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To enhance the assessment of the network capacity for a given urban road system, the effects of the parking management strategies
at destination areas are supposed to be considered in the network capacity assessment model. *is study provides an extended
road network capacity model which takes into consideration both the parking supply and parking pricing at each traffic zone. *e
network capacity model is formulated as a bilevel programming problem, with the maximization of total trip generation in the
upper level and the combined trip distribution and traffic assignment (CTDTA) problem in the lower level. To reasonably
characterize the impacts of the parking pricing and parking delay due to the congestion effect, two classes of travel demand are
involved in the CTDTA model. An efficient and practical algorithm is provided for the solution of the bilevel network capacity
model. Numerical experiments show the advantages of the proposed model and also demonstrate the effect of the parking supply
and parking pricing on the assessment results of the road network capacity.

1. Introduction

*e rapid growth of motor vehicle travel demand leads to
most cities suffering from traffic congestion and parking
space shortage. *e road network capacity assessment is
helpful to reflect the capability of the urban road system for
allocating the maximum travel demand by motorists. Hence,
to properly assess the capacity of the urban road network has
long been an important goal for transportation project
planning and evaluation. In the literature, most research
explores the transportation network capacity problem by
only considering the constraints from the link capacities
(e.g., [1, 2]). However, a few studies indicate that involving
the impact of parking management strategies can help to
obtain more practical and reasonable results for the urban
road network [3, 4]. On the other hand, assessing the
network capacity with the parking management will be
meaningful to properly coordinate the parking resource and
motor travel demand in the level of the road network. *e
network-wide origin-destination (O-D) demand could re-
distribute in space due to the implementation of the new

parking management strategies. *ereby, to incorporate the
parking supply and/or parking pricing into the trans-
portation network capacity problem will be of theoretical
and practical significance for the decision making in urban
parking management.

*e concept of network capacity is defined as the
maximum travel demand that can be allocated to the
transportation network without violating the capacity of any
individual component (e.g., link and intersection) [5]. *e
network capacity has been recognized as an important
measure to assess the network-wide performance in the
urban transportation system. *is concept has been widely
used in many applications, such as capacity reliability
analysis [6], network design problem [7], capacity flexibility
analysis [8], and capacity vulnerability analysis [9]. Early
studies assessed road network capacity by considering the
capacity constraint on each road segment [10]. *e maxi-
mum capacity was estimated by assigning the total O-D
demand gradually, in which every slice of the O-D demand is
loaded with an equilibrium traffic assignment [11]. Fol-
lowing that, the traffic signal splits at intersections were
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incorporated into the network capacity problem. *e con-
cept of reserve capacity is proposed [1] and extended in the
study of the signal-controlled network [12–14]. Since the
reserve capacity model assumes the O-D demand distri-
bution to be unchanged, which is not practical for the
networks in the developing areas, variable O-D demand was
involved in the network capacity assessment [2, 5, 15]. On
the other hand, as the distribution of the total O-D travel
demand (compared with that of the motor O-D demand) is
relatively stable, the multimodal choice was extended based
on the reserve capacity concept [16, 17], in which the total
demand with a fixed O-D distribution splits into several
variable O-D tables which are separately associated with the
different travel modes. Besides, other studies explored the
impact of market penetration of the advanced traveler in-
formation system (ATIS) on the road network capacity [18].
Only limited research can be found for the impact of the
parking supply or parking pricing on the transportation
network capacity [3, 4, 19].

In the assessment of the urban road network capacity,
the parking constraints are twofold: (1) the parking supply,
which determines both the upper bound of the parking
demand and the parking time due to the level of congestion
in each trip destination; (2) the parking pricing, which
decides the parking fee at each destination area. Note that
the upper limit of the parking demand can be regarded as the
parking capacity that limits the growth of the travel demand
by motorists, which is the same as the role of the link ca-
pacity.*e parking time and fee at destinations are supposed
to affect some travelers’ travel choices, which leads to the
redistribution of the O-D travel demand network wide.
According to the existing studies, Asakura and Kashiwadani
[19] and Leng and Yan [4] only consider the effect of the
parking capacity on the network-wide capacity, and thus, the
change on O-D demand pattern was not considered. Al-
though Tam and Lam [3] involved both parking capacity and
parking charge at destinations, the entire O-D trip distri-
bution was assumed to only depend on the travel cost
(specifically the accessibility measures) between the O-D
pair, i.e., the level of destination congestion was not con-
sidered. Nevertheless, the parking time due to the level of
destination congestion has been studied in the context of
parking choice problems [20–23]. *e parking (search) time
is often defined as an increased function in terms of the
parking demand dividing the parking capacity at the des-
tination area. Xie et al. [24] once employed the parking time
function in their study on the network capacity. *ey as-
sumed all travel demands are variable under the impact of
the travel cost at destinations, which could be loss of gen-
erality because the commuting demand may not willing to
change their destination even the destination cost is very
high.

In summary, the existing research on the road network
capacity considering parking supply and parking pricing has
the following inadequacies: (1) only some of the factors were
involved in the network capacity assessment, so the effect of
the urban parking management strategies cannot be eval-
uated comprehensively [19]; (2) incomplete to characterize
the impact of destination congestion on the network-wide

travel demand pattern [3], which may result in impractical
O-D demand pattern for the maximum network capacity;
(3) not consider the difference among the motor travelers
and, thus, causes the underestimate [4] or overestimate [24]
to the total network capacity. In this study, we will char-
acterize both the parking supply and parking pricing and
incorporate them into a combined trip distribution and
traffic assignment (CTDTA) model [25] which involves two
classes of motor travel demand, i.e., the fixed demand and
the variable demand. We refer the fixed demand to be the
commuting motorists which will hold a stable O-D pattern
under the impact of destination parking cost and refer the
variable demand to be the non-commuting motorists which
show a variable demand pattern with respect to the level of
congestion in both the road network and the destination
areas. *e new model is expected to better capture the effect
of both parking supply and parking pricing on the urban
road network.*e application of the newmodel will be more
practical and helpful for assessing the capacity of the given
road network, especially for the demonstration of strategies
in urban parking management.

*e remaining of this paper is organized as follows. *e
next section presents the new urban road network capacity
model with parking supply and parking demand. *en,
section 3 provides an efficient solution algorithm for our
proposed model formulated as bilevel programming. Nu-
merical experiments are conducted in section 4 to dem-
onstrate the feature of the new model and the effect of
parking supply and parking demand on the network capacity
assessment. Finally, conclusions are summarized in section
5.

2. The Extended Road Network Capacity Model

2.1. Model Assumptions. *e following assumptions are
made to facilitate the presentation of the essential ideas in
this study:

(a) Two classes of travel demand by motorists are in-
volved, i.e., the fixed demand and variable demand.
*e fixed demand is related to the daily travel de-
mand that has predetermined origins and destina-
tions, such as the commuting traffic. *e pattern
(trips and spatial distribution) of the fixed demand
will be stable regardless of the change of the travel
impedance or cost from the origin to destination. On
the contrary, the destinations of the variable demand
are exchangeable with respect to the crowdedness
and costs at the destinations, and thus, such kind of
demand (such as shopping and recreation) shows a
flexible demand pattern.

(b) *e travelers associated with the fixed demand can
only change the paths to minimize the individual
travel cost, which is characterized by the user
equilibrium principle. *e travelers associated with
the variable demand can change both the paths and
destinations to minimize the total travel cost, which
will be characterized by the combined trip distri-
bution and traffic assignment model.
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(c) *e parking demand is a ratio of the total destination
demand at a destination area, and it is restrained by
the space of the parking facilities.

(d) Travelers have sufficient network information to
choose travel paths in a user equilibrium manner.

(e) Due to the static nature of the model, the traffic flow
is assumed in a steady state, and the study period is
assumed to be one hour, such as the morning peak
hour.

2.2. Model Formulation. We consider a directed network
G � (N, A), whereN is the set of all nodes and A is the set of
all directed links. Let I and J be the set of origins and the set
of destinations, respectively. Let Rij be the set of paths
between the O-D pair (i, j), ∀i ∈ I, j ∈ J. *e traffic flow on
link a ∈ A is denoted by va. *e travel time on link a is an
increasing function of the traffic flow through itself, i.e., ta �

ta(va). *e variable travel demand between the O-D pair
(i, j) is denoted by qij, and the fixed demand is denoted by
eij. Let f

ij
r and h

ij
r represent the traffic flow on path r

corresponding to the variable demand and fixed demand,
respectively.

Since both the level and distribution of the variable
demand are changeable with respect to the traffic situation in
the transport network, the utility between origins and
destinations will be utilized to derive the flow pattern of the
variable demand. Hence, we define the utility from origin i to
destination j by Uij, which consists of the generalized
destination cost Mj and the minimum travel cost τij from i
to j, i.e., Uij � −τij − Mj. Specifically, Mj is defined as an
increasing function of the total travel demand, Dj, at the
destination j. As the noncommuting travelers at each origin i
may have certain randomness on the destination choice, we
employ the logit choice model to produce the conditional
probability that a traveler from origin i will choose desti-
nation j, which is given by

P(j|i) �
exp −θ τij + Mj  

n∈Jexp −θ τin + Mn(  
, ∀i ∈ I, (1)

where θ is the dispersion parameter that reflects the trav-
eler’s sensitivity to the travel utility.

In equation (1), the minimum travel cost τij is deter-
mined by the network-wide traffic flow pattern in the
context of the congestion. Generally, it can be conducted
from the network equilibrium models. In this study, we
obtain it by using an equilibrium combined trip distribution
and traffic assignment model which can cope with the
mixture of the fixed and variable demand. Besides, the
generalized destination cost Mj will be incorporated with
the pricing and the searching time in the parking area. *e
details will be presented in the remainder of this section. Our
network capacity model will be formulated in a bilevel
framework, where the upper-level problem maximizes the
throughput of the network and the lower-level problem
regulates the travel choice behaviors of the network users
(for both the variable and fixed demand).

2.2.1. Parking Supply and Parking Pricing. Let qj be the total
occupancy of parking j ∈ J under equilibrium, and let kj be
the capacity of parking j. Note that parking occupancy qj is
obtained by multiplying the total travel demand, Dj, at area j
with the parking rate ρj, i.e.,

qj � ρj · Dj, ∀j ∈ J, (2)

where the total travel demand at destination j will be given
by Dj � i∈I(qij + eij).

Furthermore, we assume the parking search time is a
convex function of parking occupancy qj and parking ca-
pacity kj [26]. *us, the parking search time function Sj(qj)

can be formulated as

Sj qj  �
μjsj

1 − qj/kj

, ∀j ∈ J, (3)

where sj is the average searching time in destination area j
when the parking occupancy is low, referred to as the low-
occupancy searching time. μj is a constant denoting how
drivers’ attitudes to parking occupancy information. If
drivers are unaware of the searching time, set μj � 0; if
drivers are completely aware of searching time, set μj � 1.
Note that the searching time reaches infinity as parking
occupancy qj approaches parking capacity kj. *is indicates
that drivers arriving at a full occupancy parking area will
never find a parking space.

Although the parking time function in equation (3)
nicely captures the effect of parking demand versus parking
supply, the calculation of this function can lead to infeasible
solutions if the parking occupancy is equal or greater than
the parking capacity. Alternatively, the BPR-type functions
were often employed [21, 23] to avoid the discontinuous
phenomenon when the parking demand is approaching the
capacity. We recommend the following formulation in
practice:

Sj qj  � sj 1 + φ
qj

kj

 

ω

 , ∀j ∈ J, (4)

where φ and ω are calibration parameters. When qj⟶ kj,
the parking search time increases to the (1 + φ) times of the
low-occupancy searching time sj.

*e hourly parking price at area j is denoted by πj. *us,
the drivers who choose area j as a travel destination will pay
πj dollars per hour. *erefore, the generalized destination
cost, Mj, for travelers who choose area j as their destination,
is given by

Mj � πj + η · Sj qj , (5)

where η is the value of time for travelers. Generally, the
values of πj are various for different destination areas, which
depends on the industrial structure, land use, and locations.
To reflect the differences among the destination areas, a
more detailed traffic zone division will be implemented in
practice.

From the aspect of parking supply constraint, the
parking occupancy should not exceed the parking capacity
in area i, that is,

Journal of Advanced Transportation 3



qj ≤ kj, ∀j ∈ J. (6)

2.2.2. Combined Trip Distribution and Traffic Assignment
Model. In this section, the lower-level model of the network
capacity problem will be formulated by considering the
parking cost at destinations. Following the assumptions in
Section 2.1, we consider the travelers can choose the des-
tinations and paths to minimize the travel cost accordingly.
*e combined trip distribution and traffic assignment
(CTDTA) model [25] will be employed to capture travelers’
behavior. Specifically, both the fixed demand and variable
demand are considered in the road network. *e travelers
with fixed demand will be free to choose their travel paths,
while the travelers with variable demand will be free to
choose either the paths or the destinations. Both types of
travelers aim to minimize their own travel cost for the whole
trip. Furthermore, the CTDTA model will be extended to
involve the parking supply and parking pricing at desti-
nations, which will impact the destination choice of the
variable travel demand.*us, the extended CTDTAmodel is
given as follows:

min ZL(q, f ,h) � 
a∈A


va

0
ta(x)dx +

1
θ


i∈I


j∈J

qij ln qij − 1 

+ 
j∈J

qjπj + η
j∈J


qj

0
Sj(y)dy, (7)

s.t. 
j∈J

qij � Oi, ∀i ∈ I, (8)


r∈Rij

h
ij
r � eij, ∀i ∈ I, j ∈ J,

(9)


r∈Rij

f
ij
r � qij, ∀i ∈ I, j ∈ J,

(10)

va � 
i∈I


j∈J


r∈Rij

f
ij
r + h

ij
r δij

a,r, ∀a ∈ A,
(11)

f
ij
r ≥ 0, ∀r ∈ Rij, i ∈ I, j ∈ J, (12)

h
ij
r ≥ 0, ∀r ∈ Rij, i ∈ I, j ∈ J, (13)

qij ≥ 0, ∀i ∈ I, j ∈ J, (14)

where δij
a,r is the link/path incidence indicator, which equals

to 1 if link a is on path r between the O-D pair (i, j) and 0
otherwise. In the objective function, the first term indicates
the user equilibrium of all travelers. *e second term in-
dicates the destination choice behavior of the variable de-
mand only. *e third and the fourth terms indicate the
parking charging and the parking searching time at the
destination area, respectively. Equations (8)–(10) define the
flow conservation of the variable and fixed demand.
Equation (11) is the relationship between link flows and path
flows. Equations (12)–(14) are nonnegative constraints.

Besides, according to the first-order necessary condition, the
O-D flows of the variable demand is produced by the fol-
lowing logit share model:

qij � Oi ·
exp −θ τij + πj + Sj Dj   

n∈Jexp −θ τin + πn + Sn Dn( (  
, ∀i ∈ I, j ∈ J,

(15)

where the parking cost function, Sj(Dj), is defined in
equation (4).

2.2.3. Total Trip Maximization Model. *e upper-level
problem defines a maximum trip production model, where
the limits of the individual link capacity and zonal parking
supply are considered. *us, the upper-level problem is
given by

maxZU( O) � 
i∈I

Oi, (16)

s.t.va( O)≤Ca, ∀a ∈ A, (17)

ρj · 
i∈I

qij(
O) + eij ≤ kj, ∀j ∈ J, (18)

Oi ≥ 0, ∀i ∈ I. (19)

where va( O) and qij(
O) are obtained by solving the lower-

level model. *e objective is to maximize the summation of
the trip production of the variable demand, Oi, from each
origin. Equation (17) represents that the traffic flow on each
link should not exceed its capacity. Equation (18) represents
that the parking demand at each traffic zone should not be
over its parking space.

3. Solution Algorithm

In the previous section, the network capacity model con-
sidering parking pricing and supply was formulated as a
bilevel model. Moreover, the lower-level model integrates two
classes of travel demand associated with different travel choice
behaviors. *e solution of the proposed network capacity
model is not trivial. *erefore, in order to apply the proposed
network capacity model in practical applications, we design
an improved sensitivity analysis-based (SAB) algorithm that
enables to solve the bilevel problem efficiently. *e SAB al-
gorithm was widely used for solving the bilevel programming
model [27]. *e sensitivity analysis is specific to the anlaytical
senstivity analysis of the lower-level model, which is used to
produce the derivatives of the upper-level decision variables
with respect to the lower-level one. *e derivatives will be
used to explicitly reflect the relationship between the upper
level and lower level and help to solve the bilevel model it-
eratively. In practice, the SAB algorithm usually performs a
fast convergence which makes the algorithm terminate within
a considerable time. Given the nonconvexity of the bilevel
problem, the SAB algorithm will converge to a local optimal
point. However, as shown by Yang et al. [2], for the bilevel
model, if the upper-level objective function is a linear function
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of its decision variables, the SAB algorithm can, at least, find a
noninferior optimal solution. *erefore, the SAB approach is
capable to find a satisfying solution for the proposed network
capacity problem in this study. *e accuracy of the solution is
sufficient to be used for transportation project forecasting or
evaluation.

3.1. Path-Based Algorithm for Solving the Lower-Level Model.
According to the typical process of the SAB algorithm [27],
the lower-level model should be resolved in every iteration
to obtain the equilibrium traffic flow pattern with respect to
the current upper-level solution. Note that there are two
classes of travel demand with different O-D distributions
involved in the extended CTDTA model, while their path
choice principles are the same. It is general to suppose that
the path flows of both the fixed and the variable demand
have the same proportion on each equilibrated path. *us,
we used the total path flow, F

ij
r , as the main variable in the

traffic assignment stage. *e ratio of the fixed demand to
the variable demand on each path is obtained by eij/qij.
Moreover, in this section, we embed the gradient projection
(GP) method [28] in Evans’ algorithm [29] for solving the
extended CTDTAmodel, in which the O-D flow is updated
in an additional stage by dealing with a one-dimension
search problem. Hence, we define the path flow proportion,
cijr, to denote the portion of the total demand between O-D
(i, j) that is assigned to path r. *is definition has the merit
that the value of cijr does not need to be rescaled when the
O-D demand is updated. In addition, the GP method is
capable to quickly converge to sufficiently high accuracy.
*e GP method is classified as the path-based algorithm,
which enables to quickly extract the set of all equilibrated
paths from the path-based optimal solution. *e path set
will be used as a precondition to in the next stage for the
analytical sensitivity analysis approach of the lower-level
model.

*e implementation of modified Evans’ algorithm con-
sists of two stages: the traffic assignment stage and the trip
distribution stage. *e former is implemented to equilibrate
path flows while fixing the current O-D demand; the latter
performed to update variable O-D demand while restraining
the current path flow proportion. We carry out the traffic
assignment stage as an inner loop with certain times, so as to
accelerate the convergence of the whole algorithm. Besides,
when producing a new (auxiliary) O-D flow, the parking
search time is derived in advance based on the O-D flow
pattern in the previous iteration, i.e., Sn

j : � Sj(qn−1
j ).

*e solution procedure for the extended CTDTA model
is presented as follows:

Initialization: we set n: � 0 and determine the initial
link cost t0a  and parking time S0j  by setting link flows
va � 0, ∀a ∈ A and variable O-D demand qij � 0,

∀i ∈ I, j ∈ J, respectively. For each origin i ∈ I,

(1) find the minimum-cost paths starting from origin i.
For each minimum cost path r to destination j ∈ J,
we denote the minimum cost by τ0ij, and let R0

ij: �

R0
ij ∪ r{ }.

(2) compute the initial variable OD demands by

q
0
ij � Oi ·

exp −θ τ0ij + πj + S
0
j  

n∈Jexp −θ τ0in + πn + S
0
n  

, ∀i ∈ I, j ∈ J.

(20)

ΔFr �
cijr − τij

a∈A(r,r)zta/zva

, ∀r ∈ Rij, r≠ r, (21)

c
n
ijr �

F
ij
r

eij + q
n
ij

, ∀r ∈ Rij, i ∈ I, j ∈ J.

(22)

Step 2: we update variable O-D flows, retaining the
path flow proportions, given the path flow pro-
portions cn

ijr , link flows vn
a , and path costs cn

ijr 

obtained in Step 1.

Step 2.1: for each destination j, we compute the
parking search time Sn

j(·) based on the O-D de-
mand eij  and qn−1

ij .
Step 2.2: for each O-D pair, we optimize the
variable O-D demand:

(1) *e set of auxiliary trip demands qn
ij  is found

by the following logit share model:

q
n
ij � Oi ·

exp −θ τn
ij + πj + S

n
j  

k∈Jexp −θ τn
ik + πk + S

n
k(  

, ∀i ∈ I, j ∈ J.

(23)

max
0≤λ≤1

ZL(λ) � 
λ


v(λ/a)

0
ta(x)dx +

1
θ


i∈I


j∈J

q
λ
ij ln q

λ
ij − 1 

+ 
j∈J

q
λ
j · πj + 

j∈J


q(λ/j)

0
Sj(y)dy, (24)

v
n+1
a ≔ v

λ∗
a , ∀a ∈ A,

q
n+1
ij ≔ q

λ∗
ij , ∀i ∈ I, j ∈ J.

(25)

F
ij
r � cijr eij + q

n+1
ij , ∀r ∈ Rij, i ∈ I, j ∈ J. (26)

(3) For each destination j ∈ J associated with origin i,
we assign both the fixed demand eij and the variable
demand q0ij to the minimum cost path r from i to j
and, thereby, initialize the path flow F

ij
r  and path

flow proportions c0
ijr � 1 , as well as the link flows

v0a .
(4) update the link costs.

Main Loop. For n� 1 to number of main iterations
(LMain):
Step 1: we equilibrate path flows, retaining the
variable demands, given the current variable O-D
demand qn

ij  and path flows F
ij
r , obtained from
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the (n-1)th-iteration. For m� 1 to number of inner
iterations (LInner):
For each origin i ∈ I, we generate the minimum path
tree rooted from i. For each destination j ∈ J as-
sociated with origin i, we retrieve the minimum path
r with the minimum cost τij and equilibrate the path
set Rij between the O-D pair (i, j) as follows:
Step 1.1: column generation: updating the costs of
paths, cijr, ∀r ∈ Rij.
If r ∉ Rij, let Rij: � Rij ∪ r{ }; otherwise, label the
minimum path in Rij as r.
Step 1.2: shift flow from nonminimum paths to the
minimum path:

(1) *e path flow shift is computed as follows:
where A(r, r) is the set of links that belong either

to nonminimum path r or to minimum path r but
not to both of them.

(2) *e path flows are updated and projected onto the
feasible set:

Nonminimum paths:
F

ij
r : � F

ij
r − min ΔFr, F

ij
r , ∀r ∈ Rij, r≠ r

Minimum path:
F

ij

r
: � (qij + eij) − r∈Rij, r≠ rF

ij
r

If F
ij
r � 0, then eliminate this path r from the path

set, that is, Rij: � Rij/r.
(3) *e link flows {va}, the link costs {ta}, and the

derivative costs { zta/zva} } are updated.
Step 1.3: updating the path flow proportions:

(2) *e auxiliary link flows vn
a  are obtained with the

given path flow proportions cn
ijr .

(3) Let vλa � (1 − λ)vn
a + λvn

a, ∀a ∈ A; qλij � (1−

λ)qn
ij + λqn

ij, ∀i ∈ I, j ∈ J, and we solve the one-di-
mensional search problem defined as follows to
obtain the optimal step size λ∗ ∈ [0, 1]:
where qλj � ρjD

λ
j � j∈J(eij + qλij).

(4) *e link flows and the variable O-D demands are
updated as follows:
Step 2.3: updating the path flows:
Step 2.4: the link costs {ta} and the derivative costs
zta/zva} are updated.
Step 3: checking convergence: it is terminated if the
convergence criterion is satisfied; otherwise, a new
iteration of the main loop is started, and set n:� n +
1.

3.2. Sensitivity Analysis of the CTDTA Model. In every it-
eration, the SAB algorithm evaluates the derivatives of the
lower-level decision variables with respect to the upper-level
ones (i.e., ∇Ov and ∇Oq) based on the current solution to the
lower-level model. *e derivatives will be used to approx-
imate the bilevel model as a linear programming problem
which is easier to tackle. For the original CTDTAmodel, the
approach for deriving derivatives can follow the restriction

sensitivity analysis approach for the combined model in Du
et al. [30]. *e restriction approach reduces the original
problem involving all path variables into a restricted one that
only consists of those independent equilibrated paths, so the
problem of nonuniqueness of the path flows can be handled.
Also, using the sensitivity results of the independent paths in
the restricted problem, the derivatives of the link flow in the
original one will be restored. *e necessary results of the
analytical sensitivity analysis of the extended CTDTAmodel
are presented in the following.

To simplify the calculation of the sensitivity analysis
approach, the extended CTDTAmodel in equations (7)–(14)
will be reformulated as follows (by including the pertur-
bation ε):

minZL
′(f ,h, ε) � 

a∈A


va

0
ta(x, ε)dx +

1
θ


i∈I


j∈J


r∈Rij

f
ij
r

ln 
r∈Rij

f
ij
r − 1) + 

j∈J
qjπj + η

j∈J


qj

0
Sj(y, ε)dy,⎛⎜⎝ (27)

s.t. 
j∈J


r∈Rij

f
ij
r � Oi(ε), ∀i ∈ I,

(28)


r∈Rij

h
ij
r � eij(ε), ∀i ∈ I, j ∈ J,

(29)

va � 
i∈I


j∈J


r∈Rij

f
ij
r + h

ij
r δij

a,r, ∀a ∈ A,
(30)

f
ij
r ≥ 0, ∀r ∈ Rij, i ∈ I, j ∈ J, (31)

h
ij
r ≥ 0, ∀r ∈ Rij, i ∈ I, j ∈ J. (32)

In the equations given above, the decision variables are
reduced to the path flows f and h only. After that, by
substituting equation (30) into the upper limit of the integral
in the first term of the objective function, we can obtain the
following Lagrange function of the abovementioned
problem.

L(f , h, λ, μ, ε) � 
a∈A


i∈Ij∈Jr∈Rij

f
ij
r +h

ij
r( δij

a,r

0
ta(x, ε)dx

+
1
θ


i∈I


j∈J


r∈Rij

f
ij
r ln 

r∈Rij

f
ij
r − 1⎛⎜⎝ ⎞⎟⎠

+ 
j∈J

qjπj + η
j∈J


qj

0
Sj(y, ε)dy

+ λi Oi(ε) − 
j∈J


r∈Rij

f
ij
r

⎛⎜⎝ ⎞⎟⎠

+ μij eij(ε) − 
r∈Rij

h
ij
r

⎛⎜⎝ ⎞⎟⎠,

(33)
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where λ � λi  and μ � μij  are the Lagrange multipliers
associated with the conservation constraints (28) and (29).

*en, the Kuhn–Tucker condition can be conducted as
follows (set ε � 0):

c f∗, h∗, 0(  +
1
θ
ΛT

f ln Λff
∗

  + ΛT
fΨ

T
(ρ + ηS(·, 0)) − ΛT

fΦ
Tλ � 0,

c f∗,h∗, 0(  + ΛT
hΨ

T
(ρ + ηS(·, 0)) − ΛT

hμ � 0,

ΦΛff
∗

− O(0) � 0,

Λhh
∗

− e(0) � 0,

uT
ff
∗

� 0,

uT
hh
∗

� 0,

uf ≥ 0, uh ≥ 0, f∗ ≥ 0, h∗ ≥ 0.

(34)

By only retaining the used paths whose flows are positive,
the abovementioned equation system will be reduced to

c f∗, h∗, 0(  +
1
θ
ΛT

f ln Λff
0∗

  + ΛT
fΨ

T
(ρ + ηS(·, 0)) − ΛT

fΦ
Tλ � 0,

c f∗,h∗, 0(  + ΛT
hΨ

T
(ρ + ηS(·, 0)) − ΛT

hμ � 0,

ΦΛff
0∗

− O(0) � 0,

Λhh
0∗

− e(0) � 0.

(35)

Furthermore, let [f0∗, h0∗] be partitioned as
[(fB, fNB)T, (hB,hNB)T]. fB and hB are the basic variables of
path flows associated with the variable and fixed demand,
respectively; fNB and hNB are the corresponding nonbasic
variables. Note that fB and hB are the flows on the inde-
pendent equilibrated paths according to the restriction
sensitivity analysis approach. *en, we can restrict the
equation system by holding the nonbasic variable to be
[fNB, hNB] � 0. *ereby, the Jacobian matrix Jxwith respect
to the solution variables x � (fB, hB, λ, μ), and the Jacobian
matrix JO with respect to the production of the variable
demand from origins can be derived as

Jx �

∇2fL ∇f,hL −ΛT
fΦ

Tλ 0

∇h,fL ∇2hL 0 −ΛT
h

ΦΛf 0 0 0

0 Λh 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

JO � 0 0 −I 0 
T
,

(36)

where

∇2fL � ΔT
f∇vt(v, 0)Δf +

1
0

 ΛT
fdiag

1
f

ij
r

 Λf + ΛT
fΨ

T η∇qS(·) ΨΛf,

∇h, fL � ΔT
h∇vt(v, ε)Δf + ΛT

hΨ
T η∇qS(·) ΨΛf,

∇2hL � ΔT
h∇vt(v, ε)Δh + ΛT

hΨ
T η∇qS(·) ΨΛh,

∇f,hL � ΔT
f∇vt(v, ε)Δh + ΛT

fΨ
T η∇qS(·) ΨΛh.

(37)
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Note that diag (1/fij
r ) is a diagonal matrix with 1/fij

r as
the diagonal element. Here, the perturbation ε corresponds
to the original production O in this problem. Δf and Δh are
the link/path incidence matrix corresponding to indepen-
dent equilibrated path flow fB and hB, respectively. Λf and
Λh are the O-D/path incidence matrix corresponding to fB

and hB, separately. Φ is the origin/O-D incidence matrix. Ψ
is the destination/O-D incidence matrix. *e superscript ‘T’
represents the transposed matrix. ‘I’ denotes the identity
matrix.*e link cost function, t(·), is strongly monotonically
defined in v, which guarantees the uniqueness of the
equilibrium solution.

*erefore, in the restricted problem, the derivatives of
the model solutions with respect to the input parameters are
produced by the following equation:

∇Ox � Jx 
− 1

−JO , (38)

where Jx is an invertible Jacobian matrix. According to the
restriction approach, the derivative, ∇Ox(ε), is first con-
ducted in the restricted problem, and then, ∇Ov, which is
defined in the original problem, will be obtained by

∇Ov � Δf∇Of
B

+ Δf∇Oh
B
. (39)

Equation (39) indicates that the variations on the link
flows can be just represented by the changes in the basic path
flows, which is the rationale of the restriction sensitivity
analysis approach. In addition, ∇Oq is also obtained by

∇Oq � Λf∇Of
B

+ Λf∇Oh
B
. (40)

In addition, the inverse of matrix Jx in equation (38) is
required to be worked out. To avoid the disadvantages of

deriving the whole inverse matrix directly, it is usually to
solve the corresponding linear equations as an alternative.
Hence, equation (38) is rewritten as

Jx · ∇Ox � −JO. (41)

*e abovementioned system of linear equations can be
solved efficiently by using the exiting solvers, such as the
Cplex or Matlab built-in functions. Besides, the well-known
block inversion formula can be used to incorporate with
iterative solution techniques for the system of linear
equations [31], ensuring that no matrix needs to be inverted
with large dimension.

3.3. An Adaptive Step-Size Method for SAB Algorithm.
*e analytical sensitivity expressions derived in the previous
section are essential to uncover the implicit relationships
between lower-level decision variables, (v, q), and upper-
level variables, O. With the derivatives, the bilevel model is
approximated as a single-level model using first-order
Taylor’s expansion at a solution point, i.e., O

∗
� f− 1(v∗, q∗).

Let v( O
∗
) and q(O

∗
) denote the solutions to the lower-level

model at O
∗
, respectively. *e implicit relationships can be

represented by using the Taylor expansion:

v( O) ≈ v O
∗

  + ∇Ov · O − tO
∗

 ,

q(O) ≈ q O
∗

  + ∇Oq · O − tO
∗

 ,
(42)

where the derivatives ∇Ov and ∇Oq are obtained from the
sensitivity analysis of the CTDTA model. *erefore, the
original bilevel problem will be approximated as

Max 
j∈J

Oj

s.t.

∇Ov

ρΨ · ∇Oq
⎡⎣ ⎤⎦ · O≤

C

k − ρΨ · e
  −

v∗

ρΨ · q∗
  +

∇Ov

ρΨ · ∇Oq
⎡⎣ ⎤⎦ · O

∗

O≥ 0.

(43)

Let O
n denote the solution of the abovementioned

linear programming problem. Since the auxiliary solution
O

n does not always satisfy the feasibility of the original
problem, so the solution is updated using the convex
combination of the solution in the last iteration, O

n (i.e., the
start point in this iteration), and the auxiliary solution, O

n,
which is given by

O
n+1 ≔ O

n
+ min

ζmax
O

n
− O

n



, 1

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
· O

n
− O

n
 , (44)

where ζmax ∈ (0, 1] is a predetermined maximum step size
that prevents the updated solution from moving too long.

( O
n

− O
n
) is the descent direction.*e value of ζmax could be

flexible. An adaptive scheme for ζmax will be suggested in the
large-scale problem for providing a step size sequence that
ensures the convergence.

4. Numerical Experiments

Numerical experiments are conducted in this section. In the
first example, we employ a small network, composed of 7
links and 6 nodes to demonstrate the proposed network
capacity model and, then, analyze the effect of parking
pricing and parking supply on the network capacity of the
road system. *e example network is shown in Figure 1.
*ere are 4 O-D pairs from the origin nodes 1 and 2 to the
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destination nodes 3 and 4. *e BPR function is used as the
link performance function, given by ta(va) � t0a[1+

0.15(va/Ca)4]. *e characteristics of all links in the network
are listed in Table 1. Table 2 gives the fixed demand in the
network. *e parameters related parking strategies at des-
tinations are listed in Table 3. Besides, the value of time η is
set to 1.0, and the dispersion parameter θ for destination
choice is set to 0.5.

4.1. Results of the NewModel. To show the advantages of the
proposed model, the result of the proposed model is
compared with the other network capacity models in the
literature [3, 4, 19, 24]. *e experiments are carried out on
the example in Figure 1. As the models in the literature on
this topic were conducted for different problems under
various backgrounds, it is inappropriate to compare the
results of these models directly.*erefore, we conclude three
situations from the literature: (1) without variable O-D
demand (i.e., the reserve capacity model in this paper); (2)
without variable destination cost; (3) without fixed O-D
demand.

For the situation without the variable O-D demand, the
reserve network capacity model [1] is modified by adding the
parking supply constraint. *e O-D flows are assumed to
grow following a fixed O-D distribution, and the effect of
traffic congestion and parking pricing at destination areas is
not involved. *e reserve capacity is the most classical
concept that has been widely applied for the assessment of
transportation network capacity. Such concept was used in
Asakura and Kashiwadani [19] and Leng and Yan [4]. *e
results of the reserve capacity model and the proposedmodel
are reported in Tables 4 and 5, respectively.

From the results in Tables 4 and 5, the network capacity
is to be 137.5 by the reserve capacity model, while it is
evaluated to be 222.35 by the proposed model. In both
models, flows on link 5 and link 6 reach the capacity, and the
links are the bottlenecks limiting the growth of the total
travel demand in the network. Besides, in the results of the
reserve capacity model, no parking facility is saturated;
however, in the results of the proposed model, the parking
capacity at destination 3 is fully used. *e network capacity
from the reserve capacity model is evidently lower than that
from the proposed model. It means the reserve capacity
tends to produce too conservative results [8], since it as-
sumes an unchangeable travel demand pattern. *e net-
work-wide travel demand will be restricted to continue to
grow if the flow on any individual link meets its capacity. By
contrast, the proposed model with the CTDTA model as the

lower level produces a changeable O-D demand pattern,
which is more practical. *us, a portion of travel demand
can adjust their travel destination according to the parking
cost and available space at the destination area. In this
example, the limits to the total demand come from the
capacities on link 5 and link 6, the parking capacity at
destination 3, and the restraint from the O-D travel cost (soft
constraint). Note that the variable travel demand does not
change the O-D distribution in a completely free manner.
*e O-D travel distribution should follow the logit share
model in equation (15), by which the destinations with lower
disutility will be assigned more travel demand for any origin
area, and vice versa.

For the situation without variable destination cost, the
O-D flows are assumed to grow with a variable O-D dis-
tribution, while the effect of traffic congestion at destinations
is not considered. Tam and Lam [3] employed this behavior
pattern for the maximum car ownership problem. For the
situation without the fixed O-D demand, all motorists are
considered to change their trip destination under the in-
fluence of traffic congestion (both from O-D travel cost and
destination cost) and parking management strategy. Tam
and Lam [3] and Xie et al. [24] used this assumption.

Figure 2 further compares the maximum demand pat-
terns of different network capacity models. *e above-
mentioned three situations are labeled as “Reserve
Capacity,” “Without Destination Cost,” and “Without Fixed
Demand.” *e O-D demand patterns of the models are
significantly different. Specifically, the differences are mainly
on the demands between O-D (1–3) and O-D (2–4). *e
maximum demand pattern from the “Reserve Capacity”
model is rather conservative, as it clearly follows the fixed
O-D demand (as a prescribed O-D demand) existed in the
network. Although O-D (1–3) and O-D (2–4) can be allo-
cated more travel demand, limited by the capacity on link 5
and link 6 (the vital links for O-D (2–3)), the total demand

5 6

(3)

(1)

(2)

(4)

(5)

(6)

(7)

1

2 4

3 P

P

Figure 1: An example network.

Table 1: Link characteristics of the example network in Figure 1.

Links 1 2 3 4 5 6 7
t0a 10 5 12 4 4 5 4
Ca 100 120 80 80 50 50 50

Table 2: Fixed travel demand in the network.

3 4 Oi

1 30 20 50
2 40 20 60
Dj 70 40 Total demand� 110

Table 3: *e parameters of parking strategy at destinations.

Destinations

Low-
occupancy
searching
time sj

c ω
Parking
pricing
πj

Parking
capacity

kj

Parking
rate ρj

3 2.0 1.0 2.0 4.0 100 0.75
4 3.0 1.0 2.0 5.0 80 0.75
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cannot increase further. On the other hand, without con-
sidering the effect of destination congestions (i.e., the
parking search time increases as the destination demand),
the network capacity is overestimated in the situation
“Without Destination Cost”. Note that the travel demands
between O-D (1–4) and O-D (2–4) are higher than those
from the results of the proposed model. *is reflects that,
without variable destination cost, the congestion effect at
destination 4 cannot be captured. Travelers will choose
destination 4 even though the congestion in this area is at a

high level (i.e., the parking search time could be very long),
which is unrealistic in real-life. Moreover, the situation
“Without Fixed Demand” assumes an extreme demand
pattern of maximum flow, in which the travel demand
between O-D (2–4) is much higher while the demand of O-D
(1–4) is lower compared with the other models. Such a
demand pattern means the commuters between O-D (1–4)
should be asked to give up their trips to increase the demand
between the other O-D pairs, which is also not realistic for
the urban transportation system.

Table 4: Results of the reserve network capacity model.

O-D
Demand types Destination demand

Links Link flow V/C ratio
Fixed demand Additional demand Destination Total trip attraction Parking demand

1–3 30 7.50 3 87.50 65.6 1 37.50 0.375
1–4 20 5.00 4 50.00 37.5 2 75.00 0.625
2–3 40 10.00 3 25.00 0.312
2–4 20 5.00 4 25.00 0.312
Total 110 27.50 5 50.00 1.000

6 50.00 1.000
7 25.00 0.500

Network capacity 137.50 (demand multiplier� 1.25)

Table 5: Results of the proposed road network capacity model.

O-D
Demand types Destination demand

Links Link flow V/C ratio
Fixed demand Additional demand Destination Total trip attraction Parking demand

1–3 30 53.33 3 133.33 100.0 1 83.33 0.833
1–4 20 6.91 4 65.13 48.85 2 26.91 0.336
2–3 40 10.00 3 38.21 0.478
2–4 20 18.21 4 50.00 1.000
Total 110 88.46 5 76.91 0.641

6 50.00 1.000
7 26.91 0.538

Network capacity 198.46

0

30

60

90
O-D (1–3)

O-D (1–4)

O-D (2-3)

O-D (2–4)

Fixed demand

Proposed model

Reserve capacity

Without destination cost

Without fixed demand

Limited by link 5 
& link 6

Limited by
destination 3 Limited by O-D 

travel costs

Figure 2: O-D demand pattern of maximum flow from different network capacity models.
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In Figure 2, the proposed model produces a moderate
result for network capacity assessment. Compared to the
“Reserve Capacity” model, the potential of the network
capacity by our model will be further developed between
O-D (1–3) and O-D (2–4) after link 5 and link 6 reach their
capacities. *e total demand will keep growing until the
parking capacity at destination 3 is violated. Besides, note
that the demand between O-D (1–4) does not increase much.
Because the travel cost between O-D (1–4) is significantly
larger than that between O-D (1–3), most variable travel
demands from origin 1 would like to choose node 3 as the
destination for noncommuting activities. As the demand
between O-D (1–3) cannot increase (limited by parking
capacity), the demand for O-D (1–4) will not grow either.
We find such restraint is caused by the travel cost difference
among O-D pairs, which is referred to be the soft constraint
as mentioned before. In conclusion, the proposed model can
capture a more comprehensive situation compared with the
models in the literature and, thus, is capable to better assess
the road network capacity problem.

4.2. Ce Effect of considering Parking Supply and Parking
Pricing. Based on the proposed network capacity model
incorporated with parking strategies, we analyze the effect of
parking supply and parking pricing on the network-wide
capacity in this section. For this purpose, we configure 6
scenarios listed in Table 6. *e base scenario is the same as
the example in Section 4.1. Scenarios 1 to 3 are associated
with the changes in parking supply strategies. Scenarios 4 to
6 are corresponding to the adjustment of the parking pricing
strategies at the destination areas.

4.2.1. Effect of Parking Supply. With the same parking
pricing strategy, the effect of the parking supply on the
network-wide capacity is analyzed. For Scenario 1 to 3, the
settings of the parking capacities and the results of the
network capacity model are reported in Table 7.

In Scenario 1, only the parking capacity at destination 3
is expanded (from 100 to 1000). Compared with the
base scenario, the total network capacity is increased
from 198.46 to 221.87. One of the binding (or active)
constraints changes from the destination 3 to link 1.
*is indicates that the total capacity in the base scenario
is limited by the parking capacity at destination 3.
Expanding the parking supply at such destination areas
can effectively enhance the network-wide capacity.
In Scenario 2, only the parking capacity at destination 4
is expanded (from 80 to 1000). However, the total
network capacity is not increased (it could appear as
unobvious changes in practice). It is because that the
parking supply at the destination constraint is still
active. Expanding the capacities on the other desti-
nations will have a small effect on the network-wide
capacity.
In Scenario 3, both the parking capacities at destination
4 and destination 5 are increased to 1000. It results in

the same total network capacity as Scenario 1. *is
means if the network-wide capacity should be en-
hanced, it only needs to deal with the destinations
whose capacity constraints are binding to the maxi-
mum total demand. *e investment on the nonbinding
parking supplies will have a marginal contribution to
the total network capacity. Note that all of the binding
constraints change to link capacities if the parking
capacities are enlarged sufficiently. *ere is no need to
expand parking capacities too much. On the other
hand, ignoring the parking supply capacity might
overestimate the capacity of the transportation
network.

4.2.2. Effect of Parking Pricing. By holding the parking
supply the same as the base scenario, the effect of the parking
supply on the network-wide capacity can be investigated.
*e settings of parking capacities, as well as the model re-
sults, through Scenario 4 to 6 are reported in Table 8.

In Scenario 4, we only raise the parking pricing at
destination 3 (from 4.0 to 8.0). However, the total
network capacity is enhanced significantly (increasing
to 240.0). Both destinations are saturated so the total
travel demand cannot increase anymore. Specifically,
the parking costs (consists of parking pricing and
parking search time) for destination 3 and destination 4
are changed from 8.00 to 9.12 to 12.00 and 11.00, re-
spectively. *is results in the growth in the proportion
of the travelers who choose node 4 as their destination.
Hence, the demand to destination 4 can further grow,
until the parking demand reaches the capacity.
In Scenario 4, we raise the parking pricing to 200% for
both destinations. *e total network capacity is de-
creased slightly.*e change of the parking pricing leads
to the redistribution of the O-D demand pattern.
According to the parking cost, a large proportion of
travelers (for variable demand only) tend to choose
destination 3. *erefore, the demand for destination 4
will not reach that level as the base scenario due to the
soft constraint on O-D (1–4) and O-D (2–4).
In Scenario 6, we increase the parking pricing with the
same amount (by 4.0). Based on our model, the net-
work capacity is unchanged despite the parking costs
change a lot. In practice, one may regard such

Table 6: Descriptions of scenarios.

Scenarios Description
0 Base scenario
1 Only expand parking capacity at destination 3
2 Only expand parking capacity at destination 4
3 Expand parking capacity at both destinations
4 Increase parking pricing at one destination only

5 Increase parking pricing at both
destinations in the same proportion

6 Increase parking pricing at both
destinations by the same amount
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adjustment of the parking pricing has little impact on
the network-wide capacity.

In summary, adjusting the parking pricing strategy for
selected destination areas will have an obvious influence on
the network capacity of the transportation system. How-
ever, increase the parking pricing at all destinations

together may result in a small effect for enhancing network
capacity. Note that the O-D pattern (or spatial distribution)
is the key to obtain a high network capacity. Figure 3 shows
the maximal O-D demand pattern for Scenario 4 and
Scenario 6. *e travel demand increases significantly on
O-D (1–4) and O-D (2–4). It indicates that Scenario 4

0

20

40

60

80

100
O-D (1–3)

O-D (1–4)

O-D (2-3)

O-D (2–4)

Significant
increasing

Fixed demand
Scenario 6
Scenario 4

Figure 3: O-D demand pattern of maximum flow for Scenario 4 and Scenario 6.

Table 7: Results of network capacity under different parking capacities.

Parking capacity (k3, k4)

Base scenario: (100, 80) Scenario 1: (1000, 80) Scenario 2: (100, 1000) Scenario 3: (1000, 1000)

Destinations Parking
demand

Total trip
attraction

Parking
demand

Total trip
attraction

Parking
demand

Total trip
attraction

Parking
demand

Total trip
attraction

3 100.00 133.33 112.50 150.00 100.00 133.33 112.50 150.00
4 48.85 65.13 53.90 71.87 48.85 65.13 53.90 71.87
Network
capacity 198.46 221.87 198.46 221.87

Binding
constraints∗

Capacities on link 5 and link 6∗∗
Parking capacity at

destination 3 Capacity on link 1 Parking capacity at
destination 3 Capacity on link 1

∗*e capacity limits of the maximum network throughput. ∗∗*e capacity constraints on link 5 and link 6 are active in all scenarios.

Table 8: Results of network capacity under different parking pricing strategies.

Parking pricing (π3, π4)
Base scenario: (4.0, 5.0) Scenario 4: <(8.0, 5.0) Scenario 5: (8.0, 10.0) Scenario 6: (8.0, 9.0)

Destinations Parking
demand

Parking
cost

Parking
demand

Parking
cost

Parking
demand

Parking
cost

Parking
demand

Parking
cost

3 100.00 8.00 100.00 12.00 100.00 12.00 100.00 12.00
4 48.85 9.12 80.00 11.00 42.98 13.87 48.85 13.12
Network
capacity 198.46 240.00 190.65 198.46
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results in a more proper O-D pattern to match the given
network with higher utilization, and thus, a better effect is
obtained on the network capacity compared with Scenario
6 (as well as Scenario 5).

4.3.Case Study in the Sioux-FallsNetwork. In this section, we
numerically test the network capacity model with parking
management strategies using the Sioux-Falls network
(https://github.com/bstabler/TransportationNetworks). *e
Sioux-Falls network is a highway network with 24 nodes, 76
links, and 528 O-D pairs. All 24 nodes are origin/destination
nodes. In order to test the network capacity model, we
assumed the fixed travel demand does not exceed the net-
work capacity. *erefore, the demand of all O-D pairs is
rescaled as 1/5 of the original data.

We considered three different parking management
strategies in the Sioux-Falls network: (1) unlimited

parking space and unified parking pricing for all desti-
nations; (2) limited parking space and unified parking
pricing at the destinations; and (3) limited parking space
and adjusted parking pricing at the destinations. For the
unlimited parking space situation, all destination areas are
assumed to have infinite parking capacity, so there is no
parking capacity constraint. For the limited parking space
situation, we considered each destination is assigned with
limited parking capacity. *e capacity constraints are
chosen according to the fixed demand in the network.
Specifically, destination 10 (with the most trip attraction
of the fixed demand) is assigned with 20,000 unit parking
capacity; destinations 11, 15, 16, 17, 20, and 22 are
assigned with 12,000 unit parking capacity; and the ca-
pacity of the other destinations is set to 10,000. For the
adjusted parking pricing situation, the parking fee at
selected destinations (destinations 3, 4, 10, 12, 16, 17, 20,
and 22) is raised from 5 to 7 (Dollars).
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Figure 4: Link utilization pattern of maximum flow with an unlimited parking space.
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*e network capacities are assessed by using the
proposed model associated with the abovementioned
three parking management strategies. *e link flow pat-
terns of the maximum flow are shown in Figures 4–6, from
which the link utilization patterns are illustrated. *e
width of a link represents its capacity. If a link is fully
utilized (when link capacity is reached), it will be marked
in red; otherwise, it will be in green. *e summarized
results of the network capacity assessment are presented
in Table 9. Figure 7 illustrates the parking demand at each
destination area corresponding to the three parking
management strategies.

According to the numerical results in Table 9, the
network capacity could be significantly overestimated
when the capacity constraints of the parking supply are
ignored. In the case of an unlimited parking space, as the

parking capacity is not considered, the total travel demand
is derived by only regarding the restraint of the link ca-
pacity. *e trip attraction at some destinations may go
unreasonably high. After involving the effect of the parking
capacity, the network-wide capacity has been reduced
much. As Figure 5 demonstrates, the number of saturated
links (colored in red) decreases, compared to Figure 4,
which indicates that the overall utilization of the network
goes down. On the other hand, there are many links with
low utilization (colored in green). *ese results can be
regarded as the realistic capacity of this network, by
considering the effect of the parking supply. Furthermore,
if the traffic managers want to enhance the network-wide
capacity with the limited road and parking supply re-
sources, the adjusted parking pricing strategies will be
recommended. By raising the parking fee at the selected
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Figure 5: Link utilization pattern of maximum flow with a limited parking space.
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destinations whose parking spaces have been in a saturated
situation, the network capacity will be increased further.
*is effect is consistent with the experimental results in

section 4.2.1. Figure 6 shows that the network utilization
will be increased compared to Figure 5, as the portion of the
green links is reduced. *erefore, adjusting parking pricing
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Figure 6: Link utilization pattern of maximum flow with limited parking space and adjusted parking pricing strategy.

Table 9: Summarized results under different parking management strategies in Sioux-Falls.

Parking management strategies Network
capacity

Binding capacity constraints
Link # Destination #

Unlimited parking space and
unified parking pricing 347,221.5 pcu/h 2, 4, 6, 9, 12, 16, 17, 19, 25, 29, 32, 34, 36, 39, 42, 46, 49,

52, 58, 61, 65, 69, 73, 75 (24 links) None

Limited parking space and unified
parking pricing 289,707.4 pcu/h 4, 9, 16, 19, 39, 42, 49, 65, 66, 69, 73, 75, 76 (13 links) 3, 4, 10, 12, 16, 17, 22 (7

destinations)
Limited parking space and adjusted
parking pricing 306,230.4 pcu/h 4, 12, 17, 19, 34, 39, 42, 46, 49, 61, 66, 69, 73, 76 (14

links)
1, 2, 5, 8, 10, 15, 16 (7

destinations)
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at the destination will be an effective strategy to promote
the road network capacity.

5. Conclusions

*is study proposed an extended road network capacity
model based on the transportation network capacity model
in [2]. In the extended model with a bilevel programming
formulation, the constraint and impact of parking supply
and parking pricing at each traffic zone (corresponding to
the travel destination) are involved to enhance the as-
sessment of the road network capacity for obtaining a more
reasonable result. *e parking supply is embodied as the
capacity constraint in the upper level and is employed in
the parking search time function for the CTDTA model in
the lower level. *e parking pricing is integrated into the
objective function of the lower-level model. For solving the
capacity model efficiently, we provided a sensitivity analysis
based (SAB) solution algorithm, in which the lower-level
CTDTA model is solved by a path-based solution algo-
rithm. From the numerical examples, we showed that the
proposed network capacity model is capable to capture the
effect of parking strategies on the O-D travel demand
pattern, which improves the reasonability of the network
capacity assessment result. *e experiments also demon-
strated that the parking supply is significant to restrain the
network-wide capacity. To expand the network-wide ca-
pacity, it is efficient to deal with the destinations whose
parking capacity is binding to the maximum travel de-
mand. Also, implementing different parking pricing ad-
justments at destination areas will be more effective by
raising the parking pricing at all destinations with a unified

standard. Future works will apply our proposed model to
real case studies. Also, it will be of interest to find the
optimal parking management scheme for expanding the
capacity of the given transportation network to the max-
imum level.
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