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+e low-cost global navigation satellite systems combined with an inertial navigation system (GNSS/INS) usedmost frequently for
vehicle localization show errors up to 10m, approximately, even in open-sky environments such as highways. To reduce this error
on highways, this paper proposes a localization method based on lane endpoints. Since a lane endpoint frequently appears on a
road and can be detected in close proximity even by a low-cost monocular camera, it is a very useful landmark for precise
localization. However, the lane width is generally less than 3.5m, and the localization error from the GNSS is about 10m.
+erefore, if an ego-lane is not identified, the lane endpoints detected in an ego-lane can be falsely corresponded to the lane
endpoints in the other lane of a map. +is paper proposes an in-lane localization method that uses lane endpoints, the relation
between a camera and a road, and the estimated vehicle’s orientation from a map. In addition, this paper proposes an ego-lane
identification method that generates a hypothesis about an ego vehicle position per lane by using the proposed in-lane localization
method and verifies each hypothesis by the projection of lane endpoints and an additional landmark such as a road sign. +e
average error of the proposed in-lane localization method is 0.248m on highways. +e success rate of the proposed ego-lane
identification method is 99.28% by one trial and reaches 100% by fusing the results.

1. Introduction

Vehicle localization is used to estimate the current global
position of a vehicle and is one of the core components in
autonomous driving [1]. +e most widely adapted locali-
zation systems are global navigation satellite systems
(GNSSs) which estimate their position through multi-
lateration with satellite signals [2]. +e precision of a GNSS
can be degraded by the diffused reflection of signals on
skyscrapers, signal blocking in tunnels, or atmospheric
signal distortion. Cooperative positioning (CP) robust to
atmospheric signal distortion was proposed [3]. CP com-
pensates for signal distortion by sharing the signal distortion
information between several receivers. +e representative
systems of the CP approach are differential GNSS (DGNSS),

satellite-based augmentation systems (SBASs), ground-
based augmentation systems (GBASs), and real-time kine-
matic (RTK). And to reduce the localization error caused by
signal diffused reflection or signal blocking, a GNSS/INS that
combines GNSS and an inertial navigation system (INS) has
been researched [4]. +e low-cost GNSSs generally installed
on mass-produced vehicles have localization errors of up to
10m even in an open-sky environment such as a highway.
However, more expensive GNSS/INS with very precise INS
and RTK GPS can keep their localization errors to less than
the width of a lane even in urban areas where the diffused
reflection of signals or signal blocking often occurs [5].
However, this type of system is not affordable for mass-
produced vehicles because of its high price, and even precise
INS cannot avoid cumulative errors, too. Moreover, an
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autonomous driving vehicle requires a localization system
whose precision is under tens of centimeters rather than tens
of meters [6].

To improve localization precision up to tens of centi-
meters by compensating the localization error from a GNSS/
INS, map matching-based localization systems have been
broadly researched [7–19]. A map matching-based locali-
zation system recognizes a landmark such as a building or a
road facility through perception sensors and estimates the
vehicle’s global position by finding the correspondence of
the landmark in a digital map. As a perception sensor,
sensors such as Lidar, radar, and stereo cameras are mainly
used to capture 3D information and a monocular camera for
capturing 2D information. +e map-matching based lo-
calization system can be categorized into a feature point-
based and road facility-based approach according to the
types of landmarks used. +e feature point-based approach
utilizes feature points extracted on any surrounding static
objects as landmarks [7–14]. +e road facility-based ap-
proach recognizes a road facility such as a lane marking and
a road sign as a landmark [15–19].+e former can be applied
in any place but increases tremendously the volume of a
digital map to store a lot of feature points according to the
size of place. Because of this, this approach is mainly used in
limited areas such as an indoor place or parking lot.+e road
facility-based approach can be utilized only on a road, but
the volume of a digital map is relatively small because the
map stores only the information of road facilities. Most road
facilities such as lane markings, road signs, and traffic signs
are strictly maintained by transport authorities to be easily
recognized by a driver, and since their shapes are stan-
dardized, the essential amount of information to be stored
(ex: four vertices of a road sign and a center position of a
traffic sign) is small. For these reasons, the road facility-
based approach is effective for vehicle localization on a road.

+is paper deals with the road facility-based vehicle
localization approach on highways. In order to recognize
road facilities, this paper utilizes a forward-looking mon-
ocular camera installed in most advanced driver assistance
systems (ADASs) because of its low cost and high usability.
+emajor road facility used in this paper is the endpoint of a
dashed lane marking, as shown in Figure 1. +e lane end-
point frequently appears on roads, and their usability to
compensate the localization error of a GNSS/INS is high. In
particular, it appears over almost the entire section of a
highway and, unlike lane markings, provides information on
both lateral and longitudinal positions [20]. Moreover, since
it can be captured at a close distance, its position accuracy is
guaranteed. According to the driving direction of a road, the
lane endpoint is classified into a lane starting point and a
lane ending point that are shown as a green and a red point,
respectively, in Figure 1. According to Korean regulations,
on highways, the lane width is 3.5m, the length of a dashed
lane marking is 8.0m, and the longitudinal distance between
two dashed lane markings is 12.0m, as shown in Figure 1.
+erefore, the same type of endpoints is at least 20m apart in
the longitudinal direction and at least 3.5m apart in the
lateral direction. Since the localization error of a low-cost
GPS on a highway is under 10m, there is no possibility that

the detected endpoint falsely corresponds with the endpoint
stored in a map in the longitudinal direction. However, if the
ego-lane is not identified on a map, a detected endpoint can
falsely correspond with the endpoint stored on a map in the
lateral direction. +erefore, this paper proposes the
framework to solve the vehicle localization in highways by
dividing the problem into in-lane localization and ego-lane
identification. In the proposed framework, in-lane locali-
zation using lane endpoints reduces the m-level localization
uncertainty from GNSS/INS to the cm-level uncertainty on
each lane by generating the camera hypothesis on each lane.
And the hypothesis on each lane has been kept by the lo-
calization filter such as Kalman or particle filter until the
ego-lane is identified by using an additional landmark.

+e major contributions of this paper are as follows:

(1) It proposes an efficient framework that divides the
localization problem into the in-lane localization and
the ego-lane identification

(2) +e proposed method achieves an average of 24.8 cm
localization precision in highway

(3) +e proposed method is practical enough to be
applied to a mass-produced vehicle since it requires a
low-volume digital map and uses only low-cost
sensors: a monocular camera and a low-cost GNSS/
INS

Since the localization filter has been well introduced in
other references, this paper describes only the system
overview, the in-lane localization, and the ego-lane identi-
fication.+e rest of this paper is organized as follows. Section
2 explains the previous works related to the ego-lane
identification. Section 3 describes the proposed in-lane lo-
calization and the proposed ego-lane identification. Section
4 presents the experimental results and analyses. Finally, this
paper concludes with future works in Section 5.

2. Previous Ego-Lane Identification Research

+e previous works for ego-lane identification can be cat-
egorized into the vehicle to vehicle (V2V) communication-
based approach, perception sensor-based approach, and
map-guided perception sensor-based approach. +e V2V
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Figure 1: Lane endpoints and the printed regulation of dashed lane
markings on a highway.
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communication approach identifies the ego-lane by ex-
changing the relative positions between an ego-vehicle and
others through the communication line [21, 22]. +is ap-
proach can identify the ego-lane of all vehicles equipped with
a communication device. However, there should be sur-
rounding vehicles with a communication device on every
lane. +erefore, as V2V communication is not in common
usage, this system is suitable only for vehicle platooning.

Most of the perception sensor-based approaches detect
road boundaries and identify the ego-lane by measuring the
lateral offset of an ego-vehicle from the road boundary
[23–25]. Lee et al. proposed a method that extracts multiple
road characteristics (lane marking type, lane marking color,
number of lanes, and lateral offset of each lane from a road
boundary) and identifies an ego-lane by feeding these
characteristics into the Bayesian network (BN) [23]. +ere is
also a method that estimates lane width and the ego-lane
lateral offset from a road boundary through a Kalman filter
[24]. Kim and Park assume that a traffic sign is close to a road
boundary.+eir proposed method detects a traffic sign with a
stereo camera to estimate its 3D position and identifies an
ego-lane by estimating the lateral offset from the traffic sign to
an ego-vehicle [25].+ere is a multisensor fusionmethod that
combines the surrounding vehicles detected by a Lidar and
lane markings detected by a camera [26]. +e perception
sensor-based approach is easy to apply to mass-produced
vehicles because it does not require any communication
device or digital map. However, when the overall width of a
road is too large to be within the sensor detection range or the
road is too crowded for its lane markings to be observed, it is
hard to recognize the road characteristics such as the number
of lanes and the road boundary. Moreover, the methods to
infer an ego-lane with the relative position from surrounding
vehicles like the V2V communication approach have the
limitation that there should be a vehicle in each lane [26].

+e map-guided perception sensor-based approach uti-
lizes both a perception sensor and a digital map to identify an
ego-lane. Ballardini et al. define the difference between the
detected lane number and the lane number recorded on amap
as a sensor failure and identify an ego-lane through hidden
Markov model (HMM) considering this sensor failure [27].
Nedevschi et al. proposed an ego-lane identification method
around an intersection [16]. +is method detects lane
markings, road markings, and surrounding vehicles with a
stereo camera. +en, it estimates the lateral position by
identifying an ego-lane through BN. +is method also esti-
mates the longitudinal position by detecting a stop line and
finding its correspondence on a map. Svensson and Sorstedt
estimate the probability that each lane is an ego-lane based on
the Bayesian formula [28]. In order to estimate the proba-
bility, they utilize the information from a perception sensor
(lane markings and surrounding vehicles), the vehicle esti-
mated position from a low-cost GPS, and the information
recorded in a map (number of lanes, lane width, and lane
curvature). +ey also estimate the vehicle position within a
lane through a localization filter such as a particle filter. Most
map-guided perception sensor-based methods pay attention
to estimate directly the order of the ego-lane with the in-
formation from a perception sensor and a map. Unlike the

previous map-guided perception sensor-based methods, Cao
et al. generate many hypotheses of an ego-vehicle position
through Monte Carlo simulation and select a reasonable one
among the hypotheses to the observation results [29]. To do
this, they generate a virtual image by projecting a 3D precise
map into a virtual camera based on each hypothesis and each
hypothesis is verified by comparing its virtual image to a real
image. +eir method consumes high computational power to
verify a hypothesis, and in order to increase the localization
precision, the method must generate many hypotheses.

Our proposed method belongs to the map-guided per-
ception sensor-based approach and the proposed method is
similar to Cao’s method in that an ego-lane is identified by
selecting a reasonable hypothesis to the current observation.
While Cao’s method requires high computational power to
generate many hypotheses, the proposed method generates
only one hypothesis per lane since the proposed method can
estimate a vehicle position within a lane by using the
endpoints of lane markings. Moreover, while Cao’s method
requires a large volume 3D precise map storing the infor-
mation about the overall shape of a road and the shape of
static objects on a road, the proposed method requires a
relatively small-sized map since the proposed method uti-
lizes the essential shape information of road facilities such as
endpoints of lane markings and vertices of a road sign. And
also, instead of generating a virtual image, since the pro-
posed method only checks how the essential shape infor-
mation of a detected road facility is reasonable to each
hypothesis, the amount of computation is very small. In
summary, the proposed ego-lane identification method
projects the shape information of a road facility based on a
camera hypothesis and compares the information to the
detected facility. +e proposed method is very effective for
the following reasons. First, since the camera hypothesis
generated by the in-lane localization is very precise, and only
one camera hypothesis on each lane is needed. Second, the
information of a road sign to be projected is very small, such
as the 3D coordinates of road sign vertices.

+e previous works that utilize a road boundary can
identify an ego-lane in any section of a road without road
facilities such as a lane endpoint and a road sign. However, on
highways, the cases that the lane change of an autonomous
driving vehicle is necessary aremainly collision avoidance and
the entering of an intersection (IC) or a junction (JC). For
collision avoidance, ego-lane identification is not necessary,
and only the recognition whether the adjacent lane for a
vehicle to move into is free or not is needed. In order to enter
into an intersection (IC) or a junction (JC), ego-lane iden-
tification is necessary. Fortunately, there are always road signs
to notify in advance the entrance of an IC or a JC on a
highway, and also the type of lane marking is a dashed line to
allow a lane change. +erefore, the proposed method that
utilizes a lane endpoint and a road sign is suitable for ego-lane
identification on a highway.

3. Proposed Method

3.1. SystemOverview. +e flowchart of the proposed method
is shown in Figure 2. In Figure 2, the initial vehicle position
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is given from GPS. After the initial position is given, the
vehicle position is estimated by the localization filter such as
Kalman or particle filter. +e localization filter exploits two
inputs: the outputs fromGPS and IMU (inertial measurement
unit) and the vehicle position estimated by matching the
detected lane endpoints to the corresponding ones in a map.
After the ego-vehicle position is predicted by a localization
filter, the digital map around the predicted position is re-
ferred. Lane markings and lane endpoints are detected in an
image, and the in-lane localization estimates a vehicle position
within a lane by matching the detected lane endpoints to the
corresponding ones in a map. When the ego lane is not
known yet, lane’s endpoints on a map corresponding to the
detected lane endpoints cannot be determined. +erefore, the
in-lane localization generates vehicle position hypotheses for
every lane, as shown in the right picture of the in-lane lo-
calization block of Figure 2. In the right picture, the hollow
circles on a road indicate the generated hypotheses and the
red circle among them indicates the hypothesis on an ego-
lane. If there is an additional landmark such as a traffic sign or
a road sign on a map, the additional landmark is detected.
Otherwise, the vehicle position hypotheses generated in the
in-lane localization are inputted into the localization filter.
+e ego-lane is then identified by verifying the vehicle po-
sition hypothesis per lane with the help of the additional
landmark. In the ego-lane identification block of Figure 2, the
green box indicates the detected additional landmark and the
blue boxes indicate the projected additional landmarks stored
in a map by using the false vehicle position hypotheses. +e
red box indicates the projected additional landmark by using

the hypothesis on an ego-lane. +e ego-lane is identified by
comparing the position difference between the detected
landmark and the projected landmark. Before the ego-lane is
identified, the localization filter is updated with the vehicle
position hypotheses for every lane and keeps the possibility of
the vehicle position within each lane. When the particle filter
is used as the localization filter, the particles are weighted
according to their distances to their nearest vehicle position
hypothesis. +e output of the localization filter is the mean of
the particles.When the Kalman filter is used, a Kalman filter is
generated for each vehicle position hypothesis. +erefore,
there are multiple outputs from multiple Kalman filters. In
this case, the map around the mean of the multiple outputs is
referred. After the ego-lane identification, the localization
filter is updated only with the vehicle position hypothesis on
the ego-lane. After the ego-lane is identified once, the lo-
calization filter has tracked the vehicle position.+erefore, it is
not necessary to identify the ego-lane in every frame. In this
paper, the localization filter is assumed to be a particle filter.
+e detectionmethods for lane markings, lane endpoints, and
an additional landmark such a road sign are referred to in our
previous research [20, 30, 31]. Since this paper proposes in-
lane localization and the ego-lane identification depicted as
red blocks in Figure 2, the following sections describe only the
in-lane localization and the ego-lane identification in detail.

3.2. In-Lane Localization. In-lane localization is to estimate
a plausible position of a camera within each lane in a map. If
there are N lanes in a map, a camera position per lane is

Initial position from GPS

Vehicle position estimation (localization filter)

Referrring to map around the position

Lane marking and lane end point detection

In-lane localization
Detected lane endpoints Map

No
Yes

Additional road facility exist?

Ego-lane identification

Additional road facility detection

Figure 2: System flowchart.
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estimated with the correspondences between the lane
endpoints of the lane in a map and the detected lane
endpoints. +e lane endpoints of a lane in a map and the
detected lane endpoints are sorted according to their
distances from the camera position estimated by GNSS/
INS and from the origin in the camera coordinate system,
respectively. And then the endpoints whose types are the
same and distances are similar are associated. +ere may
be several solutions to estimate a camera position with the
correspondences between global points and the points in
the camera coordinate system. When the number of de-
tected lane endpoints are more than four, the perspective
n points (PnP) solution, homography-based method, and
perspective transformation (PT) based method are ap-
plicable. When the number of points is less than four, the
perspective transformation-based method with the ve-
hicle direction assumed from a map is a feasible solution.
By comparison of localization precisions for the PnP
solution, the homography-based method, and PT-based
method, this paper suggests that the PT-based method is
most appropriate for in-lane localization using lane
endpoints.

3.2.1. PNP Method. +e localization of the vehicle rigidly
coupled with a perception sensor is equal to the perception
sensor localization. When N correspondences between
global coordinates and image coordinates are given, the
camera pose estimation in the global coordinate system is
known to be a PnP problem. +is paper compares the ef-
ficient PnP (EPnP) method best known among many other
methods available to solve the PnP problem [32]. +e EPnP
method takes less computation than other PnP methods that
find a solution iteratively. When the solution from EPnP is
used as an initial solution for other iterative methods, the
more precise solution is quickly estimated. In the EPnP
method, a point (pw

i ) in the global coordinate system is
expressed as the linear combination of four control points
(cw

j ) in the same coordinate system as follows:

pw
i � 

4

j�1
αijc

w
j ,with

4

j�1
αij � 1, (1)

and, an image point (ui) is expressed as a projection of the
linear combination of four control points (cc

j) in the camera
coordinate system as follows:

ui

1
  � K

4

j�1
αijc

c
j, (2)

where K is a camera intrinsic matrix. After the four global
and camera control points are calculated, respectively, the
rigid transformation between global control points and
camera control points are simply estimated to find the
camera pose [33]. With this solution as an initial one, the
final solution to minimize the differences between image
points and the projections of global points is precisely es-
timated through an optimization algorithm, such as Lev-
enberg–Marquardt (LM) [34].

3.2.2. Homography Method. If the global points are on a
single plane, the relation between the global points
(Xi, Yi, Zi) and their image correspondences (xi, yi) is
defined as homography transformation. +erefore, the
camera projection matrix in equation (3) is reduced to the
homography matrix shown in equation (4). +e homog-
raphy matrix H is estimated with more than four corre-
spondences between global points and image points [35].
+e camera intrinsic matrix K is known by the camera
calibration in advance. +erefore, the rotation matrix R and
the translation vector t between the camera coordinate
system and the global coordinate system are calculated by
equations (5) and (6), respectively. +e camera position in
the global coordinate system is calculated from the matrix R
and the vector t:

xi

yi

1
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(4)

R � r1 r2 r3  �
1
s
K− 1h1

1
s
K− 1h2 r1 × r2 , (5)

t �
1
s
K− 1h3, (6)

s �
K− 1h1

����
���� + K− 1h2

����
����

2
. (7)

3.2.3. PT-Based Method. +e PnP and the homography
methods described above did not fully utilize the prior
knowledge. +e lane endpoints exist only on a road surface,
and the road surface is almost flat, but the PnP method does
not utilize this knowledge. On the contrary, the homography
method utilizes the assumption that the lane endpoints exist
on the plane. However, this method does not utilize the
relationship between the road surface and the camera which
is known in advance through the calibration. +e PT-based
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method utilizes this relationship which can be known in
advance by the calibration with the pattern, as shown in
Figure 3.

In the PT-basedmethod, the virtual camera whose image
plane is perpendicular to the road surface is created by using
the calibration result, as shown in Figure 4. +e transform
from the real camera coordinates Cr

�→
to the virtual camera

coordinates Cv

�→
is calculated as follows:

Cv

�→
� KR

t
K

− 1
Cr

�→
, (8)

where K is the intrinsic cameramatrix andR is the rotational
matrix from the extrinsic calibration. +en, the coordinates
of lane endpoints in the virtual camera coordinate system are
calculated. +e coordinate of a lane endpoints p1 in the
virtual camera coordinate system is (X1, Y1, − Zc), as shown
in Figure 4, and Zc is equal to the camera installation height
from the road surface and is known by the camera cali-
bration in advance. Y1 is calculated as follows by the sim-
ilarity in triangles shown in Figure 5(a):

Y1 �
− f · Zc

v1 − ov( 
, (9)

where f is a focal length, v1 is the vertical image coordinate
of lane endpoint p1, and the image coordinates of the
principal point is (ou, ov). X1 is calculated as follows by the
similarity in triangles shown in Figure 5(b):

X1 �
u1 − ou(  · Y1

f
, (10)

where u1 is the horizontal image coordinate of lane endpoint
p1. When more than four lane endpoints are detected and
their corresponding global points are given, the rotation
matrix and the translation vector between the virtual camera
coordinate system and the global coordinate system can be
estimated from these correspondences [33]. +e camera
global position is calculated from the rotation matrix and the
translation vector.

When both of the left and right lane markings beside an
ego-vehicle are dashed lines, there is high probability that
more than four lane endpoints are detected. However, in the
first lane or the lane next to the road boundary, only one of
the lane markings is a dashed line. But, if the vehicle
travelling direction is given, even in the case where only a
single lane endpoint is detected, the vehicle position can be
estimated by the PT-based method. Generally, one of the
global coordinate axes is parallel to the gravity direction
vector. When the global coordinates of a lane endpoint p1 is
(Xw

1 , Yw
1 , Zw

1 ) and Zw
1 is the value of the gravity directional

axis, if the camera is not far from p1, the value of the gravity
directional axis for the camera can be approximated to
Zw
1 + Zc. By this approximation, the camera position is on

the circle whose center and radius are p1′ � (Xw
1 , Yw

1 , Zw
1 +

Zc) and c �

�������

X2
1 + Y2

1



, as shown in Figure 6. +e circle is on
the plane at Z � Zw

1 + Zc. Under the assumption that a
vehicle follows a lane most of the time, if the travelling

direction vw
c

�→
of a vehicle is approximated to the difference

between two different type lane endpoints (p1 and p2) as in

equation (11), the optical axis of only the camera colored

with red in Figure 6 is matched to vw
c

�→
. +e x axis in the

camera coordinate system is equal to the vector vw
R

�→
that is the

cross product between vw
c

�→
and the gravity directional axis [0,

0, 1] in the global coordinate system as in equation (12). +e
camera position pc in the global coordinate system is esti-
mated as in equation (13):

vw
c

�→
�

p2 − p1
p2 − p1

����
����
, (11)

vw
R

�→
� vw

c

�→
×

0
0
1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (12)

pc � p1 − Y1 · vw
c

�→
+ X1 · vw

R

�→
  + Zc ·

0
0
1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (13)

3.3. Ego-Lane Identification. Mentioned in the introduction,
the longitudinal and the lateral intervals between the same type
lane endpoints on a highway are 20m and 3.5m, respectively.
+erefore, in the case that the maximum GNSS/INS error is
about 10m, it is unknown which lane the detected lane end-
points belong to. +at is, in order to estimate a vehicle position
from a lane endpoint, an ego-lane identification is necessary.

+e proposed ego-lane identification method is to select
the one among the camera position hypotheses generated in
the in-lane localization most reasonable to the additionally
detected landmarks. In order to associate the additionally
detected landmarks and the landmarks in a map, after the
detected landmarks and the landmarks in a map are ordered,
respectively, from left to right with respect to the optical axis
in the camera coordinate system and in the global coordinate
system, a detected landmark is associated one by one with
the landmark in amap. For each camera position hypothesis,
the camera rotation matrix is finely recalculated by using the
additionally detected landmark and lane endpoints with
their corresponding ones in a map through the PnP method.
+e reason why the camera rotation matrix is recalculated is
that if the camera position hypothesis is the correct one, the
camera rotation matrix can be more precisely estimated,

Figure 3: Camera extrinsic parameter calibration.
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thanks to the additional landmarks; otherwise, the camera
rotation matrix will be incorrectly estimated to increase
more the projection error. +e projection error is the po-
sition difference in an image coordinate system between

detected landmarks and their corresponding ones from a
map. After the camera position hypothesis and the camera
rotation matrix are given, the global points for lane end-
points and additionally detected landmarks are acquired
from a map and the global points are projected into the
camera located in the camera position hypothesis. For each
hypothesis, the projection error is calculated.+e probability
P(T/Li) that ith among N hypotheses is true, as follows:

max
Li

P T/Li(  � max
Li

1 − PE Li( /
N
j PE Lj  


N
j 1 − PE Li( /

N
j PE Lj   

,

(14)
where PE(Li) is the projection error when lane Li is assumed
to be an ego-lane. +e ego-lane is identified by selecting the
hypothesis having the maximum probability. +at is, the
ego-lane is identified by selecting the hypothesis having the
minimum projection error among the generated hypotheses.
If only a single image is given, the ego-lane can be identified
by equation (14). However, as the number of observed
images increases, the performance of the ego-lane identi-
fication can be improved. Since the ego-lane identification
result of each image is not independent, in this paper, the
probability of each hypothesis from each image is simply
fused as a summation:

max
Li



T

t�1
Pt T/Li( . (15)

–Zc
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Figure 5: Relationship between a lane endpoint in the camera coordinate system and the corresponding point in the image coordinate
system. (a) similarity in triangles for Y1; (b) similarity in triangles for X1.
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Figure 6: Relation between a lane endpoint and the estimated
camera position.
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Figure 4: Relationship between lane endpoints and a virtual camera.
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As a camera nears a landmark, the angle between the
camera optical axis and the landmark becomes large and the
projection error of the incorrect hypothesis becomes larger.
+erefore, we can fuse the sequential ego-lane identification
result through the weighted sum by giving the larger weight
in the reverse time order, but we fuse the probability for each
image by a simple summation in equation (15). Since the
proposed method generates a hypothesis per lane and
projects only the vertices of a landmark to an image, its
computation is very small. For reference, the additional
landmarks in the experiment of this paper are road signs
including a milestone, as shown in Figure 7. Only the global
positions of vertices on a road sign are utilized.

4. Experimental Results

4.1. Experimental Database. In this paper, the experiments
with the database collected on a highway show the com-
parison results of the three in-lane localization methods and
show the performance analysis of the proposed ego-lane
identification method. +e high definition map and image
database in this paper are constructed by a mobile mapping
system (MMS). +e MMS in this paper equips the high
precision Lidar as a range sensor [36] and utilizes the po-
sitioning sensor that combines a RTK-GPS, a high precision
inertial measurement unit (IMU), and a distance mea-
surement indicator (DMI) [37]. +e specification of the
MMS is shown in Table 1.

+e camera for the landmark detection is rigidly coupled
to the MMS, as shown in Figure 8. +e rigid transformation
between the MMS and the camera is known by the off-line
calibration and the camera is synchronized by receiving the
trigger signal from the MMS. +erefore, the precise global
position of the camera in the capturing time is calculated
from the MMS, and the global position is used as the ground
truth. +e red cross in a red square in Figure 9(a) depicts the
camera global position calculated from the MMS on the
Lidar point clouds. +e asterisks and the circles in
Figure 9(a) depict the global positions of the lane starting
points and lane ending points, respectively. +e hollow
circles depict the global positions of the road sign vertices.
+e global positions of lane endpoints and road sign vertices
are projected to the camera on the ground truth position, as
shown in Figure 9(b). +e result that the projected positions
of lane endpoints and road sign vertices are almost matched
to the true positions, as shown in Figure 9(b), proves that the
camera global position calculated from the MMS is very
precise.

+e database was collected within about a 42 km range
from the Seoul toll gate to the Hobeop junction of the
Yeongdong highway in South Korea, as shown in Figure 10.
+e highway around the Seoul toll gate is very wide and has
10 lanes in both directions. Table 2 summarizes the infor-
mation about the experimental DB. Of a total of 24,289
images where a lane endpoint is detected, 6016 images have
more than four lane endpoints.+e number of images where
a lane endpoint and a road sign are detected together for
ego-lane identification is 419.

4.2. In-Lane LocalizationResult. For in-lane localization, the
correspondences between the detected lane endpoints in an
image and their global points stored on a map should be
given. For this, first, under the assumption that the ego-lane
is already identified, the corresponding lane markings of the
left and right lane markings detected in an image are found
in a map. +e lane endpoints on a map and an image are,
respectively, sorted in the ascending order of the distance
from the camera with respect to the driving direction of a
road. +e endpoints in a map are corresponded sequentially
to the same type endpoints in an image. For the 6016 images
that have more than four detected lane endpoints, the in-
lane localization comparisons of the PnP method, the
homography method, and the PT-based method are shown
in Table 3.

Table 3 shows that, as the prior knowledge is added, the
localization error tends to be decreased. In particular, the
PnPmethod using no prior knowledge is severely affected by
the position error of the detected lane endpoints. Figure 11
shows an example of the in-lane localization results of three
methods.

Figure 11(a) shows the detected lane endpoints, and
Figure 11(b) shows the lane endpoints on a map and the
localization results. In Figure 11(b), the red rectangle depicts
the ground-truth camera position. +e red, blue, and green
hollow circles depict the estimated camera position of the
PT-based method, the homography method, and the PnP
method, respectively. Although the lane endpoints are de-
tected accurately, as shown in Figure 11(a), because of the
high sensitivity to detection error and the small number of
detected points, the estimated position of the PnP can often
differ greatly to its ground truth, as shown in Figure 11(b).
However, the camera position estimated by the PT-based is
almost overlapped over the ground truth. Most cases where
the localization errors from the PT-based are large are
caused by falsely detected lane endpoints, as shown in
Figure 12. In Figure 12(a), there is one falsely detected lane
endpoint. Because of this, the localization errors of the PT-
based method, the homography method, and the PnP
method become 1.7m, 1.8m, and 5.4m, respectively.

Table 4 shows the average localization error of the PT-
based method according to the number of lane endpoints.
+e average localization error of the PT-based method is
very small, 0.284m, even with one detected lane endpoint.
As the number of detected lane endpoints increases, the
average localization error naturally decreases. However, the
maximum localization error does not decrease since the
error is affected by a falsely detected lane endpoint.

In Table 4, when the number of detected lane endpoints
increases from three to four, the localization error decreases
significantly. +is is caused by a slight change of the esti-
mation method according to the number of lane endpoints.
When the number of detected lane endpoints is not over
three, the camera position is calculated as the average of the
position estimated from each detected lane endpoint. On the
contrary, when over four, the rigid transformation between
the camera coordinate system and the global coordinate
system is estimated by using all lane endpoints and the
camera position is calculated from the transformation.
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Figure 13 shows the localization example of the PT-
based method using one detected lane endpoint.
Figure 13(a) shows the detected lane endpoint. Figure 13(b)
shows the lane endpoints stored in a map, the estimated
camera position, and the camera position GT. In Figure 13,
the difference between the estimated camera position and

the camera position GT is as small as 5 cm. Figure 14 shows
the example where the error of the camera position esti-
mated from one lane endpoint is as large as 1.7m. Although
a lane endpoint is correctly detected in Figure 14(a), the
estimated camera position is far from its ground truth in
Figure 14(b). +is error is caused by the fact that the

(a) (b) (c)

Figure 7: Examples of an additional road facility.

Table 1: Sensor specifications of the MMS.

Sensor Model Specification

Ranging sensor Velodyne HDL32E

Measurement range 5 cm∼100m
Field of view Horizontal 360°, vertical 40°
Accuracy <2 cm

Angular resolution Vertical 1.25°
Acquisition frequency 5∼20Hz

Positioning sensor Applanix POS LV 210

X and Y position 0.020m (RMS)
Z position 0.050m (RMS)

Roll and pitch 0.020° (RMS)
Heading 0.050° (RMS)

Acquisition frequency 100Hz

MMS
Camera

Figure 8: MMS and camera used in the experiment.

Camera GT
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Ending point

Vertices of a road sign
∗

∗

∗

∗

∗
∗

∗

(a)

Projected ending point

Projected vertices

(b)

Figure 9: +e camera global position calculated from the MMS and the projected global points of lane endpoints and road sign vertices:
(a) lane endpoints and road sign vertices on the Lidar cloud points; (b) lane endpoints and road sign vertices projected on an image.
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repainted lane markings are not yet updated in a map. In
Figure 14(b), the lane endpoint stored in a map is different to
the lane endpoint on the Lidar points cloud.

4.3. Ego-Lane Identification Results. +e proposed ego-lane
identification can be executed when lane endpoints and an
additional landmark such as a road sign are detected in a
single image. +erefore, the ego-lane identification is tested

with 419 images. Table 5 shows the performance of the
proposed ego-lane identification method according to the
number of images.

In the case of processing just a single image, only three
among 419 ego-lane identification tests failed. In the case of
processing two images, the number of tests is reduced from
419 to 387 since the first image where a road sign is detected
is excluded in the test count.When the number of processing
images increases up to four, all tests are successful.

Seoul toll gate

Hobeop JC

Figure 10: Route of the vehicle collecting the database.

Table 2: Summary of experimental DB.

Number of frame Number of frames <4 endpoints Number of frames ≥4 endpoints Endpoints and road signs
24,289 18,273 6,016 419

Table 3: Comparison of in-lane localizations with more than four lane endpoints.

Error (m)
Methods

PT-based Homography PnP
Average 0.194 0.457 7.657
Maximum 1.960 21.982 6504.599

Ending point 

Starting point 

(a)

Camera GT Homography

PT-based

PnP

∗
∗

∗ ∗

(b)

Figure 11: Comparison of the estimated camera positions: (a) detected lane endpoints; (b) estimated camera positions.
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Falsely detected

(a)

Homography PT-based

Camera GT

PnP

∗
∗ ∗

(b)

Figure 12: Example of estimated camera position error caused by a falsely detected lane endpoint: (a) a falsely detected lane endpoint;
(b) estimated camera positions.

Table 4: Localization error of the PT-based method.

Number of detected lane endpoints Number of frames Average error (m) Maximum error (m)
1 4758 0.284 1.727
2 10971 0.259 1.998
3 2544 0.258 1.948
More than 4 6016 0.194 1.960
Total 24289 0.248 1.998

(a) (b) (c)

Figure 13: Example of estimated camera position with one detected lane endpoint: (a) detected lane endpoint; (b) projected lane endpoints
from a map; (c) estimated camera position.

(a) (b)

Camera GT
PT-based

Error lane endpoint in a map

∗

(c)

Figure 14: Example of large camera position error estimated with one detected lane endpoint: (a) detected lane endpoint; (b) projected lane
endpoints from a map; (c) estimated camera position.
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Table 6 shows the localization results by the proposed
method from one image when a road sign is on the left,
center, or right side of the road which has five lanes in one
direction. +e localization results in Table 6 are obtained by
performing in-lane localization for each lane using the PT-
based method and selecting an ego-lane by the proposed
ego-lane identification method. +e first column in Table 6

describes the position (left, center, and right) of a road sign
on a road, the projection error, and the localization error.
+e second column in Table 6 shows the detected landmarks
(a road sign and a lane end point) and the projections of the
corresponding landmarks stored in a map. In the second
column, the detected landmarks are depicted as green circles
and the projections of the corresponding landmarks are

Table 5: Ego-lane identification results according to the number of processed images.

Number of processed images Number of test Accuracy (%) Number of error
1 419 99.28 3
2 387 99.22 3
3 355 99.72 1
4 323 100 0

Table 6: Vehicle localization results of the proposed method in a five-lane road.

Description Detected landmarks and projected landmarks Localization results

Sign position: left
Projection error: 17.1 pixel
Vehicle position error: 0.21m

∗
∗ ∗ ∗

∗ ∗ ∗ ∗

Sign position: center
Projection error: 4.8 pixel
Vehicle position error: 0.37m

∗ ∗ ∗
∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

Sign position: right
Projection error: 13.1 pixel
Vehicle position error: 0.17m

∗ ∗ ∗ ∗

∗ ∗
∗

∗
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Table 7: Vehicle localization results of the proposed method in various situations.

Description Detected landmarks and projected landmarks Localization results

Number of lanes: 4
Sign pos: R
Projection error: 4.3 pixel
Vehicle position error: 0.07m

Number of lanes: 4
Curved road
Projection error: 18.9 pixel
Vehicle position error: 0.53m

Number of lanes: 4
Curved road
Projection error: 20.6 pixel
Vehicle position error: 0.12m

Number of lanes: 5
A road sign missed
Projection error: 3.6 pixel
Vehicle position error: 0.11m

Journal of Advanced Transportation 13



depicted as red circles. +e last column shows the Lidar
points cloud where the road sign vertices and lane endpoints
stored in a map are displayed. In the images of the last
column, the hollow circles on a road depicts the vehicle
position hypothesis per lane generated by the in-lane lo-
calization, and the red hollow circle among them is the
hypothesis on the identified ego-lane. +e camera ground
truth position is depicted as a red cross within a square.
Table 6 shows that the proposed method can correctly
identify an ego-lane in the broad road. In particular, since
the accurate in-lane localization results are acquired by the
PT-based method using lane endpoints and the ego-lane is
easily identified by verifying a handful of hypotheses with a
map, the proposed method can acquire the accurate local-
ization results with a small amount of computation.

Table 7 shows the localization results by the proposed
method from one image in various situations. +e 2nd and
3rd rows in Table 7 show the localization results in the curved
section. When the number of detected lane endpoints is
below four, as shown in the 4th row, the vehicle position can
be precisely estimated. In a curved road, the camera optical
axis approximation by the lane mark direction makes the
localization error relatively large. However, even on a curved
road, when the number of detected lane endpoints is more
than four, as shown in the 3rd row, the localization error is
not large due to not using the optical axis approximation. In
this paper, we do not use the yaw rate sensor already in-
stalled in a vehicle to estimate the camera optical axis, but if
it is used, it is expected to estimate the axis more precisely
even in a curved road. +e last row of Table 7 shows the case
that one of two road signs is not detected. In this case, since
the detected road sign can be corresponded to both road
signs on a map, the difference between the projection errors
of a true hypothesis and a false one can become small.
However, even in this case, there is little possibility that the
projection error of a false hypothesis is smaller than the error
of a true hypothesis. In the last row of Table 7, the projection
error of the true hypothesis is 3.6 pixels, and the error of the
hypothesis for the left lane to the ego-lane is 30.1 pixels.
Since the road where the experimental database is collected
is highway, its curvature is not large, but some parts of the
road include the curved section, as shown in Figure 10. In
order to make the curvature of the road in the 3rd row in
Table 7 noticeable, the expanded LIDAR map of the road of
the 3rd row is shown in Figure 15.

+e major reason for the false ego-lane identification
is the false detection of a road sign or lane endpoints.
Figures 16 and 17 show the false ego-lane identification
cases. In Figure 16(a), two right vertices of a road sign are
falsely detected. +erefore, the rightmost lane is falsely
identified as an ego-lane, as shown in Figure 16(b). Figure 17
shows the example of a falsely detected lane endpoint. In
order to find the correspondences between the detected lane
endpoints and those stored on a map, instead of considering
the distance between lane endpoints, only the type of lane
endpoint is checked after lane endpoints are sorted in the
ascending order of the distance from a camera. +erefore, if
there is a false one among the detected lane endpoints, the
detected points can be falsely corresponded so that the error

of the in-lane localization per lane becomes large, as shown
in Figure 17(b). +is problem can be solved through the
removal of falsely detected lane endpoints by checking the
type change of the sequential lane endpoints and the dis-
tance between them. Also, this problem can be solved by
using a robust data association method such as Hungarian
algorithm [38]. As mentioned above, although the ego-lane
identification error can be reduced by removing falsely
detected road signs or lane endpoints, these false detections

Figure 15: Example of camera hypotheses and ego-lane identifi-
cation result in a curved road.

(a)

(b)

Figure 16: Ego-lane identification failure by a falsely detected road
sign: (a) falsely detected road sign; (b) localization result.
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do not continuously happen.+erefore, by simply fusing the
identification results from sequential images, the ego-lane
identification error can be reduced, as shown in Table 5.

5. Conclusion and Future Work

+is paper proposes a localization method that estimates a
vehicle position within a lane and identifies an ego-lane by
using lane endpoints and an additional landmark. +e av-
erage error of the PT based in-lane localization to use lane
endpoints is 0.248m, and an error level is low enough to
satisfy the requirement specification of autonomous driving.
+e proposed ego-lane identification method perfectly
identified an ego-lane by fusing the identification results
from four images even when there are false detections of lane
endpoints or a road sign.

+e in-lane localization in this paper simply approxi-
mates the normal vector of a road surface as the gravity
direction vector and the camera optical axis as the vector
from a starting point to an ending point. However, we expect
to improve the localization precision through the normal
vector estimation with lane endpoints in a map and the
optical axis estimation in the global coordinate system with
the angle between a detected lane marking and the optical
axis in the camera coordinate system. +e proposed method
does not consider the false detections of a landmark such as
lane endpoints or a road sign. +e false detection of a road
sign as shown in Figure 16(a) can be easily removed by
checking the aspect ratio difference between the detected
road sign and the road sign stored in a map. Also, the case
where the same type lane endpoints on a lane marking are
continuously detected as shown in Figure 17(a) is caused by
a false positive or a false negative. +is case can be removed
by checking the order of the lane endpoint type and the
distance between endpoints stored in a map. +e perfor-
mance of the proposed method will be improved by re-
moving these false cases. Finally, the performance of the
proposed method was evaluated under the assumption that
the coarse localization given by a GPS is synchronized to
camera capturing. In the future, we plan to develop a final
localization system by combining the proposed method with
a localization filter such as a Kalman filter or particle filter.
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