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�e traction performance of heavy-haul locomotive is subject to the wheel/rail adhesion states. However, it is di�cult to obtain these 
states due to complex adhesion mechanism and changeable operation environment. According to the in�uence of wheel/rail adhesion 
utilization on locomotive control action, the wheel/rail adhesion states are divided into four types, namely normal adhesion, fault 
indication, minor fault, and serious fault in this work. A wheel/rail adhesion state identi�cation method based on particle swarm 
optimization (PSO) and kernel extreme learning machine (KELM) is proposed. To this end, a wheel/rail state identi�cation model 
is constructed using KELM, and then the regularization coe�cient and kernel parameter of KELM are optimized by using PSO 
to improve its accuracy. Finally, based on the actual data, the proposed method is compared with PSO support vector machines  
(PSO-SVM) and basic KELM, respectively, and the results are given to verify the e�ectiveness and feasibility of the proposed method.

1. Introduction

�e traction performance of heavy-haul locomotive depends 
on the utilization e�ciency of wheel/rail adhesion state [1–4], 
and the adhesion force required to operate locomotive is 
achieved by adjusting the creep velocity, which can be con-
trolled by adjusting the output torque of traction motor. 
Di�erent creep velocities show di�erent wheel/rail adhesion 
states; a low creep velocity indicates that the wheel/rail adhe-
sion performance is not fully utilized, while an extremely high 
creep velocity results in wheel/rail adhesion failure such as 
wheel/rail sliding. However, identifying wheel/rail adhesion 
states is di�cult due to the complex operation environment 
and the subjectivity of manual adjustment. According to the 
in�uence of adhesion utilization on locomotive control action, 
the wheel/rail adhesion states are divided into four types, 
namely normal adhesion, fault indication, minor fault and 
serious fault [5]. Di�erent wheel/rail adhesion states must be 
controlled using di�erent methods. E�ective identi�cation of 
these sates can provide support for improving wheel/rail adhe-
sion utilization performance.

�e wheel/rail adhesion state of heavy-haul locomotive is 
a speci�c presentation of wheel to rail contact process, and it 
is decided by creep velocity and wheel/rail adhesion coe�cient 
[6]. Domestic and foreign scholars have proposed some wheel/
rail adhesion state identi�cation methods, which have been 
summarized in a very recent review [7]. Simply, these methods 
can be classi�ed as model-based methods and data-based 
identi�cation methods.

�e model-based methods created a relationship between 
locomotive operational parameters and wheel/rail adhesion 
state in the form of a mathematical model [8, 9]. �e inputs 
of the models were directly measured data collected from sen-
sors, and the outputs were the adhesion coe�cients or other 
related measurable parameters such as slip/creep and acceler-
ation [10, 11]. However, the main challenge of the model-based 
methods is to create a model that exactly characterizes the 
physical system in all conditions, and the identi�cation of its 
precision is impacted by uncertain nonlinear parameters, 
unknown noises, and others factors. However, the main chal-
lenge of the model-based methods is to create a model that 
exactly characterizes the physical system under all conditions. 
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Also, the precision of identi�cation is a�ected by uncertain 
nonlinear parameters, unknown noises and other factors.

In the data-based identi�cation methods, the data-based 
model structure was pre-designed in advance, and the param-
eters of these model structures were optimized by using exper-
imental data, and then, the trained models were used to 
identify wheel/rail adhesion states [12–15]. �e family of the 
Kalman �lter methods can minimise mean-squared estima-
tion error for a linear stochastic system [17–20]. Arti�cial 
neural networks (ANNs), KELM, and other network-based 
methods use predetermined numbers of neurons that are con-
nected to each other to accomplish de�ned actions [21, 22]. 
However, the parameters of data-based models were sensitive 
to noise, and the identi�cation accuracy cannot be satis�ed 
until the model parameters can be updated when environmen-
tal conditions change.

Also, the prede�ned model parameters were updated to 
improve the identi�cation accuracy when environmental con-
ditions change. A multiple models approach with variable 
parameters was proposed for friction estimation [23, 24], and 
a swarm intelligence algorithm was used to estimate adhesion 
condition. Compared with prede�ned models [23, 24] that 
were developed on the basis of the physical mechanism of 
wheel to rail, a data-based wheel/rail adhesion state identi�-
cation model was presented by using KELM in our previous 
work [21], but the regularization coe�cient and kernel param-
eter of this model must be manually adjusted according to the 
environment condition. �erefore, PSO is used to optimize 
the kernel parameter and regular coe�cient of KELM, and the 
wheel/rail adhesion state identi�cation model with variable 
parameters of KELM is developed to adapt the changing envi-
ronment condition in this work.

�is paper is structured as follows. �e second section 
introduces the wheel/rail adhesion state identi�cation strategy, 
the third section constructs the KELM-based identi�cation 
model with optimal parameters, the fourth section presents 
the simulation and result analysis, and the �§h section is the 
conclusions.

2. Wheel/Rail Adhesion State Identification 
Model Strategy

2.1. Problem Analysis. Under the action of locomotive 
gravity, the contact component of wheel and rail produces 
elastic deformation. Meanwhile, the contact area becomes an 
approximate elliptical contact spot composed of creep and 
adhesion zones, as shown in Figure 1 [25, 26]. �e wheel-to-
rail contact in the creep zone produces a relative microscopic 
sliding phenomenon (namely creep), but the wheel and the 
rail are relatively stationary in the adhesion zone.

In Figure 1, v is the velocity of locomotive body; � is the 
rolling wheel radius; � is the angular velocity of the wheel; �
and �� are the vertical forces of the wheels and rails, respec-
tively. When driving torque � acts on the locomotive wheel, 
it produces tangential force acting on wheel/rail contact sur-
face �� and tangential force acting on the contact surface of 
the rail ���, thereby causing the wheel to roll forward. �e 
velocity v is always less than the linear velocity of the wheel 

pair �� because of the creep movement between the wheel and 
the rail in the creep zone. �e di�erence in velocity between 
the two can be expressed as creep velocity v�.

Wheel/rail adhesion coe�cient � is de�ned as the ratio of the 
maximum tangential force to the vertical force of the wheel to 
rail, which can be transmitted between �T and � [25, 26].

Wheel/rail adhesion is a very complicated process that is 
a�ected by many factors [27–29], including wheel/rail contact 
interface, locomotive velocity, and weather conditions. 
Although adhesion-creep characteristic curves vary under 
di�erent working conditions [30], all adhesion-creep charac-
teristic curves show similar change in trend characteristics; 
that is, each curve has an adhesion peak point, �max. �e le§ 
area of the adhesion peak point is the adhesion stable zone, 
and the right area is the idling or sliding fault zone, as shown 
in Figure 2.

From Figure 2, the adhesion stable zone consists of normal 
adhesion zone and fault indication zone, whereas the idling 
or sliding fault zone consists of small fault zone and serious 
fault zone. In the normal adhesion zone, the adhesion 

(1)v� = v − ��.

(2)� = �T� .
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Figure 1: Wheel/rail adhesion-creep phenomenon.
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coe�cient and creep velocity have an approximate linear rela-
tion when train driving force is small. In the fault indication 
zone located in a small �eld on the le§ side of the adhesion 
peak point, if the traction increases further at this zone, the 
adhesion state will fall into idling or sliding fault zone located 
on the right side of the adhesion peak point. In the minor fault 
zone, the adhesion coe�cient decreases sharply with the 
increase in creep velocity; meanwhile, small sliding occurs 
between the wheel and the rail. In the serious fault zone, the 
wheel pair exhibits an evident idling or sliding phenomenon, 
and the wheels and rails produce severe wear that a�ects the 
safety of operation in serious cases. �e adhesion state of dif-
ferent zones must be controlled using di�erent methods. For 
instance, the torque output should be increased to improve 
the adhesion utilization rate when the adhesion coe�cient is 
located in the normal adhesion zone, but it also should be 
�ne-tuned to avoid the occurrence of fault when the adhesion 
coe�cient is located in the fault indication zone. Meanwhile, 
the torque output should be reduced to convert the adhesion 
coe�cient into the adhesion stable zone when the adhesion 
coe�cient is located in the small fault zone, and it should be 
greatly reduced to ensure safety when the adhesion coe�cient 
is located in the serious fault zone. �erefore, e�ective iden-
ti�cation of wheel/rail adhesion state of di�erent zones is 
required to provide support for the purposeful implementa-
tion of adhesion control.

2.2. Model Framework. In fact, the characteristics of wheel/
rail adhesion change with the varying of rail surface state. 
For example, the wheel/rail adhesion coe�cient on the 
ice/snow or greasy surface is much smaller than that on 
the dry rail surface. Hence, the wheel/rail adhesion state 
identi�cation model is di�cult to establish with �xed 
parameters; instead, it should be analyzed by using the real-
time operational data. �erefore, a KELM-based wheel/rail 
adhesion identi�cation model has been proposed by the 
authors of this paper [21], but the model parameters must be 
adjusted manually according to various environments. Based 
on our previous research work [21], a novel KELM-based 
wheel/rail adhesion identi�cation model is proposed in this 
work, and PSO is used to optimize the model parameters, 
as shown in Figure 3.

Based on the model framework and the problem analysis 
above, wheel/rail adhesion coe�cient and creep velocity are 
selected as the inputs of identi�cation model, and the model 
outputs are the four wheel/rail adhesion states including nor-
mal adhesion, fault indication, minor fault, and serious fault. 
By using the historical date, the wheel/rail adhesion state iden-
ti�cation model based on KELM is proposed, and the PSO 

algorithm is used to optimize the regular coe�cient and kernel 
parameter of KELM in order to improve identi�cation 
performance.

3. Wheel/Rail Adhesion State Identification 
Model

3.1. Kernel Extreme Learning Machine (KELM). KELM is 
an improved algorithm combing extreme learning machine 
(ELM) with kernel function [31], where ELM is a single 
implicit layer feed-forward neural network (SLFN) [32, 33]. 
�e advantage of ELM lies in its easy implementation, fast 
learning, and generalization ability [34]. Given N training data 
� = {(��, ��), � = 1, 2, . . . , �}, where, �� is the �th input data, ��
is the �th output value, the SLFNs with L hidden layer nodes 
can be expressed as [32, 33]

where, �̂(�) = �(�) is the output of SLFNs; ℎ(�) = � is the 
kernel mapping matrix of the hidden layer; � is the weight 
between hidden layer and output layer. ELM trains the net-
work with minimal training error and minimal output weight 
norm, and the trained weight can be expressed as [34]

where, � is a unit matrix; � is the output vector matrix, 
� = [�1, �2, . . . , ��]; � is a regularization coe�cient that is 
used to deviate the eigenvalue of ��T from zero.

Formula (4)  is substituted into Formula (3), and the ELM 
is obtained

Based on Mercer’s condition, the kernel matrix is de�ned as 
[35],

Using Formulas (5) and (6),  the ELM-based identi�cation 
model can be expressed as

Many types of kernel functions, such as linear, polynomial, 
Gaussian radial, and sigmoid, are available. Among these 
types, Gaussian radial basis function (RBF) is widely used, and 
its formula can be expressed as

where, � is the kernel parameter.

(3)�̂(�) = �(�) = ℎ(�) ⋅ � = � ⋅ �,

(4)� = �T( �� + ��
T)
−1
�,

(5)�̂(�) = �(�) = ℎ(�)�T( �� + ��
T)
−1
�.

(6)
Ω

ELM
= ��T

Ω�,� = ℎ(��) ⋅ ℎ(��) = �(��, ��).

(7)�̂(�) = �(�) = [[
[

�(�, �1)
.
.
.

�(�, ��)
]]
]

T

( �� + ΩELM)
−1
�.

(8)�(�, ��) = exp(−
����� − ������2
�2 ),
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Figure 3:  Framework of establishing wheel/rail adhesion state 
identi�cation model based on KELM and PSO.
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Step 6:  Terminating the iteration process if the �tness value 
meets the pre-set condition or if the number of 
iterations reaches the set value, and the optimized 
regularization coe�cient and the kernel parameter 
are obtained. Otherwise, return to Step 4.

Step 7:  Updating the regularization coe�cient and the 
kernel parameter in Formula (7), the novel wheel/
rail adhesion state identi�cation model is obtained.

In addition, as the sample data are continuously updated, 
the optimal regularisation coe�cient and the kernel parameter 
can be obtained according the above steps.

4. Results and Discussion

In this work, the data were collected from RT-LAB Test Stand 
that includes mechanical sub-model and traction transmission 
sub-model of heavy-haul locomotive. �e mechanical sub-
model was developed with ADAMS/Rail in our previous work 
[38, 39], while the traction transmission sub-model was also 
established using MATLAB/Simulink in our previous work 
[6], and then, the traction transmission sub-model was placed 
into RT-LAB Test Stand, with the same parameters as that of 
HXD1 heavy haul locomotive [6]. �e data with di�erent types 
of wheel/rail adhesion states were obtained by adjusting the 
torque output of motor, and they are collected from the wheel-
set of a single motor drive. �e 3,000 data collected are 
encoded as four types (normal adhesion, fault indication, 
small fault and serious fault) according to the velocity 

3.2. PSO-Based Model Parameters Optimization. �e 
regularization coe�cient � in Formula (5), and the kernel 
parameters � in Formula (8) are generally set according to 
arti�cial experience. However, such setting o§en leads to 
the unreliable identi�cation accuracy due to the blindness. 
Moreover, the two parameters must be updated in real time 
if the operation environment changes, thereby limiting its 
practical application in the system. In this work, based on 
historical data, the model parameters are updated by using 
PSO algorithm, and acceptable identi�cation accuracy is 
obtained.

Let �� = (��1, ��2, . . . , ���) denote the particle position vec-
tor and �� = (v�1, v�2, . . . , v��) denote the particle velocity vec-
tor; then, the velocity and position of PSO update formula that 
can be respectively expressed as [36]

where, � is the inertial weight, � is the current iteration num-
ber, ���� is the individual optimal particle position, ��g� is the 
global optimal particle position, �1 and �2 represent the accel-
eration coe�cients, �1 and �2 are the random numbers distrib-
uted between [0, 1].

�e inertial weight � is updated by

where, � and �max denote the current iteration number and 
maximum iteration number, respectively.

�e details of the PSO algorithm have been discussed in 
[37].

3.3. Detailed Algorithm. Based on the analysis above, select 
wheel/rail adhesion coe�cient and creep velocity as the 
inputs of wheel/rail adhesion state identi�cation model, and 
the model outputs are normal adhesion, fault indication, 
minor fault, and serious fault. �e �ow chart of wheel/rail 
adhesion state identi�cation model proposed here is depicted 
in Figure 4.

�e detailed steps of the wheel/rail adhesion state identi-
�cation model are as follows:

Step 1:  Dividing the data sample set into the training 
sample set and testing sample set, and normaliz-
ing them.

Step 2:  Setting the value range of regularization coe�cient 
� in Formula (5) and the kernel parameters � in 
Formula (8), and initializing the parameters of 
PSO.

Step 3:  Training the model parameters using Formula (7).
Step 4:  Calculating the �tness value of the testing sample 

by taking the model identi�cation accuracy as the 
�tness function.

Step 5:  Updating the velocity vector, position vector, and 
inertial weight by using Formulas (9)–(11).

(9)v�+1�� = �v��� + �1�1(���� − ����) + �2�2(��g� − ����),

(10)��+1�� = ���� + v�+1�� ,

(11)� = �max −
�(�max − �min)
�max

,
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Figure 4: Flow chart of adhesion state identi�cation model based 
on KELM and PSO.
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real time by using PSO to improve the environmental adapt-
ability of the identi�cation model. �e results of experimental 
comparison and analysis indicate that the proposed method 
is better than PSO-SVM and KELM.
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