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It is agreed that connected vehicle technologies have broad implications to trafficmanagement systems. In order to alleviate urban
congestion and improve road capacity, this paper proposes a multilane spatiotemporal trajectory optimization method
(MSTTOM) to reach full potential of connected vehicles by considering vehicular safety, traffic capacity, fuel efficiency, and driver
comfort. In this MSTTOM, the dynamic characteristics of connected vehicles, the vehicular state vector, the optimized objective
function, and the constraints are formulated. 0e method for solving the trajectory problem is optimized based on Pontryagin’s
maximum principle and reinforcement learning (RL). A typical scenario of intersection with a one-way 4-lane section is
measured, and the data within 24 hours are collected for tests.0e results demonstrate that the proposed method can optimize the
traffic flow by enhancing vehicle fuel efficiency by 32% and reducing pollutants emissions by 17% compared with the advanced
glidepath prototype application (GPPA) scheme.

1. Introduction

0e traffic capacity of urban road network is restricted by the
time delay, potential safety hazards, and environmental
pollution caused by traffic congestion. According to the US
Department of Transportation Statistics issued in 2019, 27%
of highways in the United States are blocked at the peak of
urban traffic and 54% of vehicles are in the state of con-
gestion [1]. Intersections, as important nodes of urban road
network, cause 80% of these urban traffic congestions [2].
0erefore, alleviating urban traffic congestion by taking the
intersection as the optimization object is a challenging work.

0e realization of spatiotemporal trajectory optimization
mainly includes two parts: (1) realizing the dynamic speed
control of multiple vehicles in the longitudinal direction; (2)
achieving the cooperative lane-changing control of multiple
vehicles in the horizontal direction. In the intelligent traffic
system (ITS) strategic plan published by the US Department
of Transportation in 2010, dynamic speed coordination
based on spatiotemporal trajectory was denoted as one of the

important methods for traffic flow optimization of road
network [3]. Grumert and Tapani [4] established a variable
speed limit (VSL) algorithm based on the traffic occupancy.
0e results show that VSL can increase traffic flow by 16%. Jo
et al. [5] updated a VSL algorithm by detecting vehicles at
multiple stations from the perspective of road safety, which
solved the guidance delay problem.With the development of
cooperative vehicle infrastructure system (CVIS) and con-
nected vehicles (CVs), the problem of discontinuous dy-
namic speed limit can be solved by continuous dynamic
speed control [6]. Considering the random traffic condi-
tions, Zhu and Ukkusuri [7] proposed a method to realize
dynamic speed limit control through RL. In this method, a
link based dynamic network load model was established in
the environment of CVs, which can reduce the total travel
time by 18%. Aldana-Muñoz et al. [8] proposed a method by
combining environmental driving and speed guidance to
optimize the continuous linear spatiotemporal trajectory.
0e experimental results show that the linear spatiotemporal
trajectory optimization can stabilize the change of
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disturbance on traffic flow. Wang et al. [9] proposed a speed
guidance model based on model predictive control (MPC),
by which the spatiotemporal trajectory can be constructed in
advance. Wei et al. [10] proposed a cooperative optimization
method for multivehicle spatiotemporal trajectories, which
is established based on the simplified Newell linear car-
following model. Considering different road environments
and weather conditions, De Mello and Chiodi [11] proposed
a fuzzy logic control model of spatiotemporal trajectory,
which increases the effectiveness of decision-making process
by 13%. Liang et al. [12] presented a method to optimize the
common spatiotemporal trajectories for both autonomous
vehicles andmanual driving vehicles.With the proportion of
autonomous vehicles increasing, average delay time is re-
duced by 25% and average stopping time is reduced by 47%.
Wang et al. [13, 14] designed a joint control model for CVs
and traffic signal, which aims to optimize vehicular platoon
and signal timing to improve traffic efficiency at intersec-
tions. 0e simulation results show that the joint control
model can reduce the stopping time by 54%. Mirheli et al.
[15] proposed a distributed cooperative control logic based
on spatiotemporal trajectory, which can be applied to
unsignalized intersections. In this study, vehicles with this
logic application scheme can pass through the unsignalized
intersection in optimal trajectories without collision. Wang
et al. [16] developed a cooperative optimization method of
spatiotemporal trajectory with multiple intersection phases.
In this method, a lower bound estimator based on dynamic
load network was constructed to improve robustness and
stability of vehicle dynamic network.

Urban roads or expressways with single lane or dual lane
were mainly taken in the above studies; however, the
multilane spatiotemporal trajectory optimization is still
lacked in the research. 0e main challenge of vehicles in the
multilane spatiotemporal trajectory lies in how to solve its
complex lane-changing problem. Moreover, accidents
caused by lane-changing behaviors make the multiple lanes
occupied, which makes the road congestion more serious
[17]. Considering the risk of lane-changing produced by
vehicle-to-vehicle (V2V) communication delay, Hongil and
Jae-Il [18] proposed an oriented bounding box (OBB)
method which reduces communication delay by defining the
lateral and longitudinal gradient controllers. Li et al. [19]
proposed a new lane-changing model based on CVs to
evaluate the critical vehicle distance in lane-changing pro-
cess. 0e safety potential field theory was integrated, and the
vehicle movement state under different speed and acceler-
ation conditions is dynamically presented. Finally, the lane-
changing route can be determined through the selection of
spatiotemporal trajectory. 0e majority of studies provide
ideas and theoretical support for multivehicle cooperative
lane-changing based on spatiotemporal trajectory. However,
due to the massive amount of data calculation and high
system complexity in multilane spatiotemporal trajectories,
the common multilane road section traffic efficiency
problem has not been effectively solved and improved
through the optimization of multiple single lanes method.

To solve the above problems, MSTTOM for connected
vehicles is established in this paper. 0e spatial temporal

trajectories are generated and combined with vehicular
current state information and the signal timing information.
In addition, during the driving process, the trajectories can
be optimized by RL. Moreover, the vehicle can change the
lane and update its trajectory through the cooperative lane-
changing strategy designed in this model. 0e significant
contribution of this research is that vehicles can pass
through intersections in optimal spatiotemporal trajectory
and further solve the congestion problem in current mul-
tilane road section.

0e rest of this paper is organized as follows: 0e typical
application scenario and the structure of the method are
introduced in Section 2. 0e specific content of MSTTOM is
described in Section 3, where the trajectory is generated and
optimized. 0e simulation experiment results through
SUMO/Python are presented and analyzed in Section 4, and
the stability of headway, fuel consumption rate, pollutant
emission, and calculation time are also selected as the
evaluation indexes. Finally, Section 5 concludes the paper.

2. Typical Application Scenario for
Connected Vehicles

2.1. Application Scenario. 0e upstream section of the in-
tersection, as the application of multilane scenario, is
covered by vehicle-to-everything (V2X) wireless commu-
nication and shown in Figure 1. 0e vehicular trajectory
from upstream to intersection process will be dynamically
calculated based on MSTTOM.

2.2. System Structure. 0e flow chart of MSTTOM is shown
in Figure 2. 0e procedure can be described as follows: the
traffic signal and vehicular driving information is collected
firstly by road-side unit (RSU) and on-board unit (OBU), so
that the target lane and arrival time at current intersection
can be calculated; secondly, the optimal trajectory is gen-
erated through connected vehicular state and constraints,
where traffic capacity of current intersection can be opti-
mized online through the cooperative lane-changing strat-
egy; and finally, every connected vehicle can pass through
the intersection with least travel time through the optimi-
zation result of RL. 0e spatiotemporal trajectory and the
optimized state are clarified in Figure 3.

3. Multilane Spatiotemporal Trajectory
Optimization Method (MSTTOM)

Firstly, state vectors defined in this paper contain the in-
formation of vehicular driving, such as position, speed, and
acceleration, and the information of traffic signal timing.
Secondly, the cost function and constraints of vehicular
trajectory are formulated. Finally, the optimal vehicular
trajectory is dynamically calculated through maximum
principle and RL.

3.1. State Vector. In the typical scenario of urban intersec-
tion, we define the vehicle entering the road section as Cmn,
where m and n represent the m-th lane of the road section
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Figure 2: 0e flow chart of spatiotemporal trajectory optimization process for connected vehicles.
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from the right side to the left side (the target vehicle is
selected as the reference) and the n-th vehicle from the
downstream to the upstream, respectively. 0erefore, we
define the state vector of vehicle Cmn as xmn (t):

xmn(t) � xmn(t), ymn(t), vmn(t), vmn
′(t) 

T
, (1)

where (xmn (t), ymn (t)) is the position of vehicle Cmn at time
t, vmn (t) is the driving speed of vehicle Cmn at time t, and
v′mn (t) is the lateral speed of vehicle Cmn at time t.

0e method input is the vehicle acceleration umn (t),
which can be expressed as follows:

umn(t) � umn(t), umn
′(t) 

T
, (2)

where umn (t) is the longitudinal acceleration of vehicle Cmn
at time t and u′mn (t) is the current lateral acceleration of
vehicle Cmn at time t.

Meanwhile, the signal timing information of vehicle
target lane φmn(t) and the traffic flow information Im−1 and
Im−1 (t) of adjacent lanes m + 1 and m − 1 are defined as

φmn(t) � φmn(t), tφmn(t), Rm, Gm ,

Im+1(t) � km+1(t) ,

Im−1(t) � vm+1(t), km−1(t) ,

(3)

where φmn(t) is the target phase state of vehicle Cmn,
tφmn(t) is the remaining time of phase φmn(t), Rm is the red
light duration of lane m, Gm is the green light duration of
lane m, vm+1(t) and vm−1(t) stand for the average traffic
flow velocity of left lane m + 1 and right lane m-1, and
km+1 and km−1 are the average traffic flow density of left
lane m + 1 and right lane m − 1. 0e average traffic flow
speed vm(t) and average traffic flow density km (t) can be
expressed as

vm(t) �


Nmax
m

N�Nmin
m

mN

N
max
m − N

min
m + 1

,

km(t) �
N

max
m − N

min
m + 1

L
,

(4)

where N is the total number of vehicles, Nmax
m is the max-

imum number of vehicles in lane m, Nmin
m is the minimum

number of vehicles in lane m, and L is the length of road
section.

0e system state equation is described as

_xmn(t) � f xmn(t), umn(t), φmn(t), Im+1(t), Im−1(t)( .

(5)

3.2. Cost Function. In order to ensure that the vehicle can
accurately follow the designed trajectory of the system, fixed
and variable costs in the process from upstream to down-
stream are considered and formulated, which can be rep-
resented by

J � g xmn t
out
mn   + 

toutmn

t0mn

h xmn(t), umn(t)( dt, (6)

where toutmn is the time when vehicle Cmn leaves the road
section, t0mn is the time when the vehicle Cmn enters the road
section, g(xmn(toutmn)) is the fixed cost of the process, and


toutmn

t0mn

h(xmn(t), umn(t))dt is the variable cost of the process.
0e fixed cost includes the cost of fixed items (such as the
driving distance and expected speed at the intersection) and
the travel time of the road section. 0e process can be
described as
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Figure 3: 0e spatiotemporal trajectory with and without optimization.
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2
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2
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mn  − d t
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1
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2
, (7)

where t
out
mn is the target time of vehicle Cmn driving out of the

road section, voutmn is the expected speed of vehicle Cmn at the
intersection, m is the target lane of vehicle, and d is the lane
width. w1, w2, w3, w4 are the weights of the travel time of the
road section, driving length of the road section, expected

speed at the intersection, and the target lane at the inter-
section, respectively. w1, w2, w3, w4 ∈R+.

Variable cost involves acceleration and deceleration of
the vehicle driving in longitudinal and lateral lanes. Its
function can be expressed as

h xmn(t), umn(t)(  � w5 umn(t)
2

+ 2umn(t)vmn(t) χ umn(t)(  + w6 umn
′(t)

2
+ 2umn
′(t)vmn
′(t) , (8)

wherew5 andw6 are the weights of energy changes caused by
longitudinal and lateral acceleration of the vehicle, recep-
tively. w5, w6 ∈R+. χ(umn(t)) is the Heaviside function of
longitudinal acceleration of networked vehicles and can be
used to separate the variable cost induced by acceleration in
longitudinal deceleration process:

χ umn(t)(  �
0, umn(t)≤ 0,

1, umn(t)> 0.
 (9)

t
free
mn denotes the time of vehicles passing through the in-
tersection under the condition of low-density traffic flow,
also known as the time for vehicles Cmn leaving the road
without restriction. 0e time consists of four parts: initial
time t0mn, time tacc

mn at acceleration state, time tc.s.
mn at constant

speed state, and time tde c
mn at deceleration state, which can be

described as follows:

t
free
mn � t

0
mn + t
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mn + t

de c
mn , (10)

where tacc
mn , tc.s.

mn, and tde c
mn can be expressed as
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,
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mn

,

(11)

where vlim0 is the speed limit of the road section, vlimm is the
speed limit at the downstream exit of the lanem, u+max

mn is the
maximum acceleration of vehicle Cmn, and u−max

mn is the
maximum deceleration of vehicle Cmn.

However, it is impossible for the urban road section to
maintain a low-density state. 0erefore, connected vehicles
have to pass through current intersection as a temporary
platoon. 0e candidate time t

temp
mn of vehicle Cmn can be

calculated as

t
temp
mn � max t

out
m(n−1) + t

h2h
m , t

free
mn , (12)

where th2h
m is the minimum headway between two adjacent

vehicles in lane m at the downstream exit of the section.
In order to improve the traffic capacity of intersections,

the target time t
out
mn of vehicle Cmn at current intersection is

controlled within the passable green signal, which can be
selected according to

t
out
mn, �

t
temp
mn , t

temp
mn ∈ ξm,

floor(
t
temp
mn

Rm + Gm

)( Rm + Gm ) + Rm, t
temp
mn , ∉ ξm,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(13)

where ξm is the set of green light periods of lanem, and floor
(t) is the function of rounding down.

0e expected speed of vehicles is defined as the speed
limit at the downstream exit to ensure the maximum effi-
ciency of vehicles and can be described as

v
out
mn � v

lim
m . (14)

In conclusion, the cost function can be integrated as
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(15)

3.3. Constraints. In order to minimize the above cost
function J, seven constraints, namely, initial vehicular state,
vehicle spacing, speed, acceleration, jerk, signal timing, and
wireless communication, should be satisfied in the opti-
mization problem.

3.3.1. Initial Vehicular State. Suppose that a connected
vehicle Cmn enters the road section with detectors; when n
≥nmax, the counter will reset. 0e initial state of vehicle Cmn
is defined as

xmn t
0
mn  �

xmn t
0
mn 

ymn t
0
mn 

vmn t
0
mn 

vmn’ t
0
mn 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

0

d m −
1
2

 

v
0
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v
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⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (16)

3.3.2. Vehicle Spacing. 0e vehicle will inevitably be in the
vehicle-following state in the driving process. 0erefore,
vehicle Cmn on the lane m and the front vehicle Cm (n-1)
should ensure a certain displacement in space and time. 0e
safety constraint can be formulated as

xmn t + τmn( ≤ xm(n−1)(t) − dmn, (17)

where τmn is the time displacement of vehicle Cmn and the
front vehicle Cm (n-1), and dmn is the spatial displacement of
vehicle Cmn and the front vehicle Cm (n-1).

3.3.3. Speed. In order to ensure the safety of the vehicles in
the road section, the speed constraint is applied to them.0e
longitudinal speed constraint embraces the speed infor-
mation involving speed limit within the section and the
minimum speed 0. 0us, we have

0≤ vmn(t)≤ v
lim
0 . (18)

For the lateral speed constraint, the vehicle deflection
angle is mainly constrained by vehicle dynamics, which can
be expressed as

α−max ≤ αmn(t)≤ αmax, (19)

where αmax is the maximum angle through which the front
wheel of the vehicle can turn to the left, αmn (t) represents the
steering angle of the front wheel of the current vehicle, and

αmax represents the maximum angle through which the front
wheel of the vehicle can turn to the right.

0erefore, the lateral restraint condition of the vehicle is
shown as

v
lim
0 α−max ≤ vmn

′ (t)≤ v
lim
0 αmax. (20)

3.3.4. Acceleration. In order to guarantee that the engine can
provide enough power and the brake pads can provide the
vehicle enough power limit, the acceleration or deceleration
of the vehicle should be specified as a constraint. 0e ac-
celeration constraints can be expressed as

u−max ≤ umn( t )≤ umax,

u−max′ ≤ umn
′ ( t )≤ umax′ ,

 (21)

where umax is the acceleration of the maximum longitudinal
braking deceleration of the vehicle, umax is the acceleration
of the maximum longitudinal acceleration of the vehicle,
u′max is the maximum transverse acceleration of the vehicle
to the left, and u′max is the maximum acceleration of the
vehicle to the right.

3.3.5. Jerk. 0e jerk constraint is the change rate constraint
of vehicle acceleration, also known as the impact constraint
or comfort constraint. 0e purpose of jerk constraint is to
eliminate the negative impact of the acceleration change in
the driving process. 0e jerk constraint is shown as

j−max ≤
zumn(t)

zt
≤ jmax,

j−max′ ≤
zumn
′(t)

zt
≤ jmax′,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(22)

where jmax represents the maximum longitudinal backward
jerk, jmax represents themaximum longitudinal forward jerk,
j′max represents the maximum lateral left acceleration, and
j′max represents the maximum lateral right acceleration.

3.3.6. Signal Timing. 0e signal timing constraint of vehicles
can ensure that vehicles avoid violations when passing
through the intersection, which can be represented as

vmn t
out
mn  � 0, t

out
mn ∉ ξm. (23)

3.3.7. Wireless Communication. V2X is a communication
system through which a vehicle communicates with any
entity that may affect the vehicle. 0us, the essence of V2X
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technology is wireless communication technology. In the
practical application of wireless communication technology,
time delay and packet loss are inevitable, which may affect
the stability and security of networked vehicles in the system.
0e relevant parameters of wireless communication are
constrained as follows:

τmn(t)< 0.1,

Plp|mn(t)< 15%,
(24)

where τmn(t) and Plp|mn(t) represent the time delay and the
packet loss probability of the vehicle Cmn at time t.

3.4. Solution Method Based on Maximum Principle.
MSTTOM is solved by Pontryagin’s maximum principle,
and the Hamilton function of the problem is established as

H(x,u, λ, t) � λT
f(x, u, t) + h(x, u, t), (25)

where λ is defined as the costate vector of vector x, which
represents the additional cost of the change of J caused by the
small change zx of vector x.

In the admissible set U, the minimum input u∗ of the
cost must satisfy the minimum state of the Hamilton
function, which can be expressed as follows:

H(x ∗ ,u∗ , λ∗ , t)≤H(x ∗ , u, λ∗ , t),∀u ∈ U, t ∈ t
0
mn, t

out
mn ,

zH

zu
� 0,

zH

zx
� − _λ,

zH

zλ
� _x.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(26)

0erefore, the Hamilton function of MSTTOM is shown
as

Hmn � λ1vmn(t) + λ2umn(t) + w5

umn(t)
2

+ 2umn(t)vmn(t) χ umn(t)( ,
(27)

where the variation of the lateral movement trajectory is
optimized in the process of vehicular cooperative lane-
changing.

In the process of solving the problem, the state vector λ
should meet the condition of the fixed cost, which is shown
as

λ( t
out
mn ) �

zg( xmn( t
out
mn ) )

zxmn

⇒
λ1( t

out
mn ) � 2w2( xmn( t

out
mn ) − L )

λ2( t
out
mn ) � 2w3( vmn( t

out
mn ) − v

out
mn )

⎧⎪⎨

⎪⎩

(28)

3.5. Cooperative Lane-Changing Optimization. In order to
accurately describe the process of cooperative lane-changing
strategy, the request of the vehicular lane-changing is

displayed in Figure 4.0e vehicle Cmn, selected as the subject
vehicle, is a red one in the middle of lane m and ready to
change lanes from the current lane m to the target lane
m + 1. Besides, yellow vehicles are defined as the primary
threat vehicles of Cmn, orange vehicles are defined as the
secondary threat vehicles of Cmn, and blue vehicles are
defined as the non-threat vehicles of Cmn.

If target lane is not the adjacent lane, it can be
decomposed into multiple lane-changing processes. 0e
optimal trajectory is loaded into the traffic environment, and
the potential lane-changing conflict safety inspection can be
carried out. 0e flow chart of lane-changing safety inspec-
tion is shown in Figure 5.

If two adjacent vehicles receive the same requests con-
currently, there is a priority for the vehicle with a higher
speed. If adjacent vehicles based on daily driving habits have
similar speed, there is a priority for the vehicle in the left
lane.

Different traffic saturation should be satisfied in the
cooperative lane-changing strategy. 0e higher the satura-
tion involved in the case is, the higher the complexity of the
lane-changing strategy will be supposed. 0erefore, the case
of higher saturation is discussed as follows:

(i) 0e subject vehicle Cmn initiates a lane-changing
request to the target vehicle C(m+1)n after the target
gap selected.

(ii) 0e target vehicle C(m+1)n and its rear vehicle
C(m+1)(n+1) adjust their speeds to confirm a safe gap
for vehicle Cmn.

(iii) Vehicle Cmn drives into the target lane m + 1.
(iv) 0e spatiotemporal trajectories of vehicles in the

original lane and target lane are updated, which is
shown in Figure 6.

3.6. Trajectory Optimization Based on RL. In order to im-
prove the efficiency of MSTTOM, this paper designs an
optimization algorithm based on the RL paradigm, which
can quickly match the optimal trajectory. 0e optimization
algorithm is formulated with the current position and speed
of vehicles. 0e target lane and time period are modeled as
inputs, and the sets of vehicle acceleration are formulated as
outputs. When the lane-changing request is initiated, the
vehicle can be connected to the trajectory of the cooperative
lane-changing strategy through the RL matching network.
Once the lane-changing is completed, the spatiotemporal
trajectory will be matched by the RL to achieve the multilane
trajectory optimization.

0e state vector of MSTTOM satisfies Markov property;
that is, the next state st+1 of the system is only related to the
current state st, but not directly related to the preceding state.
0us, the state vector can be shown as follows:

st � xmn(t),φmn(t), Im+1(t), Im−1(t) ,

P st+1|st  � P st+1|s1, s2, s3, . . . , st ,
(29)

where P is the probability matrix of transition between state.
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Figure 4: Schematic chart of lane-changing environment for vehicles Cmn.

8 Journal of Advanced Transportation



0rough integration, the set of action vectors will be
presented in the form of trajectory data. 0e action vector at
at current state st is shown as

at � umn(t) . (30)

Five tuples (S, A, P, R, c) are defined to describe the
process of MSTTOM. Among them, S is the state set, which
includes the current state of vehicles and the traffic flow state
in the road section; A is the set of executing actions, that is,
the set of lateral and longitudinal acceleration output by
optimization; R is the reward function of the process, which
is negatively linear with the cost function J; and c is the
discount factor when calculating the value function. For a
fixed policy π, the value function vπ(s) can be calculated as

vπ(s) � Eπ 

∞

k�0
c

k
Rt+k+1|St � s⎡⎣ ⎤⎦. (31)

An action value function qπ(s, a) can be calculated by
defining the value of each action a, which is described as

qπ(s, a) � Eπ 

∞

k�0
c

k
Rt+k+1|St � s, At � a⎡⎣ ⎤⎦. (32)

Bellman optimal recursive equations of the optimal state
value function v∗ s and the optimal action value function
q∗ s can be calculated by introducing Markov property into
(31) and (32), which can be shown as follows:

v∗ (s) � max
a

R
a
s + c 

s′∈S
p

a
ss′v∗ s′( ,

qπ(s, a) � R
a
s + c 

s′∈S

p
a
ss′ max

a
q∗ s′, a′( ,

(33)

where s′ and a′ are the state and action of the next moment,
respectively.

0e optimal strategy derived by maximizing the above
functions can be represented as

π ∗ (a|s) �
1, if a � argmax

a∈A
q∗ (s, a) ,

0, else.

⎧⎪⎨

⎪⎩
(34)

0e function can be calculated by Q-learning algorithm,
and the algorithm process is shown in Algorithm 1.

In Algorithm 1, sT is the termination state in the fifth
row. 0e current value function of the subsequent state
estimation is used to update the optimal action function in
the seventh row. In order to enhance the diversity of the
exploration ability of the algorithm, the specific formula is
shown as

π(a|s) �

1 − ε +
ε

N(a)
, a � argmax

a
q(s, a),

ε
N(a)

, a≠ argmax
a

q(s, a),

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(35)

where N (a) is the total number of actions, ε-greedy is the
optimal action strategy taken based on 1-ε probability, and
random action is the policy of ensuring the possibility of
being selected for each action according to the probability of
ε.

4. SUMO/Python Simulation and Analysis

In this section, we will simulate and analyze the proposed
MSTTOM through the SUMO/Python-based platform to
verify the feasibility and effectiveness of the scheme.
Meanwhile, the optimal level of mobility at the signal in-
tersection will be guaranteed in the experiment.

x 
(m

)

t (s)Original lane m

CmnCm(n–1)

Cm(n+1)

Cm(n+2)

Cm(n–1)
Cmn

Cm(n+1)

Lane m + 1 spatiotemporal trajectory
Lane m spatiotemporal trajectory

(a)

t (s)

x 
(m

)

Target lane (m + 1)

C(m+1)(n–1)C(m+1)n
C(m+1)(n+1)

C(m+1)(n–1)
C(m+1)n

C(m+1)(n+1)

C(m+1)(n+2)

Lane m + 1 spatiotemporal trajectory
Lane m spatiotemporal trajectory

(b)

Figure 6: Vehicular spatiotemporal trajectories in lane-changing process.
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4.1. Experiment Platform Based on SUMO. SUMO is mi-
croscopic traffic simulation software [20]. 0e simulation of
SUMO is discrete in time and continuous in space, and the
location of each vehicle is described internally. In SUMO,
the vehicle model is collision free, so that the variation
caused by incomplete model is not allowed to appear in the
simulation. SUMO allocates appropriate routes to vehicles
considering different traffic demands through Dijkstra al-
gorithm. 0e structure of SUMO map is shown in Figure 7.

4.2. Experimental Scheme. In the paper, the Netedit of
SUMO is used to carry out the multilane experimental
scenario based on Figure 1, and the simulation scenario is
shown in Figure 8. 0e intersection is a typical cross in-
tersection, and the traffic light is set as a typical four-phase
signal light. Due to the similar spatial characteristics of each
section, the 4-lane section fromwest to east is selected for the
experiment.

In the simulation process, the benchmark scheme in the
software, the glidepath prototype application (GPPA)
scheme [21], and the MSTTOM scheme proposed in this
paper are used to simulate and compare the performance of
traffic flow conditions with various vehicle saturation 0.6,
0.8, and 1.0. Vehicles simulation diagram is shown in
Figure 9.

0e three schemes compared in this paper are defined as
follows:

(i) 0e benchmark scheme: in this scheme, the tradi-
tional human driving vehicle model in SUMO
software is adopted, which means that there is no
controlled vehicle and no network communication.
0erefore, the driving situation of vehicles under
the current traditional driving habits can be sim-
ulated in this scenario.

(ii) GPPA scheme: GPPA driving optimization scheme
developed by the Federal Highway Administration
(FHWA) has been tested and verified. In this
scheme, all vehicles in the traffic flow are CVs and
are controlled by the optimized system of GPPA.

(iii) MSTTOM scheme: all vehicles in this scheme are
CVs, and MSTTOM was applied to all vehicles in
this paper. Compared with GPPA scheme, there are
the advantages of strong stability and fast calcula-
tion efficiency in MSTTOM. Meanwhile, this

scheme is adaptive in the complex multilane and
multivehicle scenario.

Simulation conditions and parameter settings for these
three schemes are shown in Table 1. Meanwhile, car-fol-
lowing state is simulated by Krauss car-following model
[22].

In order to eliminate the influence of unrelated factors in
the scenario, the simulation settings in SUMO are simplified
by considering the following conditions:

(i) In the simulation environment, there are the same
model, size, and kinematic characteristics with all
vehicles.

(ii) 0ere is no special weather effect in the simulation
environment, and the road adhesion coefficient
remains constant.

(iii) 0e roads are straight in the simulation environ-
ment. 0ere are no ramps, nonmotorized vehicular
lanes, or parking spaces, which lead to vehicles
entering or exiting.

(iv) 0ere is no inclination change in the road section,
which means that the vehicle will not travel uphill or
downhill.

(v) 0e arrival probability of vehicles in the simulation
environment is stochastic and obeys the Poisson
distribution.

0e simulation process based on SUMO is shown in
Figure 10. It can be seen that the red vehicle from the west to
the east attempts to go straight through the intersection
within the green duration from the rightmost lane. In this
process, the red vehicle completes cooperative lane-chang-
ing with vehicles in the left lane through MSTTOM.

4.3. Result Analysis. 0rough the simulation of SUMO
software, the output data of the vehicle can be exported
and analyzed. 0e vehicular spatiotemporal trajectories
on the left lane of the test road section are shown in
Figure 11, where the spatiotemporal trajectory of the
vehicle running on the right lane is denoted by the blue
dotted line, and the spatiotemporal trajectory of the ve-
hicle running on the left lane is represented by the red
solid line. It is worth noting that the lane-changing ve-
hicles can complete lane-changing quickly and safely

Q-learning algorithm
(1) Initialize q (s, a);
(2) While (st � sT)
(3) {Select the initial state s0 and action a0 according to the ε-greedy strategy;
(4) While (st � sT)
(5) {Select the action at the state st according to the ε-greedy strategy, get reward rt and the next state st+1;
(6) q(st, at)←q(st, at) + a(rt+1 + cmax

a
q(st+1, a) − q(st, at));

(7) st � st+1; } }
(8) Get the optimal strategy π(s) � argmax

a
q(s, a)

ALGORITHM 1: Q-learning algorithm.
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under the optimized method. Once a vehicle requests the
change of its lane, vehicles in the target lane can adjust the
vehicle position and reserve the optimal safety gap for the
vehicle requesting lane-changing. Under the environment
of multilane signalized intersection, there is no sharp
speed change when vehicles approach the intersection.
0erefore, the efficiency of achieving the expected opti-
mization of vehicular lane-changing can be proved for the
vehicular cooperative optimization.

0e headway and lost time at the stop line of intersection
in the road network are analyzed in Figure 12, where the blue
curve is the test statistical result of the left lane in the
benchmark scheme, the green curve is the test statistical
result of the left lane in GPPA scheme, and the red curve is
the test statistical result of the left lane in MSTTOM scheme.
0e meaningless data of the first vehicle in the green and red
phases in the experimental results are not included in the
above statistics.0e jumping part of the curve is the loss time

Node file
(example.nod.xml)

Edge file
(example.edg.xml)

Link property file
(example.typ.xml)

Lane connection file
(example.con.xml)

NETCONVERT

Network file
(example.net.xml)

Traffic demand File
(example.rou.xml)

SUMO/gui-sim
(simulation)

Figure 7: 0e structure of SUMO map.

Figure 8: Diagrammatic sketch of simulation scenario.
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of the first vehicle at the beginning of the green light or the
lost time of the headway of the following vehicles. 0rough
observation, it can be found that the headway of vehicles can
be effectively reduced, the number of vehicles passing
through the intersection stop line in a unit time is increased,
and the saturation flow rate at the intersection is improved in
MSTTOM scheme. In the process of GPPA scheme, some
vehicles are affected by vehicular lane-changing, which re-
sults in a significant increase in the headway and raise in the

green light loss time. Under MSTTOM scheme, the headway
of vehicles at the intersection is significantly reduced, and
the saturated flow rate at the intersection is increased.
According to the traffic control characteristics of signalized
intersections, the increase of effective green time and sat-
uration flow rate will directly lead to an increase in the
number of vehicles passing through the stop line at the
intersection, which means that the throughput of the in-
tersection will be improved.

Figure 9: Diagrammatic sketch of vehicles simulation.

Table 1: Simulation conditions and parameter settings.

Parameters Unit Value
Distance from detector to intersection (m) 200
Minimum headway at rest (m) 2
Vehicle length (m) 4.5
Vehicle width (m) 1.8
Vehicle height (m) 1.5
Lane width (m) 3.5
Signal cycle duration (s) 60
Green light duration (s) 12
Red light duration (s) 45
Yellow light duration (s) 3
Saturated traffic flow rate (Veh/h/lane) 1800
Maximum vehicle speed (km/h) 60
Minimum vehicle speed (km/h) 0
Maximum vehicle acceleration (m/ŝ2) 2.6
Maximum vehicle deceleration (m/ŝ2) −4
Maximum vehicle lateral acceleration (m/ŝ2) 2
Maximum vehicle lateral deceleration (m/ŝ2) −2
Maximum vehicle jerk (m/ŝ3) 10
Weight coefficient w1 — 100
Weight coefficient w2 — 50
Weight coefficient w3 — 10
Weight coefficient w4 — 200
Weight coefficient w5 — 1
Weight coefficient w6 — 5
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0e vehicle fuel efficiency and corresponding profit of
the whole system underMSTTOM are analyzed in Figure 13.
0e results of T-test show that there is a significant statistical
difference in the vehicle fuel efficiency data between the
MSTTOM scheme and the benchmark scheme. 0rough
observation, it can be seen that the use of MSTTOM can
effectively improve the vehicle fuel efficiency and reduce the
vehicle fuel consumption.

After calculation, the vehicle fuel consumption profit is
shown in Figure 14. In the case of different vehicle satu-
ration, there is a significant fuel efficiency benefit in GPPA
scheme and MSTTOM scheme. Comparing GPPA scheme

with the scheme of optimization method proposed in this
paper, the advantages of MSTTOM scheme in improving
traffic mobility, enhancing vehicle fuel efficiency, and re-
ducing pollutants emissions are obvious.

In MSTTOM scheme, the system calculation time
analysis under different iteration time steps and optimiza-
tion time spans is demonstrated in Figure 15. 0e maximum
calculation time is up to 0.93 when the optimization time
span is 50 seconds, and the iteration time step is 0.2 seconds.
In the simulation process, the optimization time spans of all
CVs are less than 50 seconds, and each iteration time step is
greater than 0.2 seconds. 0erefore, the calculation time of
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Figure 10: Part of the simulation process based on SUMO.
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the system is less than 1 second; that is, the effective per-
formance of the system time meets the requirements of real-
time optimization.

0e objectives of ensuring the optimal mobility of ve-
hicles at signalized intersections, enhancing vehicle fuel

efficiency, and reducing pollutants emissions can be
achieved in MSTTOM scheme. Compared with the existing
GPPA algorithm, the strengths of MSTTOM are as follows:

(i) 0e function of multilane cooperative lane-chang-
ing strategy under the condition of random traffic
flow is well realized in MSTTOM scheme.

(ii) Compared with the benchmark scheme, the mo-
bility of vehicles within the road section is im-
proved, the vehicle fuel efficiency is enhanced by
32%, and the emissions of pollutants are reduced by
17% in MSTTOM scheme.

(iii) Compared with the advanced GPPA scheme, there
is a 24% reduction in the vehicle fuel consumption
in MSTTOM scheme.

(iv) 0e traffic fluctuation caused by the intersection
signal control is smooth and the traffic flow in the
road section is more reasonable in MSTTOM
scheme.

(v) For the randomness in the traffic process, the
MSTTOM scheme shows its superiority in ro-
bustness than other existing schemes.

(vi) 0e calculation time in MSTTOM scheme is less
than 1 second, and the distribution is mainly
concentrated in 0.3 seconds to 0.7 seconds, which
satisfies the requirements of real-time optimization.

5. Conclusions

0is paper proposes a new scheme, MSTTOM, to ease traffic
pressure and reduce traffic congestion in multilane road
sections. 0e problem of low traffic efficiency at the mul-
tilane intersections is studied and analyzed in this paper.
Four stages of work, namely, literature summary, scenario
and structure introduction, method optimization design and
experimental validation, and optimization objects deter-
mination, are conducted. 0e research results and innova-
tions are as follows:

(i) A vehicular lane-changing method based on V2X is
proposed. Firstly, the lane-changing environment
information is analyzed to classify and define the
potential threat vehicles in the driving environment.
Secondly, the lane-changing behaviors of potential
threat vehicles are analyzed, and conflict detection is
carried out to determine the priority order in the
lane-changing process. 0en, lane-changing gap
and target cooperative vehicles are determined and
declared. Finally, the spatiotemporal trajectories of
related vehicles are updated. 0e vehicular coop-
erative lane-changing strategy lays a foundation for
the reasonable planning of MSTTOM.

(ii) 0is paper designs a multilane spatiotemporal
trajectory optimization method. Based on the op-
timal control theory, the state control models of
CVs driven by Pontryagin’s maximum principle are
constructed. 0e cost function is formulated by
continuous functional target completion and

9.79
11.24

12.15

7.07

8.93 9.42

5.83

7.81 7.94

The benchmark
scheme

GPPA
scheme

MSTTOM
scheme

0

2

4

6

8

10

12

14

Fu
el

 ef
fic

ie
nc

y 
(k

m
/L

)

Vehicle saturation 0.6
Vehicle saturation 0.8
Vehicle saturation 1.0

Figure 13: Fuel efficiency under different schemes.

Vehicle saturation 0.6
Vehicle saturation 0.8
Vehicle saturation 1.0

14.81 

24.11 26.31 

33.24 33.96 36.19 

GPPA scheme MSTTOM scheme
0
5

10
15
20
25
30
35
40

Pr
of

it 
(%

)

Figure 14: Vehicle fuel consumption profit under different
schemes.

1
0.8 50

Iteration step (s)

0.6 40

Optimization (s)0.4 30
0.2 20

0

0.2

0.4

0.6

0.8

1

Ca
lc

ul
at

io
n 

tim
e (

s)

Figure 15: System calculation time under different optimization
parameters.

14 Journal of Advanced Transportation



optimal profit. 0e constraints in line with the
actual situation of the vehicle are also established.
Finally, the trajectories data are optimized by
Q-learning algorithm to achieve the real-time
optimization.

(iii) SUMO software is used to verify the feasibility and
effectiveness of MSTTOM by comparing it with
GPPA scheme of FHWA in the United States. 0e
experimental results demonstrate that MSTTOM
can effectively optimize the traffic flow, improve the
vehicle fuel efficiency, reduce pollutants emissions,
and improve the traffic efficiency of vehicles at
intersections.
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