
Research Article
Development of a Practical Method to Estimate the Eco-Level of
Driver Performance

Jianbin Zheng1 and Yiping Wu 2

1Faculty of Information Technology, Beijing University of Technology, No. 100 Ping Le Yuan, Beijing 100124, China
2Beijing Key Laboratory of Traffic Engineering, Beijing University of Technology, No. 100 Ping Le Yuan, Beijing 100124, China

Correspondence should be addressed to Yiping Wu; wuyiping@bjut.edu.cn

Received 11 November 2019; Revised 16 September 2020; Accepted 15 October 2020; Published 27 October 2020

Academic Editor: Jose E. Naranjo

Copyright © 2020 Jianbin Zheng and Yiping Wu. ,is is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in anymedium, provided the original work is
properly cited.

Motor vehicle’s fuel consumption is one of the main sources of energy consumption in road transportation and is highly
influenced by driver performance in the process of driving. Eco-driving behavior has been proved to be an effective way to
improve the fuel efficiency of vehicles. Essential to the efforts towards saving vehicle fuel is the need to estimate the eco-level of
driver performance accurately and practically. Depending on on-board diagnostics and Global Position devices, individual
vehicle’s instantaneous fuel consumption, engine revolution and torque, speed, acceleration, and dynamic location were collected.
Back-propagation network was adopted to explore the relationship between vehicle fuel consumption and the parameters of
driver performance. Taking 700 data samples in basic segments of urban expressways as our training set and 100 data samples as
validation test, we found the optimal model structure and parameters through repeated simulation experiments. In addition to the
average and standard deviation value, the fluctuation frequency of driver performance data was also viewed as influence factors in
eco-level estimation model. ,e average estimation accuracy of our developed model has been tested to be 96.37%, which is quite
higher than that of linear regression model. ,e study results provide a practical way to evaluate drivers’ performance from the
perspective of fuel consumption and thus give basis for rewarding best drivers within eco-driving programs.

1. Introduction

Fuel consumption of motor vehicles is one of the main
sources of energy consumption in road transportation and
has become one serious problem impacting the sustainable
development of urban traffic system. As stated in the gov-
ernment statistics reports of Beijing, the energy consump-
tion in road transport sector was 2,906,000 tons (standard
coal) in the year of 2016, accounting for 22.7% of the total
energy usage in the transportation field of this city [1]. To
save natural resources, protect the environment, and im-
prove the wellbeing of the general public, the Beijing gov-
ernment is making great efforts to reduce fuel consumption
of vehicular traffic.

Till now, a series of measures have been taken to decrease
vehicle fuel consumptions. Typical approaches have been
adopted, including clean energy development, electric ve-
hicle bringing, vehicle technology improvements, traffic flow

and control optimization, and driver performance optimi-
zation. Among these measures, optimizing driver perfor-
mance is one of the most important ones. Eco-driving
behavior, which is also known as green driving, has been
proved to be an effective way to improve the fuel efficiency of
vehicles [2–4]. ,e concept of eco-driving refers to smooth
and steady driving including starting smoothly, reducing the
number of instances of sharp acceleration and deceleration,
recommending the cruise mode, and anticipating the traffic
flow to minimize the use of the brake and accelerator [5, 6].

It is first necessary to accurately estimate the eco-level of
driver performance corresponding to various vehicle run-
ning status in the process of driving, as the primary support
for improving driver performance more targetedly and ef-
fectively and reducing fuel consumption.,erefore, we need
a practical way to evaluate drivers’ performance from the
perspective of fuel consumption. In fact, there have been
several methods to calculate vehicle fuel consumption at
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both macroscopic and microscopic levels. COPERT [7],
EMFAC [8], and MOVES [9] were the three typical and
mostly used macroscopic models in fuel consumption es-
timation. ,ey could be used to calculate the total vehicle
fuel consumption and predict future trends for a country or
a city or at the project level. However, these models are based
on general flow characteristics and might not be the optimal
choices to calculate vehicle fuel consumption for individual
drivers. Considering vehicle operation modes of decelera-
tion, models of idle, and acceleration, microscopic models
are often more accurate when estimating fuel consumption
for driver performance. Generally, microscopic vehicle fuel
consumption models could be classified as three types [10],
which were, respectively, based on (1) the simulation of
engine power, (2) the driving modes (e.g., acceleration,
deceleration, cruise, and idling), and (3) statistical results of
vehicle speed and acceleration. ,e calculation methods
mainly included multiple regression, theoretical derivation,
and engine bench tests [11].

Among fuel consumption models based on the simu-
lation of engine power, ADVISOR [12], PSAT [13], and
EVSIM [14] were the most commonly used models in au-
tomobile engineering field.,ey simulated vehicle operating
status and its corresponding power flow with driving cycles.
To obtain vehicle fuel consumption, parameters of vehicle
features, engine types, driving conditions, and many other
factors were needed. For the second type of microscopic
vehicle fuel consumption model, the common operating
status in different driving conditions was classified, and then
the fuel consumption in each driving mode was measured
and calculated.,us, the total fuel consumption was the sum
of the vehicle fuels used in all driving modes [15, 16].
MODEM [17] was a representative model to calculate fuel
consumption based on the statistical results of vehicle speed
and acceleration. In this model, data of vehicle fuel con-
sumption were classified according to two indexes: speed
and the product of speed multiplied by acceleration. ,us,
the vehicles’ instantaneous fuel usage could be figured out
based on the combination of these two indexes.

Another popular approach to calculate vehicle fuel
consumption was based on the carbon balance method. For
example, the microscopic emissions model based on vehicle
specific power (VSP) distribution could be used to estimate
the vehicle emissions second by second [9, 18]. As gasoline is
a kind of compound composed of carbon and hydrogen
compounds, it will produce different amounts of CO, CO2,
HC, H2O, and NOX after burning. Regardless of the com-
bustion degree, the carbon elements in CO, CO2, and HC are
always equal to the carbon in the gasoline consumption.
,us, based on the emissions, the fuel consumption could be
obtained [4, 19].

,e aforementioned microscopic vehicle fuel con-
sumption models have been developed in the past. ,ese
models had a high accuracy in predicting vehicle fuel
consumption; however, the data needed to calculate vehicle
fuel consumption was intense. Particularly, the parameters
in these models were either various or fine-grained, making
it difficult for researchers to collect data in a real driving
environment or at least the cost would be very high. Also,

suchmodels developed in one country may not work well for
other countries because of differences in vehicle fleet and
engine technologies. ,erefore, it was inconvenient to
evaluate the eco-level of driver performance accurately and
practically. Owing to these limitations, it is insufficient to
support rewarding best drivers within eco-driving programs
and training drivers by more targeted and effective ways.

According to previous studies [20–22], the parameters of
driver performance lead to a vehicle power demand; that in
turn leads to an engine power demand and then to the
consumption of engine. In the process of driving, driver
performance is the dynamic reflection of drivers’ compre-
hensive decision about road geometry, traffic control
strategy, environment stimulation factors, and their inter-
actions [23]. ,us, the relationship between driver perfor-
mance and fuel consumption would not be linear or obvious
but chaotic and hidden. ,e traditional estimation and
predictive methods based on statistic models might not be
suitable for accurately evaluating vehicle fuel consumption
based on driver performance because of limited expressing
capability for complicated relationships [24]. In contrast, the
method of machine learning with excellent data processing
ability and hidden features mining would be effective in
driver performance modeling, evaluation, and prediction.
Currently, shallow machine learning models including
Decision Tree [25], Hidden Markov Model [26], Gaussian
Mixture Model [27], Support Vector Machine [28], and
Network of Neuron [29] have been widely adopted for
individual driving habit modeling, unsafe driving behavior
(e.g., driving distraction, fatigue, and drunk driving) iden-
tification, and traffic flow prediction. More importantly, the
predictive or identificative accuracy of these machine
learning models was proved to be acceptable.

In addition to these estimation model construction
methods of vehicle fuel consumption, the Internet and cloud
computing technology have been changing and replacing
traditional data sensing methods, which further accelerated
the process of big data aggregation [30]. In the traffic areas,
the data collection approaches of induction coil and mi-
crowave radar with fixed locations and movement detection
based on probe vehicles are gradually disappearing. Instead,
new data detection methods, such as Controller Area
Network [31], satellite navigation system [32], and smart-
phone [33], have been widely applied for their obvious
advantages of convenience and widespread implementation.
In particular, the second-by-second vehicle operating status
data during driving process in real environment could be
gathered by on-board diagnostics (OBD) and Global Posi-
tion System (GPS) devices, and these dynamic data might be
more easily detected in the coming connected and auto-
mated vehicle (CAV) environment.

,us, the current study aims at developing a practical
model to precisely estimate the eco-level of individual driver
performance during driving process. ,e database used in
this study was the real-time data collected by on-board
OBD+GPS devices in real driving environments. Because of
apparent advantages in self-learning, self-organizing, good
fault tolerance, and excellent nonlinear approximation
ability, back-propagation (BP) neural network was finally
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selected and applied in this study after comparison with
those shallow machine learning models commonly used in
traffic areas [34]. In particular, previous studies have il-
lustrated that the BP network based model has good per-
formance in vehicle fuel consumption prediction or
estimation [29, 35, 36].

,e rest of the paper is organized as follows. First, the
database used in this study was introduced along with the
data collection program.,is was followed by a presentation
of the eco-level estimation model construction including the
model structure, parameters designing, and simulation test.
After that, the test results of model accuracy were exhibited
and we also discussed their reasonability and applicability.
Finally, we summarized the main conclusions of the study
and exhibited the limitation and future research needs of the
current research.

2. Data Collection

,e data used in this study were collected from our
established driving behavior platform based on Inter-
net + technology [37]. In this platform, the dynamic oper-
ating data of vehicles during driving were obtained by on-
board diagnostics (OBD) and Global Position System (GPS)
devices mounted on taxicabs. ,e real-time vehicle oper-
ating status in real driving condition was transmitted to the
cloud for storage through 3G network. A local server was
established to download and store the data needed for
different applying purposes from the cloud platform.

,e vehicle operation data were collected second by
second. ,e data items include vehicle speed (km/h), engine
speed (rad/min), instantaneous fuel consumption (0.01 L/h),
and real-time locations (i.e., the latitude and longitude).
Considering that vehicle operating status is instantaneous
and dynamic, most of the basic data collected by OBD and
GPS were transmitted to the cloud platform per second. In
case of data missing, the basic data were also packaged and
uploaded in a frequency of five minutes.

A total of 140 taxi drivers and their taxicabs were
employed for data collection which lasted for four months
from January to April 2016. Meanwhile, all taxicabs hired in
the study are of the same vehicle type and are almost in the
same working condition. All of these cabs were put into
operation in 2013 and are Hyundai Elantra with 4 cylinders
and 1.6-liter engine. ,ey are certified by the National Level
IV emission standard.

Using the latitude and longitude coordinates col-
lected by the GPS mounted on vehicles and the existent
map information, each vehicle’s travelling path could be
obtained. To build a basic model to estimate the eco-level
of driver performance during driving, possible inter-
ference factors were excluded, such as roadway condi-
tions, traffic control devices, traffic signal status, and
many others. In data processing, basic sections of ex-
pressways were obtained by latitude and longitude co-
ordinates screening through Matlab software. Except for
the influence of entrance or exit, the vehicle operating
data locating basic sections of Beijing expressways (i.e.,
straight and flat part) were used for developing our

model. A sum of 3,709 data segments in expressway basic
sections was acquired by matching the collection data
and road network base map. After removing the invalid
data from anomalous values, a total of 2,786 data seg-
ments were valid.

In the current study, the eco-level was represented by
vehicle fuel consumption per 100 kilometers, which is cal-
culated by the instantaneous fuel consumption and travel
distance. It is true that the vehicle fuel consumption col-
lected by OBD was not totally the same with standard
procedure to measure fuel consumption via a calibrated
tank. Actually, the instantaneous fuel recorded via OBD
would be somewhat deviated from the true value. However,
the total or average fuel consumption during a distance
could be obtained with acceptable precision through OBD
equipment. ,is conclusion has been tested and verified in
our previous studies [37, 38]. Driver performance refers to
vehicle speed, acceleration, and revolution and torque of
vehicle engine. In order to construct the estimation model to
analyze the eco-level of driver performance and test its
validation, 700 data samples were randomly selected for
model trials and 100 data samples were used to test model
accuracy.

3. Estimation Model Development

To construct the BP network based eco-level estimation
model, our main task is to obtain the optimal model
structure and its corresponding parameters according to the
features of driver performance and vehicle fuel consumption
data. As BP network with a single hidden layer could ap-
proximate any continuous function in a closed interval, such
a network with three layers could be adopted to realize any
reflections from n-dimensional to m-dimensional [39].
Hence, our current study focuses on establishing eco-level
estimation model of individual driver performance based on
three-layer BP network. In this section, contents including
model’s input and output design, node number of hidden
layer selection, function, and learning rate choice would be
mainly discussed.

3.1. InputDesign. ,e input of our developing BP network
model was set as the characteristic parameters of driver
performance collected from on-board OBD and GPS
devices. Driver performance data items highly related to
fuel consumption were selected as independent variables,
including velocity (V), acceleration (A), engine revolu-
tion (R), and torque (T) [40]. In general, under the same
road, traffic, and environment conditions, the variation
of fuel consumption for a fixed vehicle in the process of
driving was predominantly resulting from the change of
driver performance. It is assumed that the frequent
change of driver performance would lead to high vehicle
fuel consumption. ,us, in addition to the basic statis-
tical values like average and standard deviation, the
fluctuation frequency of driver performance was also
treated as a prominent influence factor in fuel
consumption.
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In this study, the fluctuation of driver performance was
shown as the performance data (i.e., V, A, R, and T) was
significantly changed at one moment when compared to the
whole driving process. Accordingly, the fluctuation of driver
performance could be classified to one, two, three, or four
fluctuation items at the same time. Specifically, one item
fluctuation represents that only one parameter of driver
performance changed obviously at one given moment, while
several item fluctuations indicate that at least two driver
performance items simultaneously varied significantly at this
moment. Based on this, the percentage of driver perfor-
mance fluctuation during whole driving process was ob-
tained as an influence factor in vehicle fuel consumption
(i.e., eco-level). ,e calculation methods for the percentage
of driver performance fluctuation were stated as equations
(1) to (16).

3.1.1. Fluctuation Percentage of One Driver Performance Item
(P1).

P1 �
MV + MA + MR + MT

M
, (1)

where MV is the number of velocity fluctuations at a given
moment during whole driving period; MA is the number of
acceleration fluctuations at a given moment during whole
driving period; MR is the number of engine revolution
fluctuations at a given moment during whole driving period;
MT is the number of engine torque fluctuations at a given
moment during whole driving period;M is the data recorded
number of the whole driving period.

Taking velocity as example, MV could be obtained by
equations (2) to (4). Similarly, the fluctuations number of the
other three indexes (i.e., acceleration, engine revolution, and
torque) could be calculated:

MV � 􏽘
M

j�1
wj, (2)

wj �
1, ΔVj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌>ΔV85 � Percentile ΔV1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, ΔV2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, ΔV3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, . . . , ΔVM

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, 0.85􏼐 􏼑,

0,

⎧⎨

⎩ (3)

ΔVj � Vj+1 − Vj, (4)

where Vj is the velocity value at time j; ΔV85 is the 85th
percentile value of velocity variation during a given time
period; wj is the statistical value of velocity fluctuation at
time j. ,e value of wj would be increased to one when the
change of velocity exceeded ΔV85 at time j.

Figure 1 shows the moment of velocity fluctuation when
taking the data of velocity during 200 meters as an example.
,e blue line, red-dotted line, and green straight line rep-
resent the original value, absolute change value, and 85th
percentile of absolute change value, respectively. When the
red-dotted line exceeds the green line, it is the moment when
the vehicle velocity changes significantly.

3.1.2. Fluctuation Percentage of Two Driver Performance
Items (P2). ,e calculation method of P2 is shown in
equations (5) to (8):

P2 �
MVA + MVR + MVT + MAR + MAT + MRT

M
, (5)

where MVA is the number of both velocity and acceleration
fluctuations at a given moment during whole driving period;
MVR is the number of both velocity and revolution fluctu-
ations at a given moment during whole driving period;MVT
is the number of both velocity and torque fluctuations at a
given moment during whole driving period; MAR is the
number of both acceleration and revolution fluctuations at a
given moment during whole driving period; MAT is the
number of both acceleration and torque fluctuations at a

given moment during whole driving period; MRT is the
number of both revolution and torque fluctuations at a given
moment during whole driving period. ,e calculation
methods of MVA are shown as equations (6) to (8), which
are similar for MVT, MAR, MAT, and MRT:

MVA � 􏽘

M

j�1
hj, (6)

hj �
1, ΔVj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌>ΔV85& ΔAj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌>ΔA85,

0,

⎧⎨

⎩ (7)

ΔAj � Aj+1 − Aj, (8)

where Aj is the acceleration value at time j; ΔA85 is the 85th
percentile value of acceleration variation during a given time
period; hj is the statistical value of both velocity and ac-
celeration fluctuations at time j. ,e value of hj would be
increased to one, when the change of velocity exceeded ΔV85
and the change of acceleration exceeded ΔA85 at time j.

3.1.3. Fluctuation Percentage of 2ree Driver Performance
Items (P3). Equations (5) to (8) illustrate the calculation
method of P3:

P3 �
MVAR + MVAT + MVRT + MART

M
, (9)
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whereMVAR is the number of simultaneous fluctuations of
velocity, acceleration, and revolution at a given moment
during whole driving period; MVAT is the number of si-
multaneous fluctuations of velocity, acceleration, and
torque at a given moment during whole driving period;
MVRT is the number of simultaneous fluctuations of ve-
locity, revolution, and torque at a given moment during
whole driving period;MART is the number of simultaneous
fluctuations of acceleration, revolution, and torque at a
given moment during whole driving period. MVRT is the
number of simultaneous fluctuations of velocity, revo-
lution, and torque at a given moment during whole
driving period.

Equations (10) to (12) displayed the calculation methods
of MVAR, which are similar to three other indexes: MVAT,
MVRT, and MART:

MVAR � 􏽘
M

j�1
kj,

(10)

kj �
1, ΔVj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌>ΔV85& ΔAj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌>ΔA85& ΔRj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌>ΔR85,

0,

⎧⎨

⎩

(11)

ΔRj � Rj+1 − Rj, (12)

where Rj is the engine revolution value at time j; ΔR85 is
the 85th percentile value of revolution variation during a
given time period; kj is the statistical value of simulta-
neous fluctuation of velocity, acceleration, and revolu-
tion at time j. ,e value of kj would be increased to one,
when the change of velocity, acceleration, and revolution
exceeded ΔV85, ΔA85, and ΔR85, respectively, at the same
time j.

3.1.4. Fluctuation Percentage of Four Driver Performance
Items (P4). ,e calculation method of P4 is shown in
equations (13) to (16):

P4 �
MVART

M
, (13)

MVART � 􏽘
M

j�1
qj, (14)

qj �
1, ΔVj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌>ΔV85& ΔAj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌>ΔA85& ΔRj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌>ΔR85& ΔTj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌>ΔT85,

0,

⎧⎨

⎩

(15)

ΔTj � Tj+1 − Tj, (16)

where MVART is the number of simultaneous fluctuations of
velocity, acceleration, revolution, and torque at a given
moment during whole driving period; Tj is the torque value
at time j; ΔT85 is the 85th percentile value of torque variation
during a given time period; qj is the statistical value of si-
multaneous fluctuation of velocity, acceleration, revolution,
and torque at time j. ,e value of qj would be increased to
one, when the change of velocity, acceleration, revolution,
and torque exceeded ΔV85, ΔA85, ΔR85, and ΔT85, respec-
tively, at the same time j.

3.2. Output Design. ,e output of our establishing estima-
tion model was set as the eco-level. In order to facilitate
comparative analysis of various drivers with different run-
ning time or distances, the vehicle fuel consumption was
uniformed as liters per 100 kilometers. For perceptual in-
tuition purpose and, more importantly, to practically qualify
drivers’ performance in terms of fuel consumption, vehicle
fuel consumption should be translated to fuel ranks (e.g.,
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Figure 1: Illustration of the fluctuation of vehicle velocity (taking 200 meters as an example).
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excellent, good, fair, and poor) or fuel scores (e.g., 75 out of a
perfect 100 points). ,e fuel scores were finally used to
reflect the eco-level in this study. ,e highest fuel con-
sumption got the lowest score; correspondingly, the lowest
got the full score. In this study, the range of fuel con-
sumption scores was from 40 to 100 points, as shown in the
following equation:

Eco − level � 40 + 1 −
FCi − FCmin( 􏼁

FCmax − FCmin
􏼠 􏼡∗ 60, (17)

where eco-level is the fuel consumption level of vehicle i in
one basic expressway segment; FCi is the fuel consumption
of vehicle i in one basic expressway segment, L/100 km;
FCmax is the maximum value of FCi in all basic expressway
segments; FCmin is the minimum value of FCi in all basic
expressway segments.

According to equation (17) and the experimental data
collected, the eco-level (i.e., fuel score) in the basic segments
of expressways was obtained, as shown in Figure 2.

3.3. Node Number of Hidden Layer Selection. One of the key
issues of BP network based estimation model construction is
to design an appropriate node number of hidden layer.
However, there is still no certain approach existing to de-
termine the suitable number of nodes in hidden layer
corresponding to various tasks. ,us, according to previous
studies, repeated experimental tests were applied to find out
the optimal node number of hidden layer in developing our
BP network based eco-level estimation model.

Firstly, the experiential equations (18) to (20) were used
to calculate the possible range of node number [39–41],
taking the numbers of both input and output indexes into
account:

nnode �
������������
ninput + noutput

􏽰
+ α, (18)

nnode �
������������
ninput × noutput

􏽰
, (19)

nnode � log2ninput, (20)

where nno de is the suitable node number in hidden layer;
ninput is the number of input indexes; nouput is the number
of output indexes; α is constant, and the value is from zero
to ten.

According to our input and output design stated above,
the numbers of input and output indexes are twelve and one,
respectively. ,erefore, according to equations (18) to (20),
the node number should be selected from the value range of
4 to 14. In order to find the most suitable node number from
the possible values, the node number was obtained from an
arithmetic progression range with a tolerance of 2 for op-
timal value test. Taking the prediction error as a control
objective, we should find the optimal value of node number
from 4, 6, 8, 10, 12, and 14 in line with the smallest pre-
diction error.

To obtain relatively stable prediction results under the
influence of node numbers, every BP network model with a

given node number (i.e., [4, 14] with a tolerance of 2) was
run 10 times. Figure 3 displays the relationship between the
node number in hidden layer and the mean prediction error.
It indicated that the average prediction error is the smallest
when the number of nodes was 10. ,erefore, the hidden
layer of the developed BP network based estimation model
should be designed as 10 neuron nodes.

3.4. Function Selection. ,e same as other typical BP net-
work models [39, 42, 43], the transfer functions selected in
this study were general types. Namely, the transfer function
from input to output layer was set as “tansig” (i.e., a S-type
tangent function) and the function from hidden to output
layer was “purelin” (i.e., a linear function).

Since training functions would apparently affect mode
training speed and might further influence the accuracy of
predictive results, the most suitable training function used in
this study was also confirmed from repeated experiment
tests. Five common training functions were selected as
candidates by referring to other similar models developed in
previous researches [44]. ,e prediction accuracy and
training speed were controlled as evaluation indexes for
comparison and selection of model training function. In
order to make predictive result more reliable and steady, we
tested the BP network based estimation model with every
candidate training function ten times. ,e testing results of
mean prediction accuracy and training speed of each
training function were obtained and are displayed in Table 1.

As illustrated in Table 1, the function of “traingdm”
should be the best one when taking both the prediction
accuracy and training speed into account. For our developed
BP network based estimation model, the “traingdm” func-
tion has both higher prediction accuracy and faster training
speed when compared to other training functions.

3.5. Learning Rate Selection. In the BP network, the weight
variation for each loop iteration was determined by learning
rate. ,e prediction error would be smaller at the end of
iteration if setting the learning rate as smaller value; how-
ever, the model convergence rate would be slower accord-
ingly because of increasing learning time. In general, the
method of learning rate selection was based on previous
studies and repeated trials [39–44]. Usually, the optimal
learning rate should have the smallest sum of squared errors
through comparative analysis.

In this study, the value range of learning rate was set
from 0.01 to 0.09. ,en, repeated experimental tests were
went through to find out the optimal value of learning rate.
With a tolerance of 0.01, the candidate learning rate was
designed as an arithmetic progression. Every BP network
model was run ten times with a given learning rate. Figure 4
exhibits the relationships between the average and standard
deviation of sum of squared errors and different learning
rates. Obviously, both the average and standard deviation
are the smallest when selecting learning rate as 0.03. ,us,
the optimal learning rate should be 0.03 for our developed
BP network based estimation model.
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3.6. Results of Model Construction. Summarizing the above,
the structure, parameters, and functions of our eco-level
estimation model in accordance with driver performance
were developed. According to these separate test results, we
also tried to find the most suitable model format by adjusting
the node number in hidden layer, learning rate, and func-
tions simultaneously. After repeated trials, the most ap-
propriate structure of our constructed BP neural network
model was obtained. In our developed model, twelve
characteristic indexes of vehicle operating performance are
the input parameters. Eco-level (i.e., score) is the output.
,is BP network based estimation model has one hidden
layer and the number of neuron nodes in this layer is ten.
,e transfer function from input to hidden layer is “tansig”

and that from hidden to output layer is “purelin.” ,e
appropriate training function is “traingdm” and the optimal
learning rate is 0.03.

4. Model Accuracy Test and Discussion

Depending on our distribution of experimental data for
model accuracy test, it was calculated that the average
training time of our established model was 0.732 seconds.
,e model operating efficiency was relatively high. Taking
the absolute value of the difference between original and
predictive values divided by the original value as model
forecasting performance measurement, the average pre-
diction accuracy of this BP network based estimation model
was 96.37%. Besides, the most absolute prediction error was
less than 5 points and the biggest absolute prediction error
was less than 10 points. In addition, five other evaluating
indexes about model prediction error were calculated to
evaluate the model performance (shown in Table 2). In an
overall view, the model evaluation results tested and verified
that the BP network based eco-level estimation model was
effective.

In addition to testing the model accuracy by itself, we
also want to compare the estimation results of our estab-
lished model with those of traditional linear regression
approaches. Taking the same model input parameters as
independent factors and treating eco-level as dependent
variable, we adopted the method of stepwise regression to
construct the linear regression model using the same da-
tabase stated above. But, unfortunately, we failed to establish
this linear regression model because no variables were ap-
plied into the linear equation. ,is comparative result il-
lustrates and verifies that the relationship between driver
performance and fuel consumption is not linear or obvious
but chaotic and hidden. Driver performance leads to a
vehicle power requirement, which in turn leads to an engine
power requirement and then to an engine fuel usage [20–22].
Since machine learning has advantage in mining hidden and
complicated features, it is effective to develop a machine
learning model to estimate the eco-level of driver perfor-
mance precisely. In one of our previous studies [44], we
found that the performance of BP network based model was
better than that of the random forest based model, from the
aspects of elapsed time and prediction accuracy in esti-
mating the eco-level of driver performance. ,us, we de-
veloped a BP network based model to qualify drivers’
performance in terms of fuel consumption.

Besides the common feature parameters (e.g., average and
standard deviation) used to describe the influence on eco-level
in driving process, fluctuation percentage of driver perfor-
mance was newly adopted as an independent variable to es-
timate eco-level in the current study. ,e test results of mode
estimation accuracy (96.37%) indicate that these input pa-
rameters selected could highly interpret the difference of eco-
level corresponding to various driver performance. It verified
that the change of driver performance might be a key influence
factor decreasing eco-level of vehicle operating. Although these
independent variables were of no physical meaning, it was
implied that the fluctuation of driver performance would be
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Figure 2:,e relationship between eco-level and fuel consumption
in the basic segments of urban expressways.
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Figure 3: Relationship between model prediction error and the
number of nodes in hidden layer.

Table 1: Prediction accuracy and training speed of each candidate
training function.

Training function Prediction accuracy (%) Training speed (s)
Trainr ( ) 96.8 109.368
Trainbfg ( ) 96.1 2.0199
Traingd ( ) 96.3 0.7010
Traingdm ( ) 96.5 0.636
Trainlm ( ) 95.6 1.588
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highly related to vehicle fuel consumption. Drivers should
maintain their performance as stable as possible to achieve a
higher eco-level of vehicle operation.

Apart from directly taking default parameters and struc-
tures of existing BP network for model construction, the main
work of this study focused on finding the suitable number of
neuronal nodes, functions, and learning rate through securing
the estimation error under an acceptable level. Undoubtedly,
the rule of thumb of establishing BP network model was also
referred to in our study. ,us, the reasonability, practicability,
and robustness would be highly enhanced. ,e prediction
accuracy of the BP network model proposed in our current
study is much higher than that of traditional methods based on
linear regression or other statistic models [45, 46]. More im-
portantly, the data demand is significantly less than that of
most existing microscopic vehicle fuel consumption models
that often require data on trajectories along with engine power,
vehicle features, engine types and driving conditions [12, 13],
driving models, the acceleration, deceleration, cruise, and
idling parameters [15, 16]. Our developed model provided a
practical way for government and companies to evaluate and
reward drivers with eco-driving behavior. Meanwhile, the
drivers could also know well their driving ability from the
perspective of eco-driving behavior.

For the inputs of our developed model, the data used could
all be collected in various road, traffic, and environmental
conditions with no interventions to drivers, based on on-board
OBD and GPS devices. As vehicle operation information

would be more easily detected with rapid development of
detection and communication technology, the current study
results would be a foundation for vehicle fuel using level es-
timation and further optimization in CAV environment.
,erefore, the eco-level estimation model proposed in this
study is more valuable for further applications.

Overall, this research proposed a new and practical
method to estimate the eco-level of driver performance
based on OBD+GPS data in naturalistic driving conditions.
Combined with our previously developed model to estimate
vehicle fuel consumption by driver manipulating data (e.g.,
controlling the steering wheel, accelerator pedal, and de-
celerator pedal) in driving simulator [44], it tested and
verified that BP network based model did have an advantage
and applicability in exploring the relationship between ve-
hicle fuel consumption and driver behaviors, thus con-
tributing to qualifying the eco-level of drivers’ performance
from the perspective of fuel consumption. Moreover, the
difference between our previously developed model and the
current proposed model was obvious, namely, in terms of
the input parameters, node number of hidden layer, training
function, and learning rate.

5. Summary and Conclusions

In order to find a practical method to accurately estimate the
eco-level of driver performance in naturalistic driving
conditions, a back-propagation network based estimation
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Figure 4: Relationship between sum of squared errors and different learning rate.

Table 2: Prediction error for eco-level of driver performance.

Mean absolute error
(MAE)

Mean percentage error
(MPE)

Mean absolute percentage error
(MAPE) (%)

Mean square error
(MSE)

Standard deviation of error
(SDE)

2.92 −0.81% 3.11 13.48 3.67
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model was developed in our current study. Depending on
the database of taxicab’s instantaneous running data (e.g.,
second-by-second fuel consumption, engine revolution and
torque, speed, and acceleration) collected by on-board di-
agnostics and Global Position System devices, the optimal
model structure and parameters were built and obtained
from repeated tests. ,e model accuracy and performance
were tested to be acceptable.

In addition to the common feature parameters (e.g.,
average and standard deviation) used to describe the in-
fluence factors in eco-level of driving performance during
driving, fluctuation percentage of driver performance during
driving segments was newly adopted as the independent
variable to estimate the eco-level in the current study. A total
of twelve feature indexes of driver performance were set as
model input parameters. ,e eco-level was used as model
output. Based on 700 data samples in basic segments of
urban expressways as training set and 100 data samples as
validation test, model structure and parameters were ob-
tained through controlling estimation error and training
speed through repeated simulation tests. In particular, our
establishedmodel has three layers and the number of neuron
nodes in the hidden layer is ten. ,e transfer function from
input to hidden layer is “tansig” and that from hidden to
output layer is “purelin”. ,e suitable training function is
“traingdm” and the optimal learning rate is 0.03. Validation
test shows that the average estimation of our developed
model is 96.37%.

Besides, the result of the comparison between our
constructed model and traditional linear regression analysis
demonstrated that the relationship between driver perfor-
mance and fuel consumption should be chaotic and hidden
but not linear or obvious. Different from most previous
studies based on experiments under restrictive condition
and in smaller sample size, this study gives some new in-
sights about data mining of natural driving characteristics in
oncoming traffic big data era. ,e study results provide a
practical approach to accurately qualify drivers’ perfor-
mance in terms of fuel consumption in naturalistic condi-
tions and thus give basis for rewarding best drivers within
eco-driving programs. ,is study also provides evaluation
supports for more targeted and effective driver behavior
training towards vehicle energy conservation.

Although our established BP network based model has
relatively high accuracy in estimating the eco-level of driver
performance, only taxicabs’ running data in basic segments
of expressway were processed in our eco-level estimation
model. ,e data used was processed by a single vehicle
technology, with the vehicles restricted to operating on a
single mode of operation. Different roadway and vehicle
types should also be considered in the future researches to
enhance the robustness of our developed eco-level esti-
mation model. In addition, other machine learning models
with different structures or algorithms (e.g., deep learning
model or convolutional neural network) should be further
employed to establish the eco-level estimation method of
driver performance and thus get the most optimal esti-
mation methods with more effective calculation
performance.
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,e data used in the current study was from the authors’
established driving behavior platform based on Inter-
net + technology in Beijing University of Technology. ,e
datasets generated and/or analyzed during the current study
are available from the corresponding author upon reason-
able request.

Conflicts of Interest

,e authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

,is research was supported by Beijing Municipal Education
Commission Foundation (no. KM201910005002).

References

[1] Beijing Municipal Statistics Bureau, Beijing Statistical Year-
book, China Statistics Press, Beijing, China, 2017.

[2] A. Sanguinetti, E. Queen, C. Yee, and K. Akanesuvan, “Av-
erage impact and important features of onboard eco-driving
feedback: A meta-analysis,” Transportation Research Part F:
Traffic Psychology and Behaviour, vol. 70, pp. 1–14, 2020.

[3] C. Andrieu and G. S. Pierre, “Comparing effects of eco-driving
training and simple advices on driving behavior,” Procedia -
Social and Behavioral Sciences, vol. 54, pp. 211–220, 2012.

[4] Y. Wu, X. Zhao, J. Rong, Y. Liu, and L. Xu, “,e potential of
eco-driving in reducing fuel consumption and emissions: A
driving simulator study,” Journal of Beijing University of
Technology, vol. 41, no. 8, pp. 1212–1218, 2015.

[5] Y. Wu, X. Zhao, J. Rong, and Y. Zhang, “,e effectiveness of
eco-driving training for male professional and non-profes-
sional drivers,” Transportation Research Part D: Transport and
Environment, vol. 59, pp. 121–133, 2018.

[6] M. Sivak and B. Schoettle, “Eco-driving: Strategic, tactical, and
operational decisions of the driver that influence vehicle fuel
economy,” Transport Policy, vol. 22, pp. 96–99, 2012.

[7] L. Ntziachristos and Z. Samaras, COPERT III Computer
Programme to Calculate Emissions from Road Transport,
Methodology and Emission Factors, European Energy Agency
(EEA), Copenhagen, Denmark, 2000.

[8] California Air Resources Board (CARB), EMFAC2014 Vol-
ume III – Technical Documentation, California Air Resource
Board, Sacramento, CA, USA, 2015.

[9] Environmental Protection Agency (EPA), “Transportation
and climate division, office of transportation and air quality,”
Technical Report EPA-420-B-15-007, U.S. Environmental
Protection Agency, Washington, DC, USA, 2015.

[10] G. Song, “A review of road traffic fuel consumption and
emissions microcosmic models,” Energy Conservation &
Environmental Protection in Transportation, vol. 1, pp. 173–
179, 2010.

[11] H. Zhang, Y. Pang, S. Cheng, and Z. Cheng, “Establishing
theoretical fuel consumptionmodels for four typical vehicles,”
East China Highway, vol. 6, pp. 62–66, 2002.

[12] T. Markel, A. Brooker, T. Hendricks et al., “ADVISOR: A
systems analysis tool for advanced vehicle modeling,” Journal
of Power Sources, vol. 110, no. 2, pp. 255–266, 2002.

Journal of Advanced Transportation 9



[13] D.W. Gao, C. Mi, and A. Emadi, “Modeling and simulation of
electric and hybrid vehicles,” Proceedings of the IEEE, vol. 95,
no. 4, pp. 729–745, 2007.

[14] K. T. Chau, Y. S. Wong, and C. C. Chan, “EVSIM - A PC-
based simulation tool for an electric vehicle technology
course,” 2e International Journal of Electrical Engineering &
Education, vol. 37, no. 2, pp. 167–179, 2000.

[15] K. Ahn, H. Rakha, A. Trani, and M. Van Aerde, “Estimating
vehicle fuel consumption and emissions based on instanta-
neous speed and acceleration levels,” Journal of Trans-
portation Engineering, vol. 128, no. 2, pp. 182–190, 2002.

[16] A. Cappiello, I. Chabini, E. K Nam, A. Lue, andM. Abou Zeid,
“A statistical model of vehicle emissions and fuel consump-
tion,” in Proceedings of the IEEE 5th International Conference,
pp. 801–809, Amsterdam, Netherlands, February 2002.

[17] J. Park, R. Noland, and J. Polak, “Microscopic model of air
pollutant concentrations: Comparison of simulated results
with measured and macroscopic estimates,” Transportation
Research Record: Journal of the Transportation Research
Board, vol. 1750, pp. 64–73, 2001.

[18] H. Zhai, H. C. Frey, and N. M. Rouphail, “A vehicle-specific
power approach to speed- and facility-specific emissions
estimates for diesel transit buses,” Environmental Science &
Technology, vol. 42, no. 21, pp. 7985–7991, 2008.

[19] X. Zhao, Y. Wu, J. Rong, and Y. Zhang, “Development of a
driving simulator based eco-driving support system,”
Transportation Research Part C: Emerging Technologies,
vol. 58, pp. 631–641, 2015.

[20] C. Bach and P. Soltic, “CO₂ reduction and cost efficiency
potential of natural gas hybrid passenger cars,” SAE Inter-
national Journal of Engines, vol. 4, no. 2, pp. 2395–2404, 2011.

[21] G. Pannone, B. Betz, M. Reale, and J. ,omas, “Decomposing
fuel economy and greenhouse gas regulatory standards in the
energy conversion efficiency and tractive energy domain,”
SAE International Journal of Fuels and Lubricants, vol. 10,
no. 1, pp. 202–216, 2017.

[22] P. Phlips, “Analytic engine and transmission models for ve-
hicle fuel consumption estimation,” SAE International Jour-
nal of Fuels and Lubricants, vol. 8, no. 2, pp. 423–440, 2015.

[23] C. Miyajima, Y. Nishiwaki, K. Ozawa et al., “Driver modeling
based on driving behavior and its evaluation in driver
identification,” Proceedings of the IEEE, vol. 95, no. 2,
pp. 427–437, 2007.

[24] J. Y. Zhang and G. Y. Pan, “Comparison and application of
multiple regression and BP neural network prediction
model,” Journal of Kunming University of Science and Tech-
nology (Natural Science Edition), vol. 38, no. 6, pp. 61–67,
2013.

[25] X. Y. Wang and X. Y. Yang, “Study on decision mechanism of
driving behavior based on decision tree,” Journal of System
Simulation, vol. 20, no. 2, pp. 405–414, 2008.

[26] S. S. Seyhan, F. N. Alpaslan, and M. Yavaş, “Simple and
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