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We developed a new car-following model to investigate the e�ects of driver anticipation and driver memory on tra�c �ow. �e 
changes of headway, relative velocity, and driver memory to the vehicle in front are introduced as factors of driver’s anticipation 
behavior. Linear and nonlinear stability analyses are both applied to study the linear and nonlinear stability conditions of the new 
model. �rough nonlinear analysis a modi�ed Korteweg-de Vries (mKdV) equation was constructed to describe tra�c �ow near 
the tra�c near the critical point. Numerical simulation shows that the stability of tra�c �ow can be e�ectively enhanced by the 
e�ect of driver anticipation and memory. �e starting and breaking process of vehicles passing through the signalized intersection 
considering anticipation and driver memory are presented. All results demonstrate that the AMD model exhibit a greater stability 
as compared to existing car-following models.

1. Introduction

How, two successive vehicles interact with each other on a 
road, has been studied since the 1950s. Milestone car-
following models include the �rst version of linear models 
[1], the �rst version of nonlinear models [2–4], the car-
following model based on space headway [5], intelligent 
driver models (IDM) and its extensions considering both the 
optimal velocity and space headway [6–10], and some other 
models [11–24]. Anticipation has been proposed as early as 
2006 by Treiber et al.  

�e Optimal Velocity (OV) model by Bando et al. [25] 
uses only a few parameters to reveal the complex dynamic 
characteristics of tra�c �ow, such as tra�c �ow instability, 
tra�c congestion, and the formation of stop-and-go waves. It 
was created to overcome the problem of excessively high accel-
eration and unrealistic deceleration observed in Newell’s 
model. However, due to its dependency on the following dis-
tance, the OV model and many of its derivatives produce not 
only high decelerations but also unrealistically high accelera-
tions. �is even applies to the AMD model, see Figure 1, dot-
ted line (accelerations above 4 m/s2 are unrealistic except for 
4-wheel-drive sports or electric vehicles).

To overcome the dilemma of unrealistic deceleration in 
OV model, Helbing and Tilch [26] developed Generalized 
Force (GF) model in Table 1 by adding velocity di�erence to 
the OV model. In the GF model, the optimal velocity function 
is speci�ed by �(��(�)) = �1 + �2 tanh (�1(��(�) − ��) − �2)
with the optimal parameter values: �1 = 6.75 m/s, �2 = 7.91 m/s, �1 = 0.13 m−1, �2 = 1.57, �� = 5 m and the Heaviside function 
is unity when the velocity of the leading vehicle is lower than 
that of the following vehicle, and zero otherwise. Several other 
extensions of the OV model have been suggested to depict 
more characteristics of tra�c �ow by considering the relative 
velocity between the leading and following vehicles [27–30]. 
Jiang et al. [31] put forward Full Velocity Di�erences (FVD) 
model, which uses both negative and positive velocity di�er-
ences to handle unreasonable high acceleration rate and decel-
eration rate in GF model. Ge et al. [32] extend a car-following 
model by taking into account the relative velocity of leading 
and following Δv�+1 and Δv� on single lane highway and 
obtained two velocity di�erence (TVD) model. �ese models 
exclusively depend on the current states between the following 
vehicle and the leading vehicle at time t without taking into 
account driver anticipation and driver memory. Anticipation 
has been proposed as early as 2006 [33].
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Zheng et al. [34] came up with an anticipation driving (AD) 
model based on the FVD model for analyzing the e�ect of driv-
er’s response to upstream tra�c stimuli and the stability of traf-
�c �ow. In the AD model, the optimal velocity is expressed as �(��(�) + �Δv�(�)) = �1 + �2 tanh (�1(��(�) + �Δv�(�)) − ��) − �2 , 
which is extended from the GF model where the optimal veloc-
ity is expressed as �(��(�)). Driver’s visual angle was considered 
by Zhou [35] with an improved velocity model. Peng and Cheng 
[36] substituted anticipation optimal velocity with optimal 
velocity to develop an extended model based on FVD model, 
then analyzed the impact of the anticipation term on tra�c �ow 
stability. Tian et al. [37] introduced a velocity anticipation to 
construct an accident model for avoiding accident under special 
braking situation. Song et al. [38] improved an optimal velocity 
model by introducing tra�c jerk and full velocity di�erence. A 
multi-anticipative model was constructed by to describe the 
drivers’ forecast impact on tra�c �ow. Kang et al. [33] consid-
ered the individual driving style and included forecast and 
response delay behavior of driver in the car-following model. 
�ese models consider only driver anticipation but ignore 
driver memory.

Zhang [40] established driver’s memory by considering 
human tendency to resist sudden changes of velocity and take 
into account the velocity in previous and next time. Put for-
ward an extended lattice model of tra�c �ow with consider-
ation of driver’s memory. Yu and Shi [41] derived an improved 
car-following model to study the e�ects of multiple velocity 
di�erence changes with short-term driver memory on the 
stability and fuel economy of tra�c �ow based on FVD model 
as an e�ective factor on driver’s anticipation behavior.

Table 1 lists an optimal velocity family of car-following 
models. Based on the aforementioned review, it is clear that 
driver anticipation and driver memory have not been both 
taken into account in existing car-following models. Driver 
memory of previous tra�c information may have substan-
tial in�uence on driver’s car-following behavior. In this 
study we propose a new model, namely, the driver’s antici-
pation and memory driving (AMD) car-following model to 

consider the e�ect of both driver memory and driver 
anticipation.

�e remainder of the paper is organized as follows. In 
Section 2, we present a new car-following model. In Section 3, 
linear stability analysis of the new model is conducted to study 
the existence and stability of traveling wave solutions using 
analytical method. In Section 4 nonlinear stability analysis is 
conducted. In Section 5 we carry out numerical simulations 
of the new car-following model for di�erent scenarios. 
Concluding remarks are given in Section 6.

2. A New Car-Following Model

Based on the AD model, we propose the following anticipa-
tion-memory driving (AMD) model

where � is the forecast time step; �Δv�(�) is the di�erence 
between the estimated future space headway for a time hori-
zon � and the actual space headway; � is a dimensionless 
parameter describing the sensitivity of driver memory for the 
previous tra�c information; � is the memory step with a unit 
in second; �(��(� − �)) is the optimal velocity at previous 
time � − �; v�(� − �) is the actual velocity at previous time � − �. �e newly introduced term to the AD model is �[�(��(� − �))−v�(� − �)], a driver memory term expressed 
in terms of the proportional di�erence between the optimal 
velocity and the actual velocity at previous time � − �. 
Although there may be di�erent function forms and di�erent 
in�uencing factors to re�ect the way that drivers’ car- following 
behavior is a�ected by driver’s memory, here we only adopt a 
linear function for its simplicity.

Clearly, the driver memory term plays the role of feedback 
for the car-following behavior. Di�erent drivers may exhibit 
di�erent values of � and the same driver may exhibit di�erent 

(1)

�v�(�)�� = �{�(��(�) + �Δv�(�)) + �[�(��(� − �))−v�(� − �)] − v�(�)} + �Δv�(�),
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Figure 1: Acceleration of unobstructed leading vehicle and its following vehicles in AMD model.
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�ow becomes unstable. �us the neutral stability curve is 
given by.

Consequently, the stable tra�c �ow is derived as

As � = 0, � = 0, the stable condition of the AMD model 
degrades to the stable condition of the FVD model.

Figure 2 shows the neutral stable curves in the head-
way-sensitivity space (Δ�, �) for the FVD model AD and the 
AMD model with � = 0.1,� = 1, � = 0.5, � = 0.1. �e neutral 
stability curves for the FVD model, AD model and the AMD 
model are indicated in Figure 2. In this �gure the existing apex 
denotes the critical point (ℎc, �c) and ℎ� is the critical headway. 
�e area below the neutral stability line shows the unstable 
region where density waves appear in tra�c �ow. �e region 
above the neutral stability line corresponds to stable tra�c. 
Clearly, the stable region of the AMD model is bigger than 
that of the FVD model and AD model because the critical 
points of the AMD model are signi�cantly below those of the 
FVD and AD model. �is plot indicates that the region of 
stability increases by considering leading vehicle’s movement 
at the previous moment.

4. Numerical Study

In this section we conduct numerical analysis of tra�c phe-
nomenon using di�erent car-following models. �e focus is 
on how the driver’s anticipation and driver’s memory simul-
taneously a�ect the following vehicle’s velocity and accelera-
tion. Here, we presume all vehicles being identical. In all 
scenarios � = 0.41, � = 0.1, � = 0.5, �1 = 6.75 m/s, �2 = 7.91
m/s, �1 = 0.13 m−1, �2 = 1.57, �� = 5 m Also, three hypothetical 

(7)��(�) = �
((1 − 2���) + ��) +

(1 + �)�
2((1 − 2���) + ��) .

(8)��(�) < �
((1 − 2���) + ��) +

(1 + �)�
2((1 − 2���) + ��) .

values of � at di�erent time. When � = 0, � = 0, � = 0, the 
AMD model degrades to the OV model [25]. When � = 0, � = 0,  
the AMD model degrades to the FVD model [31]. When � = 0, 
the AMD model degrades to the AD model [34]. �erefore, 
the OV model, FVD model and AD model are all special cases 
of the AMD model.

3. Linear Stability Analysis

First carried out the linear stability analysis of the GHR model 
proposed by Bando et al. [25]. Applied an analytical analysis of 
the stability of the multi-regime car-following model through a 
numerical simulation. Details of the stability analysis method 
for a general car-following model are given by and reference 
there-in. In this section the linear stability analysis is applied to 
the new car-following model. We derive the stability conditions 
of the AMD model and investigate the conditions in�uencing 
the long-wave length instabilities of tra�c �ow.

Suppose that all vehicles are distributed with an identical 
space headway b (i.e., a constant) and move uniformly with 
the optimal velocity �(�). �e steady-state solution of (1) with-
out tra�c jam can be written as

where b is the headway de�ned by � = �/�, �, and � are the 
total numbers of cars and the road length, respectively.

Assume that ��(�) stands for a small perturbation from 
the steady state �0�(�). we have

Substitute (2) and (3) into (1). Make a Taylor expansion of the 
variables. Neglect the higher order terms and ��(�). We have

where ��(�) = ��(Δ��)/�Δ��‖Δ��=�, Δ��(�) = ��+1(�) − ��(�),  
and �� = Δ��.

According to the method of polar perturbation expanding ��(�) into a Fourier series as an orthonormal set, i.e., ��(�) ∝ �(����+��), (4) can be rewritten in terms of �.

Equation (5) is a polynomial and its root can be found by the 
method of zeros. Expanding � = �1(��) + �2(��)2 + ⋅ ⋅ ⋅ into (4), 
the �rst and second order terms of �� are, respectively, deduced 
as follows.

�e uniform �ow will remain stable provided that �2 is a 
positive value. Otherwise, the uniformly steady-state tra�c 

(2)�0�(�) = �� + �(�)�,

(3)��(�) = �0�(�) + ��(�).

(4)

���� = �{��(�)Δ�� + ���(�)Δ��� + �[��(�)Δ���(� − �)
−��(� − �)] − ���} + Δ���,

(5)

(1 − ���)�2 + (� + �� − ����(�)(exp (��) − 1) + �����(�)
⋅ (exp (��) − 1) − �(exp (��) − 1))� − (1 + �)���(�)(exp (��) − 1).

(6)

�1 = ��(�),
�2 = (2���

�(�) − 2�����(�) + 2� + (1 + �)�
2�(1 + �) )��(�)

− (1 − ���)(��(�))�(1 + �) ,
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that of the AD model [31]. It means that the driver starts up 
earlier when the tra�c light changes to green without having 
a higher acceleration due to considering space headway at next 
moment and previous vehicle motion. �at is, vehicles behav-
ing according to the AMD model accelerate more quickly than 
the AD model, but do not generate an unrealistic high accel-
eration observed in the OV model.

4.2. Tra�c Flow Evolution with an Initial Small Perturbation. In 
this subsection we investigate the e�ect of an initial small 
perturbation to tra�c �ow according to the AMD model. 
Suppose � = 100 vehicles are uniformly running on a circuit 
road with a length of � = 1500 m under a periodic boundary 
condition as shown in Figure 5. �e initial state is set in (9).

We �rst explore the impact of driver anticipation and 
memory on tra�c �ow stability with an initial small 
perturbation.

with the optimal parameter values: �1 = 6.75 m/s, �2 = 7.91 m/s, �1 = 0.13 m−1, �2 = 1.57, �� = 5 m.
Figure 6 shows the snapshots of velocity distributions of 

all vehicles simulated according to di�erent car-following 
models (i.e., di�erent driver behaviors) and di�erent values of � at the time of � = 300 s, � = 1000 s, � = 2000 s, respectively. �e 
OV model exhibits negative velocity at some moments, which 
is apparently unrealistic.

According to Figure 6, the homogeneous tra�c �ow 
evolves to congestion, which corresponds to stop-and-go traf-
�c, as time increases from � = 0 s to � = 2000 s according to the 
OV, FVD, and AD models. On the contrary, according to the 
AMD model, the stop-and-go tra�c does not appear until 
very late at � = 2000 s and only becomes visible for AMD model 
with � = 1 and � = 2. Furthermore, the velocity of the OV, 
FVD and AD models �uctuates much more widely than that 
of the AMD model for all times. It illustrates that the e�ect of 
driver memory plays an important role in tra�c �ow stability. 
It provides a behavioral mechanism for modulating tra�c �ow 
�uctuation.

In Figure 6(a) tra�c is almost stable around the v0 = 3.95 m/s 
at � = 300 s, which is a little less than the initial velocity 
v0 = 4.669 (m/s). It means that by considering space headway 
at next moments (i.e., driver anticipation) and previous tra�c 
information (i.e., driver memory), drivers end up with lowering 
their initial velocity a little, to increase the distance to the adja-
cent vehicle to avoid crash. In Figures 6(b) and 6(c) the velocity 
�uctuation decreases gradually with the increasing value of �, for � = 0.1 �e amplitude of the AMD model is minimal 
when � = 3. �e result means that the deviation between the 
expected velocity and the actual velocity decreases when the 
memory time � increases as feedback for the driver, and a 
driver can anticipate his expected velocity more realistically 
according to the real tra�c situation with memory of his driving 
situation during 3 previous moments. �erefore, the tra�c sta-
bility is improved with the AMD model.

(9)

�1(0) = 1�,
��(0) = � − 1� � ̸= 1, � = 2, 3, 4 . . . 100,
v�(0) = �( �) = �1 + �2tanh(
1(


�) − 	�) − 
2.

values 0.1, 0.2, and 0.3 are used for parameter k and 1, 2, and 
3 used for parameter m. In reality, the actual value of k can be 
obtained from calibration of observed tra�c data.

4.1. �e Start-Up Process. To explore the simultaneous e�ect 
of the driver’s anticipation and memory on tra�c behavior 
during the starting process, the same scenario as in Jiang et 
al. [31] is set up here in Figure 3.

Suppose that eleven cars are waiting in front of a red tra�c 
light and with identical space headway of 7.4 m. Each car’s 
velocity is zero at time � < 0. At time � = 0 s the tra�c light 
turns from red to green and all cars begin to move. First the 
leading car starts and then following cars move gradually. 
Consider a leading and a following pair of vehicles. �e veloc-
ity of the leader is de�ned by v

leader
= v0(�). �e follower dupli-

cates the leader’s velocity but with some delay time 
v
follower
= v0(� − ��), in which �� is the delay time of vehicle 

motion. From the time delay of vehicle motion, we can further 
estimate the kinematic wave speed (i.e., disturbance propaga-
tion speed) at jam density, ��, which is de�ned by �� = 7.4/��.

Based on the AMD model, we simulate the motion of 
eleven vehicles with the parameters � = 1 s, � = 0.1. �e sim-
ulation results are shown in Figures 4(a)–4(d) and Table 2.

A straightforward observation is that the following vehi-
cles can duplicate the behavior of the velocities of the leading 
vehicles but with some delay time ��.

Del Castillo and Benitez [42] observed that the kinematic 
wave speed �� is between 17 and 23 km/h. Bando et al. [5] 
observed empirically that �� is of the order of 1 s. According 
to Table 2, these two parameters of the AMD model are, 
respectively, �� = 1.2 s and �� = 20.98 km/h, both falling into 
the typical range of empirical observation.

From Figure 4 and Table 2, we can further compare the 
delay time �� and the kinematic wave speed �� of the AMD 
model with those of the other car-following models. Clearly, �� and �� are respectively shorter and higher than those of the 
OV model, FVD model, and AD model. It means that the delay 
time can reduce and increase the start-up velocity by consid-
ering space headway at next moment and previous tra�c 
information, which contributes to an increased transportation 
capacity and e�ciency in intersections.

Figure 1 depicts the start-up acceleration process of the 1st

to the 11th vehicles according to the AMD model. �e leading 
vehicle, the �rst following vehicle, and other following vehicles 
are displayed by a dashed red line, a dashed blue line, and solid 
blue lines, respectively. �e acceleration of the leading and 
following vehicles falls into a range of the empirical accelera-
tion (0, 4) m/s−2 observed by Helbing and Tilch [26]. �e 
maximum value of acceleration of our model is also lower than 

Figure 3: A platoon of eleven vehicles proceed as the tra�c light 
turns from red to green.



Journal of Advanced Transportation6

�e motion of the vehicles eventually begin to transit from 
homogenous phase to stop-and-go phase, which form 
“hysteresis loops” a½er a su�ciently long time [31]. Here, we 

To further investigate that driver anticipation and driver 
memory both can improve tra�c stability; we study the evo-
lution of small perturbation for the AD and AMD models. In 
Figure 7 the vehicle’s velocity is snapshotted at � = 1000 s and � = 2000 s to explore how the forecast time � and driver mem-
ory time � a�ect the tra�c stability.

In Figures 7(a) and 7(b) the �uctuation of the AD and 
AMD models drop with the increasing value of � in both mod-
els. Figure 7(a) shows that with the increase of � in the AMD 
model, tra�c �uctuation dies out at � = 1000 s in comparison 
with the AD model. Figure 7(b) exhibits that the amplitude of 
vehicles changes smoothly around the initial velocity 
v0 = 4.669 (m/s) by increasing � and the velocity of vehicles 
maintain near v0 = 4.669 (m/s) at � = 2000 s. From Figure 7(b) 
we can �nd that the stability of tra�c �ow improves most 
when both driver anticipation and driver memory are 
considered.
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Figure 4: Motion of eleven vehicles starting up from a red tra�c signal. (a) �e OV model, (b) �e FVD model, (c) �e AD model, and (d) 
�e AMD model.

Table 2: Delay times of vehicle motions from a tra�c signal and 
kinematic wave speed at jam density in di�erent models.

Model � (1/s) � (1/s) � � (s) �� (s) �� (km/h)
OV 0.41 — 0 — 2.4 11.1
FVD 0.41 0.5 0 — 1.4 19.03
AD 0.41 0.5 0 0.1 1.34 19.88
AMD 0.41 0.5 0.1 0.1 1.27 20.98

Figure 5: A platoon of one hundred vehicles running a circular road 
with length of 1500 m.
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Figure 6: Snapshots of velocities of all vehicles according to di�erent car-following models in � = 0.1 at di�erent times. (a) t = 30 0s, (b) 
t = 1000 s, and (c) t = 2000 s.
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becomes stationary a½er enough time, the motion of 30th 
vehicle begins to form the “hysteresis loop”. It is obvious that 
the hysteresis loop of the AMD model is much smaller than 

chose the 30th vehicle as the subject vehicle to compare the 
hysteresis loop obtained from the AMD model and the AD 
model. As can be seen from Figure 8, when the congestion 
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Figure 7: Snapshots of velocities of 100 vehicles simulated by AD and AMD models with di�erent values of � (� = 1 in the AMD model). 
(a) t = 1000s, and (b) t = 2000s.
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which is 15 m according to Jiang et al. [31]. It means that it 
takes a longer time to observe the stop-and-go tra�c in the 
AMD model than in the AD model.

4.3. Braking Process. In this subsection tra�c arrival process 
on a single lane roadway with a tra�c light using the AMD 

that of the AD model. �is indicates the stability of tra�c �ow 
can greatly enhance by considering the anticipation driving 
and driving memory. So the AMD model is superior in terms 
of tra�c �ow stability to the FVD model.

It can be seen from Figure 8 that the minimum headways 
(Point �) of both models are smaller than the safe headway, 
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Figure 8: Hysteresis loops for FVD model and AMD model with � = 1, � = 0.1. (a) �e AD model, and (b) �e AMD model.
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Figure 9: Motions of 11 vehicles during the braking process according to the FVD, AD, and AMD models. (a) FVD model, (b) AD model, 
and (c) AMD model.
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those of AD model and FVD model. It shows that by consid-
ering driver’s negative velocities and excessive acceleration 
won’t appear, and also a driver can start braking process faster 
and gentler to reduce the velocity, which contributes to the 
improved safety and fuel consumption.

5. Concluding Remarks

Existing car-following model in the literature lack in con-
sidering driver’s anticipation and driver memory in the 
same model. For this reason we developed the AMD model 
and conducted numerical analysis to investigate the evolu-
tion of small perturbation in tra�c �ow according to the 
AMD model. �e results show that driver memory signi�-
cantly a�ects the evolution of small perturbation in tra�c 
�ow. Considering driver memory, improves the stability of 
tra�c �ow. Considering driver memory can increase the 
safety and the e�ciency of tra�c operation by optimizing 
tra�c light time at signalized intersections. �e results of 
starting and braking process demonstrate that the AMD 
model can more successfully anticipate the delay time of 
vehicle motion and the kinematic wave velocity at jam 
density.  

Abbreviations 

��(�): �e position of the �th vehicle at time �;
v�(�): �e velocity of the �th vehicle at time �;
v�(� − �):  �e velocity of the �th vehicle at previous time � − �;��(�):  �e space headway between vehicles � and � + 1

at time �, ��(�) = Δ��(�) = ��+1(�) − ��(�);��(� − �):  �e space headway between vehicles � and � + 1
at time � − �;Δv�(�):  �e relative velocity between following and 
leading vehicle, Δv�(�) = v�+1(�) − v�(�);�Δv�(�):  �e di�erence between the estimated future 
space headway for a time horizon � and the 
actual space headway;�(⋅): �e optimal velocity function;�:  �e sensitivity of the driver given by the inverse 
of the delay time of vehicle motion �, namely, � = 1/�;�: �e Heaviside function;ℎ: �e headway used; in Equation (13);�: �e sensitive constant;�: �e weight;�: �e forecast time;�: �e memory time;�:  �e sensitivity of driver memory for the 
previous tra�c information;��: �e delay time of vehicle motion;�j:  �e kinematic wave speed (i.e., disturbance 
propagation speed) at jam density, equal to the 
quotient of the headway divided by the delay 
time of vehicle motion �; �j = ℎ/�;�: �e propagation speed of the kink wave.    

model is carried out to explore the in�uences of driving 
anticipation and driving memory on the following vehicles’ 
velocity and acceleration.

�e hypothetical initial conditions are given as follows. 
When � < 0 the tra�c light is green and 11 vehicles are running 
with a uniform velocity of 4.66 (m/s). All vehicles are distrib-
uted uniformly with headway of 15 m. �e distance between 
the platoon leading vehicle and the stopping line is 10 m. �e 
red light is assumed to be a virtual standing vehicle of exten-
sion zero at the stopping line as noted in Treiber and Kesting 
[10]. At time � = 0 the tra�c light shi½s to red and the pla-
toon-leading vehicle immediately breaks, and the following 
vehicles duplicate the leading vehicle’s velocity with a delay 
time and begins to slow down gradually. All vehicles �nally 
stop in a column behind the stopping line.

�e velocities’ evolutions of 11 vehicles during the braking 
process when the platoon leader start braking (� = 0) till that 
time all vehicles stop in a column behind the stop line simu-
lated by the FVD, AD, and the AMD models are illustrated in 
Figures 9(a)–9(c). All following vehicles can duplicate the 
leading vehicles’ velocities but with some delay, and �nally 
stop behind the stopping line. �e delays of vehicles’ motion 
simulated by the AMD, AD model, and FVD model are 1.27 s, 
1.34 s, and 1.4s respectively. Clearly, the AMD model corre-
sponds to a shorter delay time than the AD model and FVD 
model.

Figure 10 depicts the simulation of accelerations’ evolu-
tions of the 4th and 8th vehicles due to the tra�c signal using 
the FVD model, AD model, and the AMD model, respectively. 
�e acceleration of the leading and following vehicles falls into 
the ranges of empirical deceleration (−3 m/s2, 4 m/s2), which 
was observed by Helbing and Tilch [26] from real driving 
behaviors. From Figure 10 we can see that the distance between 
the AMD model’s curves and FVD model become larger when 
decreasing the number of vehicles. From Figure 10 it can be 
found that the curves of the AMD model are lower than for 
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Additional Points

Highlights. (i) Proposed a driver anticipation and memory 
driving (AMD) car-following model. (ii) AMD model takes 
into account the effect of driver memory of previous traffic 
information. (iii) AMD model exhibits higher stability than 
many existing car-following model.
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