no slope}

4-itemset 0.0212 0.9975 1.6574

{Driver age: 20s, Horizontal alignment: straight,
Median: no median, Number of vehicles: single,
Segment: TG}

6-itemset 0.0210 0.9975 1.6573

{Cause: negligence, Horizontal alignment: straight,
Level: D, Segment: TG, Vehicle weight: >8.5 t} 6-itemset 0.0210 0.9975 1.6573

{Crash type: vehicle -facility, Horizontal alignment:
straight, Median: no median, Shoulder: no guardrail,
Vehicle type: cargo truck, Weather: rainy}

7-itemset 0.0201 0.9871 1.6400

{Cause: negligence, Horizontal alignment: straight,
Number of vehicles: single, Segment: TG, Time:
t6–11}

6-itemset 0.0241 0.9871 1.6400

Table 9: Association rules by vehicle weight.

LHS RHS Itemset α β Lift
{Crash type: vehicle-facility, Horizontal alignment:
straight, Level: D, Number of vehicles: single,
Segment: ramp, Vehicle type: cargo truck, Vertical
alignment: no slope}

{Vehicle weight: <3.5 t}

8-itemset 0.0201 0.7114 2.2851

{Crash type: vehicle-facility, Level: D, Number of
vehicles: single, Segment: ramp, Vehicle type: cargo
truck, Vertical alignment: no slope}

7-itemset 0.0265 0.6852 2.2011

{Number of vehicles: single, Segment: ramp, Vehicle
type: cargo truck, Weather: rainy} 5-itemset 0.0228 0.6845 2.1989

{Cause: over-speeding, Level: D, Number of vehicles:
single, Segment: ramp, Vehicle type: cargo truck} 6-itemset 0.0269 0.6702 2.1527

{Driver age: 60s, Horizontal alignment: straight,
Level: D, Vehicle type: cargo truck} 5-itemset 0.0211 0.6442 2.0694

{Horizontal alignment: straight, Shoulder: guardrail,
Vehicle type: cargo truck}

{Vehicle weight: >3.5 t and <8.5 t}

4-itemset 0.0288 0.9649 2.4331

{Horizontal alignment: straight, Level: D, Segment:
mainline, Shoulder: guardrail, Vehicle type: cargo
truck}

6-itemset 0.0213 0.9621 2.4261

{Crash type: vehicle-facility, Horizontal alignment:
straight, Number of vehicles: single, Vehicle type:
cargo truck}

5-itemset 0.0226 0.8515 2.1472

{Cause: negligence, Level: D, Median: no median,
Segment: TG, Vehicle type: cargo truck, Vertical
alignment: no slope}

7-itemset 0.0200 0.7175 1.8094

{Level: D, Median: no median, Segment: TG, Vehicle
type: cargo truck, Vertical alignment: no slope,
Weather: fine}

7-itemset 0.0202 0.6912 1.7430

{Vehicle type: logging truck, Weather: Cloudy}

{Vehicle weight: >8.5 t}

3-itemset 0.0214 1.0000 3.9199
{Vehicle type: logging truck, Week of day: *ursday} 3-itemset 0.0248 1.0000 3.9199
{Route: Gyeongbu-line, Vehicle type: logging truck} 3-itemset 0.0244 1.0000 3.9199
{Segment: TG, Vehicle type: logging truck} 3-itemset 0.0308 1.0000 3.9199
{Route: Gyeongbu-line, Vehicle type: logging truck} 3-itemset 0.0244 1.0000 3.9199

14 Journal of Advanced Transportation



chances of crashing into facilities around the toll gate
section.

6. Conclusion

Research on truck safety has been extensively conducted,
providing policymakers with knowledge of how much crash
risk factors affect the severity or the frequency of crashes.
However, since each truck-involved crash involves a com-
plex interaction among crash risk factors, traffic safety of-
ficers are particularly interested in finding the most
influential factors that lead to a crash. Due to the significant
impact of truck crashes, it is imperative to find sets of factors
that occur together in a single truck crash for use in de-
veloping countermeasures to ensure truck safety.

*is study bridges the gap in the literature by analyzing
patterns of truck crashes and the association between risk
factors and crash characteristics from a large database of
truck crashes that occurred on the expressways using the
ARM technique. Out of a total of 90,951 rules derived
through the learning of the crash dataset, 88,018 rules were
found to have significant relationships between the crash
contributory factors. A summary of the interesting findings
from our study is as follows.

First, frequent items in the truck-involved crash database
were found to be the guardrail median, straight horizontal
alignment, single vehicle-involved, mainline, clear weather,
no vertical curve, vehicle-facility collision, cargo truck, and
driver’s negligence.*ese factors explain the unique patterns
of truck crashes. Segment types considered in this study,
namely, mainline, toll gate, and ramp, showed different
truck crash characteristics. Truck crashes were found to have
mainly occurred on the mainline of the expressway, while
crashes on the ramp section were likely to be associated with
driver’s overspeeding and PDO level. Near toll gates, we
found that truck crashes were highly related to trucks of
weight greater than 8.5 tons and driver’s negligence. Freight
vehicle crashes under fine weather conditions showed an
association with drowsy driving and driving time between
noon and 5 PM, whereas truck crashes on rainy weather
were likely to be linked with factors like overspeeding, mid-
size truck, and single vehicle crash. We also discovered that
crashes in a specific region with well-designed roadway
geometry, excluding vertical and horizontal curves, were
mainly linked with young freight vehicle drivers in their 20s
and 30s. Additionally, the result showed the association
between young freight vehicle drivers’ traffic violations and
good conditions of roadways. In terms of crash types, we
confirmed that vehicle to vehicle crashes were likely to have
the severity of Level B while vehicle to facility crashes are
mostly of severity Level D. Besides, the vehicle to vehicle
crashes were likely to occur on mainline segments of the
expressway, but the vehicle to facility crashes frequently
happened near the toll gate entrance.

In this study, we attempted to derive valuable solutions
by interpreting the important rules underlying the freight
vehicle crash data. As mentioned earlier, ARM is a meth-
odology used to determine the association between freight
vehicle crashes and particular risk factors by estimating lift

values through the Apriori algorithm.We demonstrated that
it is a plausible technique for analyzing patterns and
characteristics of freight vehicle crashes. *e research results
can provide useful insights and suggestions to transport
stakeholders, including policymakers and researchers, for
creating relevant policies to help reduce freight truck crashes
on the expressways.

As a limitation of this study, the raw crash dataset used in
this study had no AADT information for each crash ob-
servation; therefore, we could not consider the associations
between AADT and other crash characteristics and factors.
Since AADT is a critical factor to consider in traffic safety
analysis, we would consider using it in future studies and
comparing the results with findings in the literature.
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