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Continuous development of urban infrastructure with a focus on sustainable transportation has led to a proliferation of vulnerable
road users (VRUs), such as bicyclists and pedestrians, at intersections. Intersection safety evaluation has primarily relied on
historical crash data. However, due to several limitations, including rarity, unpredictability, and irregularity of crash occurrences,
quantitative and qualitative analyses of crashes may not be accurate. To transcend these limitations, intersection safety can be
proactively evaluated by quantifying near-crashes using alternative measures known as surrogate safety measures (SSMs). +is
study focuses on developing models to predict critical near-crashes between vehicles and bicycles at intersections based on SSMs
and kinematic data. Video data from ten signalized intersections in the city of San Diego were employed to train logistic regression
(LR), support vector machine (SVM), and random forest (RF) models. A variation of time-to-collision called T2 and post-
encroachment time (PET) were used to specify monitoring periods and to identify critical near-crashes, respectively. Four
scenarios were created using two thresholds of 5 and 3 s for both PETand T2. In each scenario, five monitoring period lengths were
examined. +e RF model was superior compared to other models in all different scenarios and across different monitoring period
lengths. +e results also showed a small trade-off between model performance and monitoring period length, identifying models
with monitoring period lengths of 10 and 20 frames performed slightly better than those with lower or higher lengths. Sequential
backward and forward feature selection methods were also applied that enhanced model performance. +e best RF model had
recall values of 85% or higher across all scenarios. Also, RF predictionmodels performed better when considering just the rear-end
near-crashes with recalls of above 90%.

1. Introduction

With a growing interest in using eco-friendly modes of
travel such as bicycling and walking, there is an increasing
trend in the number of crashes involving. Comparing to
vehicular modes of transportation, bicyclists and pedes-
trians are at an increased risk of fatal or severe injuries at
the time of the collision. Based on the National Highway
Traffic Safety Administration (NHTSA) report [1] in 2018,
857 bicycle fatalities occurred in the US roadways, which
was 6% more than the preceding year and the highest
number since 1990. Bicyclist fatalities had increased from
1.9% of total road crash fatalities in 2009 to 2.3% in 2018.
Intersections are considered as hot spots when looking at

traffic fatalities and injuries due to the complex nature of
interactions. +e presence of mixed traffic flow specifically
makes intersections more important resulting in a large
number of traffic incidents and collisions. According to
the Federal Highway Administration (FHWA), an average
of 2.5 million crashes occur every year at intersections.
Traffic Safety Facts published by NHTSA in 2018 indicates
that 29% of pedalcyclist fatalities happened at intersec-
tions. Road-user movements possessing distinct con-
flicting patterns could lead to a large number of crashes at
signalized intersections [2]. +erefore, it is crucial to
understand the dynamics of interactions between bicy-
clists and motor vehicles by looking at their critical
conflicts.
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In general, direct or indirect techniques can be used to
perform safety analysis [3]. Direct techniques hinge on
historical crash data to evaluate the degree of road safety.
Traditionally, crash frequency and crash severity have been
used as metrics for safety evaluations. Crash data help in
identifying high-risk locations, current conditions, neces-
sary safety improvements, and safety evaluation of road
users [4, 5]. However, unpredictability and irregularity of
crash occurrences in the real environment result in the
inefficiency of quantitative and qualitative crash determi-
nation. Due to the possibility of erroneous or inconsistent
reporting, crash data are unreliable [6]. When it comes to
improving intersection safety, crash data have several lim-
itations. First, as roadway crashes are rare events, it takes a
long period of time for meaningful crash data to be available.
+is is more so the case when a specific crash type is being
studied (e.g., a crash between bicyclists making left turns
from an approach and vehicles going through the inter-
section from the opposite approach). Moreover, changes
such as design improvements and demand increase could
occur during such long periods, potentially impacting safety
evaluation outcomes. Second, reporting of crash events
largely depends on the type of road users involved and the
severity of crash events and is also found to be unevenly
distributed [7]. Specifically, vulnerable road users are heavily
underreported, thus making it unreliable and less accurate to
use crash data for safety evaluation. +ird, although crash
data specify the occurrence of the event, it has a limited
scope of information regarding the cause of the crash that
includes precrash movements, distinct road-user behavior
patterns, and other situational aspects [7]. Last, crash data
analysis is a reactive approach in which remedial measures
can be incorporated only after the occurrence of crashes, and
hence, critical locations are identified after observing mul-
tiple fatalities and injuries, and countermeasures are
implemented after the fact [8].

Given these shortcomings, indirect safety indicators
have been studied [7, 9–11]. Traffic conflict technique (TCT)
was proposed [12, 13] that utilizes conflicts (i.e., near-
crashes) as a substitute for actual crashes [14, 15]. A traffic
conflict is an “observable situation in which two or more
road users approach each other in space and time to such an
extent that there is a risk of collision if their movements
remain unchanged” [16]. TCT concept classifies various
traffic events based on conflict severity level and represents
road-user interactions as a continuum of safety-related
events. +ese safety-related events range from slight con-
flicts, potential conflicts, and severe conflicts [17, 18]. +e
severity and frequency of these conflicts are typically
quantified by measures known as surrogate safety measures
(SSMs). Critical near-crashes are detected if an SSM value
crosses a critical threshold [19].

Frequency estimation of near-crashes using SSMs has
been conducted in the past and still is ongoing research.
Various SSMs have been used, and among them, time-to-
collision (TTC) and postencroachment time (PET) have
been widely used to evaluate safety at signalized intersec-
tions. At an instant t, TTC is defined as the “time taken by
the two road users to collide, provided the collision course

and speed difference are the same” [20]. Considering the
trajectories of two road users, the relative time-to-collision
(RTTC) is estimated as the difference in time taken by the
first and second road users to reach a predicted trajectory
intersection point (TIP). TTC is considered as a special case
of RTTC where the RTTC value is zero (i.e., both users reach
TIP at the same time resulting in a collision). As RTTC
decreases, the conflict is considered more critical. However,
a low value of RTTC could also arise from cases when two
objects that are far away from the TIP have close arrival
times to the TIP.+erefore, RTTC alone could not be a good
indicator of critical near-crashes. To address this issue,
Laureshyn et al. [7] proposed T2 as the predicted time taken
by the latest road user to reach the conflict points. A low
value of T2 indicates time remained for the second road user
to perform braking or do an evasive maneuver to prevent or
mitigate potential collisions. PET is defined as the “time
between the departure of the encroaching vehicle from the
conflict point and the arrival of the vehicle with the right of
way at the conflict point” [14, 21]. Unlike TTC and RTTC,
PETprovides a single value for every road-user pair crossing
the path of each other. As PET is calculated based on an
observed TIP (as opposed to “predicted TIP” in the TTC
case), it is considered as a tangible indicator of how critical
an interaction is based on what actually occurred as opposed
to what was predicted.

Since SSMs can be used to identify unsafe events pro-
actively, it is of interest to develop models to predict whether
an interaction is going to be safe. Timely prediction of near-
crashes could be used in countermeasures such as changing
the signal settings to avoid or mitigate crashes or warning
approaching road users about potential collisions in a
connected environment. However, there are a limited
number of studies on this topic, especially for vehicle-bicycle
interactions. +e goal of this research is to develop models
for bicyclists at signalized intersections to predict critical
bicycle-vehicle near-crashes. Kinematic features such as
velocity and acceleration as well as the SSMs were used in the
model development process. +e prediction models were
developed using logistic regression (LR), support vector
machine (SVM), and random forest (RF) methods. +e
remainder of the paper is organized as follows: past studies
are reviewed in the literature review section. Next, data
preparation tasks are described. Subsequently, scenario
development using different SSMs is explained followed by
the model development section. Finally, the model results,
conclusions, and potential future research are discussed.

2. Literature Review

Modeling crash probability and severity has long been
studied among researchers and practitioners. Conventional
safety performance functions (SPFs) estimate the crash
frequency of a road segment or intersection as a function of
explanatory variables describing the characteristics of
roadway design and environment, vehicles, and humans
[22, 23]. Due to the rare and sporadic nature of crashes,
statistical count models such as Poisson and negative bi-
nomial (NB) and their variants are frequently used for
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analyzing explanatory variables and predicting crash fre-
quency [24–26]. Besides statistical count models, artificial
intelligence models have also been proposed for crash fre-
quency prediction [27–29]. Typical SPFs consider design
features such as speed limits and intersection type as well as
aggregated measures like annual average daily traffic
(AADT) to identify hazardous locations and missing in-
formation about individual driver behavior. However, it was
found that variations in traffic dynamics across individuals
could be a potential contributing factor to the crashes, which
can be utilized to predict the occurrence of crashes in real
time [22]. Explanatory variables related to traffic dynamics
include speed, flow, and occupancy obtained from real-time
traffic data [30].

Several studies were conducted considering traffic dy-
namics data along with crash data to predict crash likelihood
at different road types and intersections in real time. Oh et al.
[30] defined a 5-minute period right before a crash as a
disruptive traffic condition and a 5-minute period 30
minutes before the crash as a normal traffic condition. Using
the two traffic conditions, an SPFmodel was developed using
the nonparametric Bayesian approach to assess the likeli-
hood of crashes in real time. It was found that the standard
deviation of speed was the most reliable indicator to develop
an accurate SPF. In the real-time application of this model,
traffic dynamics were continuously monitored in 5-minute
intervals to estimate the crash likelihood after each interval.
If the likelihood of crash was above a certain threshold, the
driver would be alerted to either reduce/increase the speed to
minimize the overall speed variation. Similarly, Hossain and
Muromachi [31] developed a Bayesian network model using
traffic data collected from an expressway over 16 months to
predict crashes in real time. +is study considered 5-minute
aggregated average speed and cumulative flow as the main
predictive variables. Five minutes before a crash termed as
“precrash traffic conditions” and corresponding average
speed and cumulative flow were used to predict the prob-
ability of crashes. To improve the performance of the SPF, a
hybrid model combining support vector machine and k-
means clustering algorithm was developed that promised
better crash predictions [32]. Traffic flow data for 5–10
minutes before the occurrence of a crash were considered in
this study. Speed, volume, and traffic flow difference between
upstream and downstream and average traffic flow were the
predictive variables considered in this study. To extend the
analysis to signalized intersections, Yuan and Abdel-Aty
[33] developed a Bayesian conditional logistic model to
predict real-time crashes within the intersection and also at
the entrance of the intersection.+ismodel obtained the best
results when traffic data were taken from the 5- to 10-minute
time period before the crash. In addition to real-time traffic
data, signal timing and weather conditions were considered
in order to predict crash likelihood.

Most crash prediction models utilize historical crash
data that have some limitations, as described earlier. In order
to overcome these limitations, crash surrogates, also called
“near-crashes” or “traffic conflicts,” have been proposed to
see if they can serve as reliable indicators of safety. El-
Basyouny and Sayed [34] developed SPFs based on traffic

conflicts at signalized intersections and found a significant
proportional relationship between traffic conflicts and
crashes. In a similar study, Sacchi and Sayed [35] developed
SPFs from traffic conflicts for each crash type. Some efforts
[36–38] focused on developing crash probabilistic frame-
works that estimate collision risk based on road users’ hy-
pothetical future movements and the traffic conflict concept.
For example, Fu et al. [36] used a distance-velocity (DV)
framework to study secondary pedestrian-vehicle interac-
tions at nonsignalized intersections. +e framework used in
this study incorporates road-user kinematic and SSMs data
with driver reaction time to assess the safety of interactions
between road users. Several studies investigated the rela-
tionship between crashes and near-crashes. Parker and
Zegeer [39] showed a statistically significant linear rela-
tionship between crashes and near-crashes. He et al. [40]
used the safety pilot model deployment (SPMD) to study the
statistical relationship between SSMs and crashes and found
that modified time-to-collision (MTTC) performed better
than deceleration to avoid a crash (DRAC) and TTC.

Many studies proved the benefits of the extreme value
theory approach that estimates the risk of crashes (extreme
events) based on the risky interactions between road users
[41–44]. In a recent study, this approach was used to predict
crashes at a signalized intersection based on traffic conflicts
extracted frommicroscopic traffic simulation and real-world
data [45]. +e result showed a high correlation between
simulated and actual field traffic conflict and a promising
result for crash estimation using field conflict. Zheng and
Sayed [46] compared four SSMs, including TTC, PET,
modified time-to-collision (MTTC), and deceleration to
avoid a crash (DRAC), to estimate crashes at signalized
intersections and found that the MTTC produced the most
accurate result. Guo et al. [47] evaluated the use of near-
crashes to assess the safety and showed a positive correlation
between causes for crashes and near-crashes. Similar ana-
lyses were conducted by [48, 49] confirming a positive
correlation between crashes and near-crashes.

Although SSMs have been used in numerous studies to
evaluate the safety or investigate their correlations to actual
crashes, there is limited research on using SSMs to predict
near-crashes, as summarized in Table 1. Some studies used
regression analysis to estimate the frequency of near-crashes
over a time period. For example, Essa and Sayed [52, 54]
developed a safety performance model to predict traffic
conflicts in each cycle at signalized intersections using a set
of explanatory variables such as traffic volume, queue length,
and platoon ratio. Ma et al. [53] developed amodel to predict
an hourly conflict risk index (HCRI) for expressway di-
verging areas using variables such as traffic volume and
speed in the mainline and the ramp areas. HCRI was cal-
culated based on rear-end and lane changing conflicts
identified by TTC.

Other efforts have been done on predicting and classi-
fying the upcoming near-crashes between a pair of road
users in real time. Utilizing near-crash data from SHRP2
NDS datasets, Osman et al. [51] applied several supervised
machine learning models to predict rear-end near-crashes a
few seconds before they happen. +e standard deviations of
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the vehicle kinematics data such as acceleration, yaw rate,
speed, and pedal position during a monitoring period before
the conflicts were used as independent variables to identify
the upcoming unsafe events.+e time before a traffic conflict
was divided into two periods: the turbulence horizon, which
is the time to monitor and record the kinematic data, fol-
lowed by the prediction period, which is the time for the
model to predict the outcome before the conflict. Results
from sensitivity analysis showed 1 second as optimal pre-
diction horizon length and 3 seconds as turbulence horizon.
+is study concluded that near-crash prediction models are
highly efficient in predicting most instances of near-crashes
with minimum false predictions. Formosa et al. [50] com-
bined highly disaggregated traffic data taken frommotorway
incident detection and automatic signaling (MIDAS) with
various SSMs including TTC and PET calculated from in-
vehicle sensors data from an instrumented vehicle using
centralized, integrated data architecture to develop a real-
time traffic conflict detection and prediction method using
deep learning methodology. A total of 26 input variables
were used consisting of six widely used SSMs, the mean and
standard deviation of ego vehicle’s speed and speed variance
between lanes and traffic variables by lane such as speed,
density, flow, headway, and occupancy. +e safe traffic
dynamics and traffic conflicts were identified using time
headways between the probe vehicle and the leading vehicle
for rear-end and lane changing conflicts. It was found that
TTC varied by speed, weather, and traffic density. +e best
deep neural network model provided an accuracy of 94%.
However, this study is limited to lane change and rear-end
type of conflicts.

2.1. Identification of Critical Events. Although SSMs provide
a means to quantify near-crash events, there is a necessity to
distinguish such events as critical or noncritical by con-
sidering a threshold value for the SSM of interest. Studies on
predicting critical near-crashes took different approaches to
distinguish between critical and noncritical near-crashes.
Formosa et al. [50] considered several criteria for time
headway, lateral distance, and speed of following and leading
vehicle to identify critical lane changing and rear-end
conflict. Essa and Sayed [52] used a range of threshold values
for TTC, modified time-to-collision (MTTC), and deceler-
ation rate to avoid a crash (DRAC) to label near-crashes, and
they reported the result for all of these variations. Ma et al.
[53] recruited a group of students to watch the video and
find critical near-crashes. +en, they used a 85-percentile of
TTC value as the threshold for this SSM. +ere has not been
a consensus among researchers to use consistent threshold
values. +is could be due to various factors such as type of
the road, different driver behaviors in different locations,
type of conflicts, and type of SSMs used [55, 56]. Mahmud
et al. [57] provided a review of 38 common SSMs and their
thresholds. To find the optimal SSMs threshold, a recent
study [58] investigated a range of thresholds for SSMs and
chose the ones that maximize the correlation coefficient
between crash data and risk associated with SSMs. Sayed
et al. [59] included only bicycle-vehicle interactions that had

TTC value less than 3 s in their safety evaluation. In another
study, the TTC and PET threshold values were considered as
1.5 seconds for interactions between vehicles (including
taxis), lorries (including bus), pedestrians, and bicyclists
[60]. Considering vehicle-bicycle interactions, Zange-
nehpour et al. [61] used both TTC and PET threshold values
less than 5 seconds and less than 1.5 seconds for labeling
them as conflicts and dangerous conflicts, respectively. In
some studies [62, 63], conflicts between vehicles and bicycles
were classified into more than two categories; conflicts were
categorized as very dangerous interactions for PET ≤ 1.5
seconds, dangerous interactions for 1.5 seconds<PET< 3
seconds, mild interactions for 3.0 seconds<PET ≤ 5.0
seconds, and no interactions for PET> 5 seconds. Table 2
summarizes some of the common SSMs threshold used in
previous studies.

3. Materials and Methods

+is study aims to develop amodel to predict critical bicycle-
vehicle interactions at signalized intersections. +e model
response variable is a dichotomous variable (critical or
noncritical) that was labeled using the PET value. In addi-
tion, this study utilizes T2 (a variation of time to the collision
as described earlier) to define a monitoring period during
which road-user kinematic data were extracted for predic-
tion model development. +e methodology of this study is
summarized in Figure 1.

3.1. Data Collection and Preparation. In this study, we used
video data collected from cameras installed at ten signalized
intersections in the city of San Diego. +e video data were
collected for a period of 24 hours for each intersection on a
workday (Tuesday, Wednesday, or +ursday) in the month
ofMay, June, or July 2018.+e original data were collected as
part of a previous study [65].+e ten signalized intersections
utilized in the present study were chosen based on their
higher bicycle activities identified by manually reviewing
video recordings. +e ten data collection sites are shown in
Figure 2 and Table 3.

+e video data were then reviewed focusing on morning,
afternoon, and evening peak hours. Based on manual ob-
servation of the maximum activity of bicyclists, video data
were filtered further down to 5-minute clips to focus on
bicycle-vehicle interactions. A video data analysis was
performed on raw video data in order to extract the road-
users’ trajectory and transform it into the top-down view
(bird’s-eye view). +e detailed procedure of this process can
be found in [65], which discusses tasks such as data an-
notation, object detection, and trajectory extraction. Figure 3
shows an example of the annotation task that is essential in
identifying object trajectories. While the machine vision
modeling was not the focus of the present study, the outputs
from the machine vision models were used including the
road-users type and the location at each frame. Each frame
in this study is 1/30 of a second.

Vehicles and bicyclists were monitored as they interacted
with each other to calculate SSMs and kinematic features for
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each interaction. Several kinematic features including ve-
locity, acceleration, relative approach distance, and relative
approach velocity were computed for both vehicles and
bicycles at each frame. For each vehicle and bicycle that
interacted with each other, the TIPs were predicted utilizing
the velocities and headings of the two objects. Next, time
taken by each of the objects to reach the predicted TIP was
determined as the time to intersection (TTX1 and TTX2,
respectively). TTX and its derivatives are continuous vari-
ables, meaning that as long as the predicted path of two road-
users crosses each other, these values could be calculated.
Furthermore, PET was estimated by calculating the differ-
ence between the time frame when the first road-user

Table 2: PET and TTC thresholds used in previous studies.

SSMs +reshold under Studies

PET
1.5 [61–63]
3 [62–64]
5 [61–64]

TTC
1.5 [60]
3 [45, 59]
5 [61]

Step 1: Data 
collection

and preparation 

Step 2: Scenario
development 

Step 3: Model
development

Figure 1: Methodology framework.

Figure 2: Study intersections.

Table 3: Study intersections.

Intersection number Name of the intersection
1 College Ave & Montezuma Rd
2 5th Ave & Laurel St
3 Fairmount Ave & University Ave
4 Fifth Ave & B St
5 Sixth Ave & Broadway
6 Genesee Ave & Governor Dr
7 10th Ave & J St
8 Union St & Ash St
9 7th Ave & Robinson Ave
10 La Jolla Blvd & Pearl St
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departs from the observed TIP and the time frame when the
second one reaches the same observed TIP. Table 4 dem-
onstrates all features that were used in this study.

3.2. Scenario Development. Scenarios were developed using
two parameters: (1) PET values were employed to identify
“critical (C)” or “noncritical (NC)” near-crashes. Two
commonly used values of 3 s and 5 s were used to identify
critical near-crashes. A near-crash was labeled as critical
when the PET value goes below the defined threshold. Also,
near-crashes with no PETvalue or PETvalue higher than the
threshold were labeled as noncritical. (2) As shown in
Figure 4, T2 values were used to define monitoring periods.
+e end of the monitoring period (TE) was designated as the
first time the T2 value reaches below a defined threshold
during an interaction. Two thresholds of 3 and 5 s for T2
were utilized. +e interactions that did not have a T2 value
below the threshold were not considered as a near-crash. For
example, the T2 value of 5 seconds means that in an in-
teraction, the second road-user (farthest from the TIP) has 5
seconds to perform a maneuver to avoid a potential crash.
Stepping 1, 5, 10, 20, and 30, frames backward from the
monitoring period end points marked different starting
points (TS), resulting in five different lengths of monitoring
periods (1/30 s, 1/6 s, 1/3 s, 2/3 s, and 1 s, respectively). As a
result, four scenarios were developed for near-crash pre-
diction models using different PET (i.e., 3 and 5) and T2 (i.e.,
3 and 5) thresholds. Each scenario was examined for five
different monitoring periods. As illustrated in Figure 4,
kinematic features and SSMs such as RTTC were recorded
during the monitoring period until T2 reaches below the
threshold (e.g., 3) at TE. Kinematic data recorded at each
time frame during a monitoring period resulted in a series of
values for each feature. +erefore, statistical measures such
as mean and standard deviation were used to reduce mul-
tiple values into one. Due to sudden changes in speed and
travel direction, the value of SSMs was not present at all

frames during an interaction. +erefore, the last value of
these features recorded at the end of the monitoring period
was used. +e last recorded value of SSMs is also more
indicative of the severity of an interaction as it presents the
situation closest to the TIP. Table 5 shows all the 30 initial
features used in this study.

3.3. Model Building and Analysis. Predicting bicycle-vehicle
conflicts as “critical conflicts” and “noncritical conflicts” is a
classification problem. +ree popular supervised machine
learning classifiers of logistic regression, SVM, and random
forest were used to build vehicle-bicycle near-crash pre-
diction models. Logistic regression is a commonly used
machine learning classifier offering ease of implementation
and interpretation and fast computation. Also, it has been
extensively used in crash prediction literature and mostly as
a baseline model. Since the dependent variable in this study
is dichotomous (critical or noncritical near-crashes), we
used binary logistic regression to describe the relationship
between the dependent and independent variables. SVM is a
supervised machine learning classifier that can be used to
solve both classification and regression problems. +is
method plots each data point in the n-dimensional space
defined by the input features. +en, the algorithms find the
best hyperplane that could divide the classes with the largest
gap between classes. Depending on the kernel function,
SVM could perform linear and nonlinear classification
boundaries. SVM is suitable for cases with high-dimensional
input features, and it could perform well in facing the
outliers and extreme cases in binary classification, leading to
good generalization. Random forest (RF) is an ensemble
learning method that can be used for both classification and
regression problems. It generates several random decision
trees at training time and relies on the majority of votes
across these trees to predict classes for each observation. RF
performs well on imbalanced datasets, and since it generates
several trees on the subset of the data and combines the

Figure 3: Example of annotation output.
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Table 4: Prediction model features.

Features Description
Velocity Velocity computed for interacting vehicle and bicycle at every frame
Acceleration Acceleration computed for interacting vehicle and bicycle at every frame
Relative distance +e Euclidean distance between interacting vehicle and bicycle in the same frame
Relative velocity Rate of change of relative distance computed at every frame
TTXavg Mean of TTX1 and TTX2
RTTC Absolute difference between TTX1 and TTX2
T2 T2 is defined as the maximum value of TTX1 and TTX2

Direction of conflict
1: if the angle between two road users is between 0°and 15°, and 0: otherwise

1 indicates a rear-end type of near-crash. Otherwise, it could be sideswipe, lane changing,
or other types of near-crashes

Distance to conflict point Distance from the current road-user location and the predicted TIP

TE

TE

TS

TS

•

•

•

•

•

•

TTX: time to intersection

PTIP: predicted trajectory intersection point

T2: max (TTX1, TTX2)

TS : start of monitoring period

TE : end of monitoring period

TS - TE : length of monitoring period

Monitoring period

Monitoring period

TTX2

TTX1

TE is the first instant that 
T2 reaches below the 

defined threshold

PTIP

Figure 4: Scenario development parameters.

Table 5: Input features.

Kinematic features

(i) Mean of object 1 velocity, max of object 1 velocity, min of object 1 velocity, and the standard deviation of object 1
velocity
(ii) Mean of object 2 velocity, max of object 2 velocity, min of object 2 velocity, and the standard deviation of object 2
velocity
(iii) Mean of object 1 acceleration, max of object 1 acceleration, min of object 1 acceleration, and the standard
deviation of object 1 acceleration
(iv) Mean of object 2 acceleration, max of object 2 acceleration, min of object 2 acceleration, and the standard
deviation of object 2 acceleration
(v) Mean of relative distance, max of relative distance, min of relative distance, and the standard deviation of relative
distance
(vi) Mean of relative velocity, max of relative velocity, min of relative velocity, and the standard deviation of relative
velocity

SSM-related
features T2, RTTC, TTXavg, object 1 distance to conflict point, object 2 distance to conflict point, and direction of conflict
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output of all the trees, it reduces overfitting and variance
problems.

In this study, logistic regression and SVM were
implemented using the Python scikit-learn library. +e
random forest classifier was implemented using the Bal-
ancedRandomForestClassifier in the Python imbalanced-
learn package. In this implementation of random forest,
random undersampling of the majority class (noncritical
near-crashes) was performed on each bootstrap sample.
+is classifier was chosen to address the issue of imbal-
anced data in the prediction model.

3.4. Model Evaluation. Model performance was evaluated
using stratified 5-fold cross-validation with 20 repeats. +is
approach is appropriate for small-sized datasets and helps
eliminate bias and overfitting in model training [66]. In this
implementation, the dataset is split into 5 stratified folds
with the same ratio of positive and negative cases, and each
time one of the folds is used as a test set, and the remaining
folds are used for training. +is process is repeated 20 times,
which provides a more robust model assessment.

To evaluate our models, several performance metrics
were used, such as AUC (area under the curve), overall
accuracy, recall, and F2. AUC is the area under the receiver
operating characteristic (ROC) curve that measures the
ability of a classifier to correctly distinguish between classes.
+e F2 is a variation of the F-score measure, which calculates
the harmonic mean of precision and recall, as shown in
equation (1). A high value of the F-score indicates a high
balanced classifier performance. In F2 calculation, higher
weight is given to recall because correctly identifying the
minority class (i.e., critical near-crashes) is more important
than incorrectly classifying a noncritical conflict as critical.
Other metrics such as the overall accuracy alone may not be
suitable for model evaluation as they result in poor classi-
fication performance for the minority class. +erefore, we
opted to use F2 as the primary metric for comparing results
between different classifiers, though other metrics were also
used for comparison:

F2 �
1 + 22  × precision × recall

22 × precision + recall
. (1)

4. Results and Discussion

A total of 324 vehicle-bicycle interactions were identified
with a T2 of less than 5 s. Of these events, 85 cases had PET
values less than 5 s, and 58 cases had PETvalues less than 3 s.
Considering the T2 threshold of 3 s reduced the number of
events to 174 interactions, of which 56 had a PET value of
less than 5 s and 46 had a PET value of less than 3 s. +e
decrease in the number of cases is due to the fact that a
smaller threshold would naturally result in fewer
observations.

Figure 5 shows the F2 performance of all scenarios of
near-crash prediction models. +e balanced random forest
surpassed SVM and logistic regression in all scenarios. Due
to the random undersampling of the majority class on each

bootstrap, the balanced random forest performed better on
the imbalanced data. Also, it could be seen that for inter-
actions with T2 less than 5 s, models using 10-frame mon-
itoring periods had higher performance, while for
interactions with T2 less than 3 s, 20-frame monitoring
period models performed better. By increasing the moni-
toring period length, there are more data available for the
model, which potentially could help to predict near-crashes
more accurately. However, by increasing the length of the
monitoring period, data from way before the near-crash
occurrence are added to the model, which could negatively
impact the model performance. +erefore, a small trade-off
between model performance and monitoring period length
is noticeable, showing models with monitoring period
lengths of 10 and 20 frames performed slightly better than
those with lower or higher monitoring period lengths.

Table 6 shows the detailed result of the best near-crash
prediction model for each of the four scenarios.

In order to reduce overfitting and improve model per-
formance, a sequential backward and forward feature se-
lection was performed. +ese methods were implemented
using the Python Mlxtend package [67]. In the backward
feature selection, the algorithm starts with all of the features,
and then in each step, one feature that after elimination
maximizes the model performance is removed. Also, in each
step, algorithms try adding previously removed features
back to the feature subset to see if they could increase the
performance. +e algorithm went through all 30 features in
this study and identified the best subset of features with the
highest F2 performance in the balanced random forest using
the same cross-validation technique. +e forward selection
utilizes a similar procedure, except that it starts, with zero
features, and features are added in each step. In case both
forward and backward feature selections reach the same
result, the feature subset containing fewer variables is se-
lected for model training to reduce overfitting. Figure 6
shows the best performance obtained from feature selection
for each of the scenarios.

Table 7 shows the detailed result of near-crash prediction
using the selected subset of features. As can be seen from the
table, feature selection significantly improved model
performance.

Changing the T2 threshold from 5 to 3 s resulted in F2
improvements, as shown in Table 7. Events with smaller
values of T2 present situations where road users are closer to
the TIP. +erefore, the improvements could be attributed to
the fact that as road-users move closer to the TIP, their
behaviors are better reflected in their kinematic and SSM-
related features. Furthermore, lowering the T2 threshold
results in exclusion of less severe interactions and improves
the data imbalance, which in turn could improve the model
performance.

Lastly, the prediction models were investigated only for
the rear-end type of near-crashes. Rear-end near-crashes
were identified as interactions with the direction of conflict
of one, which almost constitutes half of the interactions in
each scenario. Table 8 shows the best results obtained in each
scenario for rear-end near-crashes after the feature selection.
Comparing Table 8 with Table 7, the near-crash prediction
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models perform better in almost all of the metrics when
considering rear-end interactions alone. +e increase in
performance could be due to the fact that, in rear-end near-
crashes, the interacting road users are on the same or

adjacent lanes traveling towards the same direction.
+erefore, the future trajectories of these road users aremore
predictable. In contrast, in other types of near-crashes, such
as crossing or sideswipe interactions, it is more challenging
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Figure 5: F2 performance of all models. (a) PET� 5 and T2 � 5; (b) PET� 3 and T2 � 5; (c) PET� 5 and T2 � 3; (d) PET� 3 and T2 � 3.
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Table 6: Result of the best near-crash prediction models using all features.

Scenarios Monitoring period Classifier Accuracy AUC Recall F2 Precision
PET� 5 and T2 � 5 10 RF 0.698 0.784 0.778 0.691 0.488
PET� 3 and T2 � 5 10 RF 0.657 0.776 0.824 0.636 0.338
PET� 5 and T2 � 3 20 RF 0.684 0.768 0.745 0.686 0.537
PET� 3 and T2 � 3 20 RF 0.675 0.785 0.806 0.699 0.478
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Figure 6: Continued.
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Table 7: Result of the best near-crash prediction models after feature selection.

Scenarios Monitoring period Classifier Accuracy AUC Recall F2 Precision
PET� 5 and T2 � 5 10 RF 0.708 0.807 0.87 0.755 0.501
PET� 3 and T2 � 5 10 RF 0.651 0.802 0.906 0.681 0.346
PET� 5 and T2 � 3 20 RF 0.744 0.829 0.845 0.774 0.597
PET� 3 and T2 � 3 20 RF 0.714 0.814 0.91 0.783 0.514
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Figure 6: Best result achieved using the forward and backward feature selection in each scenario. (a) Monitoring period� 10, PET� 5, and
T2 � 5; (b) monitoring period� 10, PET� 3, and T2 � 5; (c) monitoring period� 20, PET� 5, and T2 � 3; (d) monitoring period� 20, PET� 3,
and T2 � 3.
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to predict the road-user movements. +e sudden changes in
the direction of travel and yielding for traffic when making
turns or crossing add more uncertainty to the prediction
problem.

5. Conclusions and Future Works

+ere has been an alarming rise in the number of crashes
involving bicyclists at signalized intersections. +is study
adopted a proactive safety assessment approach to predict
critical bicycle-vehicle near-crashes at signalized intersec-
tions a few seconds before they occur. Kinematic data of
interacting road users and SSMs during a monitoring period
were used to develop prediction models to distinguish
critical from noncritical events. Video data collected from
ten signalized intersections in the city of San Diego were
used in this study. Critical interactions between vehicles and
bicyclists were labeled using two PET thresholds of 3 and 5 s.
Different monitoring periods were also defined using two T2
thresholds of 3 and 5 s as well as five different monitoring
period lengths from 1/30 to 1 second. Near-crash prediction
models were developed and compared using three machine
learning classifiers of SVM, logistic regression, and random
forest.

In almost all metrics, the balanced random forest
provided higher prediction performance compared to SVM
and logistic regression and, therefore, was identified as the
best classifier. While all four scenarios of near-crash pre-
diction models performed fairly well with recalls above 70%
and F2 above 60%, two feature selection methods of
backward and forward were adopted to reduce the over-
fitting and improve the model performance. +ese two
algorithms were implemented in order to find the subset of
features with the highest F2 and with the same cross-
validation as for model training. +e feature selection
significantly improved the recall and F2 metrics to above
85% and around 70% across all four scenarios, respectively.
Also, the AUC metric for all the models was above 80%
after feature selection. Predicting rear-end near-cashes
recall values were further improved to above 90% in all the
scenarios, suggesting better prediction performance can be
achieved when only a certain conflict type is taken into
account. +e results also showed that when the end of the
monitoring period is defined with a T2 threshold of 5 s, 10-
frame monitoring periods led to the best prediction per-
formance. When a T2 threshold of 3 s was used, 20-frame
monitoring periods resulted in the best performance.
Monitoring periods smaller or larger than 10 and 20 led to
lower prediction performance in all scenarios. +is sug-
gested a small trade-off between the monitoring period
length and the prediction performance.

+e models developed in this study could be utilized in
intelligent transportation management centers focusing on
proactive safety applications.+emodeling framework used in
this study could also be extended and applied to conflicts
involving other road-user types (e.g., vehicle-scooter). In a
connected environment, these models can inform proactive
safety planning in real time by identifying where and when
critical conflicts occur between road users. Developing ac-
curate near-crash prediction models for all types of interac-
tions is challenging. Typically, cyclists move faster than
pedestrians, and their movements are generally more un-
predictable than vehicles. Moreover, many bicyclists tend to
participate in dangerous and sudden maneuvers while passing
the intersection.+e emerging transportation technology such
as automated vehicles, as well as newer modes of trans-
portation such as electric bicycles and scooters with unknown
behavioral impacts, would also add to the complexity of the
prediction problem. Future research may focus on extensive
data collection for all road-user types and at different geo-
graphical locations in order to obtain representative interac-
tion samples.+e present study focused on developing models
using kinematic data only. However, it should be noted that
other factors such as geometric design, traffic signal schemes,
and weather could also play important roles in identifying the
severity of near-crash events. While this study adopted SSM
thresholds recommended by previous studies, it should be
noted that any SSM and threshold should be validated as there
is no consensus among researchers on what metrics or
thresholds are the right ones for unsafe event identification.
Future research may focus on including other environmental
and design characteristics in near-crash identification and also
incorporating more metrics and thresholds as well as quali-
tative analysis to conduct validation and sensitivity analysis
studies. Future work could also entail investigating multiple
conflict severity classes, other methods, and features.
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Table 8: Result of the best near-crash prediction models for rear-end interactions after feature selection.

Scenarios Monitoring period Classifier Accuracy AUC Recall F2 Precision
PET� 5 and T2 � 5 10 RF 0.766 0.802 0.936 0.841 0.614
PET� 3 and T2 � 5 10 RF 0.767 0.873 0.92 0.787 0.516
PET� 5 and T2 � 3 20 RF 0.802 0.865 0.953 0.87 0.671
PET� 3 and T2 � 3 20 RF 0.844 0.922 0.941 0.878 0.734
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