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Inclement winter weather such as snow, sleet, and freezing rain significantly impacts roadway safety. To assess the safety
implications of winter weather, maintenance operations, and traffic operations, various crash frequency models have been
developed. In this study, several datasets, including for weather, snowplow operations, and traffic information, were combined to
develop a robust crash frequency model for winter weather conditions. When developing statistical models using such large-scale
multivariate datasets, one of the challenges is to determine which explanatory variables should be included in the model. ,is
paper presents a feature selection framework using a machine-learning algorithm known as the Boruta algorithm and exhaustive
search to select a list of variables to be included in a negative binomial crash frequency model. ,is paper’s proposed feature
selection framework generates consistent and intuitive results because the feature selection process reduces the complexity of
interactions among different variables in the dataset. ,is enables our crash frequency model to better help agencies identify
effective ways to improve roadway safety via winter maintenance operations. For example, increased plowing operations before
the start of storms are associated with a decrease in crash rates. ,us, pretreatment operations can play a significant role in
mitigating the impact of winter storms.

1. Introduction

Inclement winter weather such as snow, sleet, and freezing
rain significantly impacts roadway safety. Every year, over
118,000 people in the United States are injured or killed due
to winter-weather-related vehicle crashes [1]. Crash fre-
quency models using Bayesian or negative binomial mod-
eling [2–4] have been developed to investigate the safety
implications of winter weather, maintenance operations,
and traffic operations. However, due to inherent correlations
among explanatory variables, conflicting results have been
reported. For example, Qin et al. [5] used Wisconsin
snowstorm and maintenance operation reports to develop a
crash frequency model. ,eir estimated negative binomial
model indicated that deploying more deicing material re-
duces the number of crashes, while deploying more salting
material increases crash rates. ,is finding exemplifies the

complexity and difficulty of using multiple data sources
when analyzing winter maintenance operations.

In this paper, winter weather crashes are aggregated by
storm and city in order to model the impact of winter
weather and maintenance operations on the expected crash
rate for a particular winter event. A feature selection
technique, called the Boruta algorithm [6, 7], is used to select
the most impactful among highly correlated explanatory
variables from a comprehensive dataset containing weather,
maintenance operations, and traffic information.

As agencies continue to move towards data-driven de-
cision-making, innovative data analytics are valuable for
working with large datasets. In particular, when developing
statistical models using large-scale multivariate datasets, one
of the challenges is to determine which explanatory variables
to include in the model. In this study, several datasets are
combined to examine the occurrence of winter-weather-
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related crashes, including weather (e.g., type, rate and du-
ration of precipitation, temperature, and visibility), snow-
plow operations (e.g., plow frequency and material
spreading rate), and traffic information (e.g., traffic volume).
Some variables in these datasets are inherently correlated.
For example, snowplow operations usually depend on the
severity of winter storms and type of precipitation.

,is paper proposes a framework for identifying which
of highly correlated explanatory variables should be selected
to develop a robust winter-weather-related crash frequency
model. In particular, it adopts the Boruta algorithm to
calculate the importance of each variable using a random
forest wrapper. Based on relative importance scores, a set of
variables is selected to be included in the negative binomial
model. ,is feature selection process helps to create a robust
crash frequency model for winter-weather-related crashes.

2. Literature Review

Past studies have shown that winter storm events generally
increase the crash rate while winter maintenance operations
tend to reduce the crash rate. Nixon and Qiu conducted a
meta-analysis of studies that quantified the impact of
weather on traffic crashes and found that the crash rate
increases by 84% and the injury rate increases by 75% with
snow conditions. Nixon and Qiu [8], on the other hand,
showed an average reduction of 78% in crash rate on
freeways and 87% on two-lane undivided highways due to
salting. Earlier studies like these are usually based on hourly
traffic count and weather data, as well as manually main-
tained winter storm records.

However, with the wide adoption of sensing, GPS
tracking, and communication technologies in recent years,
state agencies are now collecting more detailed and granular
data. For example, today most state departments of trans-
portation (DOTs) collect traffic volume and speed data using
in-pavement or roadside sensors at 20-second to 5-minute
aggregation intervals. Many agencies have also deployed
cameras, sensors, and GPS tracking devices on snowplow
trucks to collect location and operational data at subminute
intervals [9, 10]. With these new data sources, researchers
are again attempting to assess the effect of winter mainte-
nance operations on mobility and safety in order to provide
guidance for more effective maintenance operations [11–13].

As researchers begin to face larger and more complex
datasets, the ability to identify meaningful relationships
from such datasets becomes more important. Machine
learning has been commonly applied in the transportation
field when attempting to model and predict crashes, but
usually with only minimal variable filtering [14–16]. While
machine learning for feature selection has been done in
other fields, its use in the transportation sector is nearly
nonexistent. Feature selection, however, has been used with
success when analyzing variables in evacuation behavior
modeling and in determining gully erosion factors [17, 18].
In particular, the Boruta algorithm has been shown as an
effective method for feature selection. For example, Prasad
et al. [19] used the Boruta feature selection algorithm to
provide a trimmed list for their extreme learning machine

(ELM) model to study weekly soil moisture. Similarly, to
select optimal random forest predictive models for seabed
hardness, Li et al. [20] compared five feature selection
methods and recommended the averaged variable impor-
tance and Boruta algorithms as producing the most accurate
predictive models. Various other studies have also found the
Boruta method to produce accurate and stable results
[6, 7, 21]. Based on the success of such past applications, this
paper adopts the Boruta feature selection algorithm to select
variables in a winter-weather-related crash frequency model.

3. Data Description

,is paper analyzes winter weather events in eight major
cities across Iowa. Geographic-based analysis is a commonly
used method for aggregating winter weather data [2, 22]. For
each city, a list of winter storm events was compiled. All
relevant data were then associated with each storm based on
the location and time stamp, as shown in Figure 1.

,e scope of this study encompassed two winter seasons
from November 2016 to May 2017 and fromNovember 2017
to May 2018.

,e Iowa DOT operates and maintains all of the In-
terstates, US highways, and state highways across Iowa. Only
data pertaining to these Iowa DOTmaintenance routes were
analyzed for this study. A list of compiled variables from
across the study’s data sources can be seen in Table 1.

3.1. Roadway Data. ,e Iowa DOTmaintains and provides
roadway information via the Roadway Asset Management
System (RAMS). ,e RAMS provides the geometric and
operational features of the roadway such as the number of
lanes, roadway surface type, and speed limit. In conjunction
with the RAMS database, the Iowa DOT provides a Linear
Reference System (LRS). An LRS is a mile reference system
for each unique route. By selecting any location along the
Iowa DOT maintenance routes; therefore, users can link
their selected location’s LRS mile marker reference to the
RAMS database. Additionally, the LRS provides a means to
combine any other data that can be linked to the roadway
system, such as crashes and snowplow locations.

Each city contains some Iowa DOT maintenance
roadways. ,erefore, the current study’s road miles variable
is the length of the Iowa DOTroadway network within each
city’s boundary (Table 2). ,e lane miles variable accounts
for each Iowa DOT roadway’s number of lanes, thus pro-
viding an indicator of the scale of the Iowa DOT’s roadway
surface area in each city.

3.2. Traffic Data. ,e Iowa DOT has over 900 Wavetronix
sensors placed throughout the state. ,ese sensors collect
traffic speed, occupancy, and volume data that are archived
at 5-minute aggregation intervals. Most of these sensors are
located in urban areas. Using Wavetronix sensor data in lieu
of annual average daily traffic (AADT) provides more ac-
curate traffic counts as roadway volumes can vary greatly
during winter storm events [23].
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Figure 1: Associating multiple data sources related to a winter storm.

Table 1: Combined dataset variable descriptions.

Variable Description (units)
AVLRecords ,e number of 5-minute AVL records (count of records)
AVL_Hours Hours of AVL operations (hours)

AfterRecords ,e number of 5-minute AVL records from the end of the snow event to the end of the
plowing event (count of records)

BeforeRecords ,e number of 5-minute AVL records from the start of the plow event to the start of the
storm event (count of records)

Exposure Calculation for vehicle volume (exposure)
FreezingRain ,e amount of freezing rain in the storm event (inches)
HourPrecipitation ,e hourly rate of precipitation (inches/hour)

LaneLaps ,e amount of truck distance traveled divided by the total roadway distance in the city (lane
mile laps)

Laps ,e amount of truck distance traveled divided by the length of roadways in the city (laps)
LnExposure ,e natural log of the exposure variable
PCPN Total precipitation (inches)

RecordsBefore ,e number of 5-minute record counts from before the start of the storm event (count of
records, before)

RoadCondition ,e aggregate road condition for the storm event (1 to 5 categorical, 1� � least severe
conditions, 5� �most severe conditions)

Snow ,e total snow in the storm event (inches)
StormHours ,e number of hours that the storms lasted (hours)
StormRecords ,e number of 5-minute counts that the storm lasted (count of records)
TemperatureFah ,e average temperature of the storm (Fahreneit)
TemperatureFahASOS ,e average temperature of the storm from the ASOS system (Fahreneit)
TemperatureFahRWIS ,e average temperature of the storm from the RWIS system (Fahreneit)
TotalDistLiquid ,e total distance of truck travel while spreading liquid material (miles)

TotalDistLiquidBefore ,e total distance of truck travel while spreading liquid material between the start of the
plow event and storm event (miles)

TotalDistPrewet ,e total distance of truck travel while spreading prewet material (miles)

TotalDistPrewetBefore ,e total distance of truck travel while spreading prewet material between the start of the
plow event and storm event (miles)

TotalDistSolid ,e total distance of truck travel while spreading solid material (miles)

TotalDistSolidBefore ,e total distance of truck travel while spreading solid material between the start of the
plow event and storm event (miles)

TruckDisPerLanMile ,e total distance of truck travel divided by the amount of lane miles in each city (miles per
lane mile)

TruckDisPerLanMileBefore ,e total distance of truck travel divided by the amount of lane miles in each city before the
start of plow operations (miles per lane mile before)

TruckDisPerLanMileMinute ,e total distance of truck travel divided by the amount of lane miles in each city divided by
the number of minutes of the storm (miles per lane mile per minute)

TruckDisPerLanMileMinuteBefore ,e total distance of truck travel divided by the amount of lane miles in each city divided by
the number of minutes of the storm before the start of the storm event

TruckDistMiles ,e total truck distance driven (miles)
TruckDistMilesBefore ,e total truck distance driven before the storm (miles before)

TruckLiquidPerLanMile ,e total amount of liquid spread divided by the amount of lane miles (gal per mile per lane
mile)
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Table 1: Continued.

Variable Description (units)

TruckLiquidPerLanMileBefore ,e total amount of liquid spread divided by the amount of lane miles before the storm
event (gal per lane mile before)

TruckLiquidPerLanMileMinute ,e total amount of liquid spread divided by the amount of lane miles divided by the total
minutes of the storm (gal per lane mile per minute)

TruckLiquidPerLanMileMinuteBefore ,e total amount of liquid spread divided by the amount of lane miles divided by the total
minutes of the storm before (gal per lane mile per minute before)

TruckMaterialLiquid ,e total amount of liquid spread (gal)
TruckMaterialLiquid.Distance ,e total amount of liquid spread divided by the distance traveled (gal/mile)

TruckMaterialLiquid.DistanceBefore ,e total amount of liquid spread divided by the distance traveled before the storm event
(gal/mile)

TruckMaterialLiquidBefore ,e total amount of liquid spread before the storm (gal before)

TruckMaterialLiquidDistance.Distance ,e total amount of liquid material spread divided by the distance traveled only while
spreading occurred (gal/mile, of spreading miles traveled only)

TruckMaterialLiquidDistance.DistanceBefore ,e total amount of liquid material spread divided by the distance traveled only while
spreading occurred before (gal/mile, of spreading miles before traveled only)

TruckMaterialPreLiquid ,e total amount of preliquid spread (gal)
TruckMaterialPreLiquid.Distance ,e total amount of preliquid spread divided by the distance traveled (gal/mile)

TruckMaterialPreLiquid.DistanceBefore ,e total amount of preliquid spread divided by the distance traveled before (gal/mile
before)

TruckMaterialSolid ,e total amount of material solid spread (lbs)

TruckMaterialSolid.Distance ,e total amount of solid material spread divided by the total truck distance traveled (lbs/
mile)

TruckMaterialSolid.DistanceBefore ,e total amount of solid material spread divided by the total truck distance traveled before
(lbs/mile, before)

TruckMaterialSolidBefore ,e total amount of solid material spread before the storm (lbs, before)

TruckMaterialSolidDistance.Distance ,e total amount of solid material spread divided by the truck distance that was traveled
only while spreading occurred (lbs/mile, of mile traveled while spreading)

TruckMaterialSolidDistance.DistanceBefore
,e total amount of solid material spread divided by the truck distance that was traveled
only while spreading occurred before the storm (lbs/mile, of mile traveled while spreading,

before)

TruckPreLiquidPerLanMile ,e total amount of preliquid material spread divided by the length of lane miles (gal/lane
mile)

TruckPreLiquidPerLanMileMinute ,e total amount of preliquid material spread divided by the length of lane miles divided by
the total minutes of the storm (gal/lane mile per minute)

TruckSolidPerLanMile ,e total amount of solid material spread divided by the length of lane miles (lbs/lane mile)

TruckSolidPerLanMileBefore ,e total amount of solid material spread divided by the length of lane miles before the
storm (lbs/lane mile, before)

TruckSolidPerLanMileMinute ,e total amount of solid material spread divided by the length of lane miles divided by the
total minutes of the storm (lbs/lane mile per minute)

TruckSolidPerLanMileMinuteBefore ,e total amount of solid material spread divided by the length of lane miles divided by the
total minutes of the prestorm plow operations (lbs/lane mile per minute, before)

Visibility ,e total visibility (miles)
WindGust ,e max wind recorded (mph)
WindSpeed ,e average wind speed (mph)
WindSpeedKnots ,e average wind speed (knots)
WindSpeedKnotsASOS ,e average wind speed obtained by the ASOS system (knots)
WindSpeedKnotsRWIS ,e average wind speed obtained by the RWIS system (knots)

WorstFreezingRain ,e worst intensity of freezing rain (score of 1–3 categorical variables, 1� � least severe,
3� �most severe)

WorstRoadCondition ,e worst road condition (1 to 5 categorical variables, 1� � least severe conditions,
5� �most severe conditions)

WorstSnow ,e worst snow intensity recorded (score of 1–3 categorical variables, 1� � least severe,
3� �most severe)

WorstVisibility ,e lowest visibility recorded (miles)

City ,e city location of the storm event (Ames, Des Moines, Council Bluffs, Sioux City,
Waterloo, Iowa City, Quad cities, Cedar Falls)

Note: the acronym “PLM” stands for per lane mile.
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,e average vehicle count (AVC) represents the average
count of vehicles present at each Wavetronix sensor. AVC is
calculated as follows:

AVC � 􏽘(vehicle counts for all sensors)÷ number of sensors

÷ number of 5 − minute intervals of the storm.

(1)

In essence, a city’s total count of traffic volume is divided
by its number of sensors (see Table 3) and then divided by
the number of 5-minute intervals throughout the duration of
a storm. Because the sensor data are aggregated over just 5
minutes, this essentially provides the expected count of
vehicles at each portion of the roadway for the entirety of the
storm.

,e resulting average traffic volume based on Wave-
tronix sensor counts and the road miles variable together
provide an “exposure” count:

Exposure � AVC∗RoadMiles. (2)

3.3. Automatic Vehicle Location (AVL)Data. ,e Iowa DOT
has over 900 snowplow trucks spread throughout 101 ga-
rages. Each snowplow’s automatic vehicle location (AVL)
system records the date and time, longitude and latitude,
traveling speed, plow position (up vs. down), and material
spreading rates at approximately a 10-second refresh rate.
,ree types of spreading rates are recorded, namely, solid
rate, prewet rate, and liquid rate. Four types of plow wing
records are available, namely, front plow, left wing, right
wing, and underbelly plow.

A snowplow’s capacity is 12,000 lbs for single-axle trucks
and 24,000 lbs for tandem-axle trucks. Its spreading rate is
approximately 200 lbs per lane mile for solid material and 60
gallons per lane mile for liquids. Its travel speed when
plowing and spreading material is about 30 miles per hour.
Its deadheading speed can be as high as the speed limit.

Earlier works have used ratios such as the total material
spread normalized per precipitation event to examine the
safety implications of snowplow operations [11]. As past
works have had difficulties in showing conclusive results, we
created an extensive list of ratios as candidate predictors for
the impact of maintenance operations on crash rates. Ad-
ditionally, our snowplow variables needed to be normalized
per geographic region to facilitate appropriate comparison.

,is was done by dividing the material spread by the
roadway surface area (i.e., lane miles). Again, Table 1
contains our full list of variables.

3.4. Weather Data. ,is study’s weather data were obtained
from the Iowa Environmental Mesonet system, which
provides highly granular weather data across Iowa. ,is
Multiradar/Multisensor (MRMS) project combines infor-
mation from many sources and radar systems to provide
precise weather information for 1-by-1-mile grid areas. ,e
weather variables for each grid area include air temperature,
wind speed, hourly and minute-based precipitation, daily
snowfall, precipitation type, and so forth. Additionally, we
rated the intensity of the precipitation and weather on a scale
of 0 to 3, with 3 being the worst. When analyzing the data for
winter storm events, such ratings are used to determine the
intensity of a given storm.

4. Crash Data

,is study’s crash data were obtained from the Iowa DOT
crash database. ,e crash data include information such as
the location, time, crash severity, direction of travel, lighting
conditions, and weather conditions that potentially con-
tributed to the crash. In particular, the following data fields
describe what weather conditions may have contributed to
each crash as well as what the road surface conditions were
like at the time of the crash:

(i) Environmental contributing circumstances
(ii) Weather1 (dominant weather condition)
(iii) Weather2 (secondary weather condition)
(iv) Surface conditions

Since this study focuses on winter weather crashes, a
filter was used requiring a winter weather condition present
for any of the four weather-related data fields for a crash to
be considered as a winter weather crash. After filtering based
on weather conditions, there were 5,089 winter-weather-
related crashes along the Iowa DOT maintenance routes
from 2016 to 2018. When counting only crashes that oc-
curred within this study’s geographic analysis regions and
that could be linked to the LRS mile reference system, only
1,372 crashes remained.

Table 2: Roadway miles breakdown by city.

City Road miles Lane miles
Ames 142 285
Cedar Rapids 199 439
Council Bluffs 153 359
Des Moines 624 1380
Iowa City 227 563
Sioux City 218 517
Davenport 279 597
Waterloo 232 482

Table 3: Number of Wavetronix sensors in each city.

City Number of Wavetronix sensors
Ames 82
Cedar Rapids 163
Council Bluffs 151
Des Moines 289
Iowa City 78
Sioux City 92
Davenport 46
Waterloo 61
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5. Methodology

Different from previous safety analyses, this paper presents a
model development process based on the feature selection
method. Figure 2 summarizes this process. First, data from
multiple sources are combined into a single dataset. Next, a
ridge regression test is performed to determine the suit-
ability of the data for analysis. If the test fails, the Boruta
feature selection method is applied to trim the dataset before
retesting. Once the data are determined to be suitable, an
exhaustive search function is performed to produce a final
trimmed list of explanatory variables. At this stage, the user
can select the policy relevant variables to be included in the
final model.

5.1.Data Integration. As the first step in our methodological
framework, data from different sources are integrated based
on the spatial and temporal information associated with
each record. In particular, a geofence was created for each
city to filter its weather, snowplow, crash, and traffic data.
,en, the weather data were analyzed to identify a list of
winter storm events for each city. In particular, any time
period below 41 degrees with precipitation that lasted longer
than 30 minutes was considered a winter storm event. Based
on this geofence and storm event timing, relevant snowplow
and crash data were extracted.

For each winter storm event, the snowplow data were
separated into three time periods, that is, before, during, or
after the storm. Making this distinction is important be-
cause many agencies, including the Iowa DOT, deploy
operations before the start of a storm, and many are unable
to properly clear their roadways within the timeframe of
storms. Using our geofence, therefore, a list of snowplows
in operation during each storm was created. For each
snowplow, its continuous hours of operation were com-
piled. A continuous operation was defined as a snowplow in
operation with a time gap of no more than 2 hours. Each
snowplow’s start- and end-of-continuous-operation
timestamps were then used to distinguish its before-storm,
during-storm, and after-storm plow data. Each storm
event’s before-storm aggregation thus constituted the time
from the beginning of any of its snowplow operations to the
start of the storm. Its during-storm aggregation was from
the start to the end of the winter storm. Its after-storm
aggregation was from the end of the storm to the end of all
plow operations.

5.2. Ridge Regression Test. Ridge regression cross-validation
is employed to determine dataset suitability for analyses such
as exhaustive search. Ridge regression tunes the parameters
of a model to minimize the ordinary least squares [24]. It
outputs an expected coefficient for each variable via differing
model tuning or lambda penalizations. Lambda penaliza-
tions tend to tune variables to a model coefficient value of 0.
When lambda has beenmaximized, all possible variables will
produce a coefficient of 0. ,at is, varying lambda between 0
and 1 will produce a model that removes only a portion of
the input variables. By imposing lambda penalizations, ridge

regression can provide a best-case tradeoff between bias (i.e.,
training set accuracy) and predictive variance (i.e., testing set
accuracy). Ridge regression successively penalizes different
variables’ coefficients down to zero using lambda and
compares the performance of its resulting model variants.
,is process effectively removes unimportant variables from
a model as it helps identify the important variables in the
dataset as well as the expected model outputs. Tracking
expected model outputs as model complexity changes can
provide insight into how data interact.

Normally, all variables in a dataset are presented in one
ridge regression plot. However, to better show how the
variables in our dataset interact, we split our many variables
into groups based on their deviance away from lambda and
plotted them accordingly in six subfigures (Figure 3). Each
curve represents a variable from the dataset. ,e y-axis is the
expected coefficient of each respective variable. Moving from
left to right along the x-axis, the model becomes more
complex as more variables move away from 0.

As more variables interact, it is expected that their es-
timated coefficients will vary. Most variables maintain a
coefficient either above or below the x-axis, indicating a
positive or negative relationship, respectively. Some vari-
ables, however, experience drastic and highly erratic be-
havior where they start with a positive coefficient and then
drop to a negative coefficient as the model becomes more
complex or vice versa. For example, the variable “Road-
Condition” has a positive coefficient that increases as more
variables are added. ,is is an acceptable change in an es-
timated coefficient. On the other hand, the variable
“TruckDisPerLanMileMinute” is the total distance of
snowplow trucks travel divided by the total lane miles in a
given city divided by the number of minutes of a given
storm. On the left-hand side, where the model is the least
complex, the variable has a positive coefficient. As the model
becomes more complex as more variables are added, this
coefficient changes from positive to negative. In other words,
depending on what other variables are included in the

Data integration

Ridge regression test

Pass Fail

Boruta feature
selection method

Exhaustive search
function

Final model creation

Figure 2: Methodological framework.
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model, the coefficient of this variable can be positive or
negative. ,is explains why inconsistent results have been
observed when analyzing similar datasets in the past. In the
ridge regression test, however, having variables that cross
over the x-axis constitutes a failure indicating that feature
selection is required.

5.3.BorutaFeatureSelection. If the ridge regression test fails,
the Boruta feature selection method is applied to trim the
dataset. ,e Boruta method creates an importance score for
each variable [6, 7]. In particular, a random forest wrapper
classification is employed on the variables. In the process, the
variables are shuffled, while random shadow variables are
created. ,e shadow variables are meant to identify inef-
fective input variables. To do so, each variable, as well as the
random shadow variables, is assigned a relative importance
score. Any variable that scores worse than the worst shadow
variable will prove to be ineffective while variables that score
higher than the highest shadow variable will be highly ef-
fective variables.,ese final importance scores are then used
to create a set of noncorrelated data points.

,e Boruta algorithm enables the development of a
hierarchal list of variables ranked in terms of importance.
,ese importance values can then be used to select which

explanatory variables should be included in statistical
models. For better visualization, we split our variables into
two groups, namely, the AVL variables shown in Figure 4
(and whose ranked IDs are matched in Table 4 to the re-
spective variables they represent), and the traffic and weather
variables, as shown in Figure 5. Figure 4 displays all the AVL
variables with their respective ID numbers with variable 1 on
the right moving in descending order to the left to variable
46 on the left.

,e blue star variables represent the random shadow
variables. Any variable that has a higher importance score
resides to the right of these shadow variables and is colored
green or yellow. Any variables between the two blue boxes
are of negligible importance and are either red or yellow.

When creating statistical models, only one variable from
a group of highly correlated variables should be included.
Because large datasets are likely to contain many groups of
highly correlated variables, manual feature selection is
usually inefficient. ,e Boruta importance scores allow the
highest-ranking variable from each correlated group to be
selected, in order to create a trimmed list of noncorrelated
variables. For example, in Figure 4, the highest-ranking
variable was “AVLRecords.” Any variable in the AVL
grouping that contained a high correlation with the
“AVLRecords” variable (i.e., above 0.70) was therefore
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Figure 3: Ridge regression cross-validation.
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dropped from further consideration. ,e next variable was
then considered until all highly correlated variables had been
dropped. ,e resulting remaining list of variables was
neither correlated nor displayed conflicting results from the
ridge regression test. ,at is, as shown in Figure 6, none of
these remaining variables display the erratic or unpredicted
behavior as seen in Figure 3. ,us, our trimmed dataset
listed in Table 5 is appropriate for estimating a negative
binomial model. In other words, no matter which set of
variables from the trimmed dataset are included in the final
model, the results will be robust.

6. Exhaustive Search Function

To determine which of these trimmed variables should be
included in our negative binomial model, an exhaustive
search function was performed. ,e exhaustive search
function calculates the expected outcome of each model

12345678910111213141516171819202122232425262728293031323334353637383940414243444546

Figure 4: ,e importance scores of AVL variables.

Table 4: Boruta ranking of AVl variables.

ID Variable
1 AvlRecords
2 Solid_PLM_Minute
3 Solid.Distance
4 DistMiles
5 Solid_PLM_
6 Solid
7 TotalDistSolid
8 SolidDistance.Distance
9 Dis_PLM_Minute
10 Solid_PLM_MinuteBefore
11 Laps
12 AfterRecords
13 Dis_PLM_
14 LaneLaps
15 BeforeRecords
16 RecordsBefore
17 PreLiquid_PLM_MinuteBefore
18 Liquid_PLM_Minute
19 Dis_PLM_MinuteBefore
20 PreLiquid_PLM_
21 Liquid_PLM_
22 DistMilesBefore
23 LiquidDistance.Distance
24 TotalDistLiquid
25 Solid.DistanceBefore
26 Liquid
27 Shadow Max
28 PreLiquid.Distance
29 TotalDistPrewet
30 Solid_PLM_Before
31 SolidBefore
32 Liquid.Distance
33 TotalDistSolidBefore
34 TotalDistPrewetBefore

Table 4: Continued.

ID Variable
35 SolidDistance.DistanceBefore
36 Dis_PLM_Before
37 TotalDistSolidBefore
38 PreLiquid
39 LiquidBefore
40 Liquid_PLM_MinuteBefore
41 Liquid.DistanceBefore
42 PreLiquid.DistanceBefore
43 Liquid.DistanceBefore
44 Shadow Mean
45 LiquidDistance.DistanceBefore
46 Shadow Min
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based on the input variables and ranks it according to “R-
squared” score or another specified criterion. For this
analysis, our trimmed list of variables was used as the input
for the exhaustive search function.

,e highest criteria scores, that is, the highest adjusted R-
squared scores, are reported in Figure 7.,emaximum score
is represented at the top of the Figure 7 graph along the y-
axis. ,e x-axis resides the final set of variables selected from
the trimmed dataset, or the variables displayed in Table 5.
Each row represents a unique model’s combination of
variable inputs, with the solid black cells indicating which
variables are included for that specific model. When using
the “regsubsets” package, as was used here, the default
setting is that only the highest-ranking model for each
varying number of input variables is displayed. For example,
only 1 model with all 17 variables is displayed, along with
only 1 model with 16 variables, and so on. ,is method
shows how model accuracy changes as the input variables
themselves change.

It can be seen in Figure 7 that the adjusted R-squared
values of the top 7 rows are within 0.03 of each other. In
other words, although the variables included in these models
may differ, any of the top 7 rows of variables will provide
accurate, reliable, and consistent results. ,is accords with
the results from Figure 6 where none of these variables
experienced a large swing in its coefficient based on com-
plexity. Having multiple reliable model options allows re-
searchers to include in their final model whichever set of
variables are most policy relevant. Because this method only
displays the highest scoring model for each number of
variable inputs, there are many existing combinations of
variables that will score approximately in the 0.4 range.

6.1. Final Model Creation. Once our final selection of var-
iables had beenmade, a negative binomial model was used to
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Figure 5: ,e importance scores of weather and traffic variables.
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Figure 6: Ridge regression of trimmed variables.

Table 5: List of the trimmed variables.

ID Variable
1 (Intercept)
2 LnExposure
3 RoadCondition
4 StormHours
5 TemperatureFahASOS
6 WindSpeedKnots
7 WorstFreezingRain
8 WorstSnow
9 WorstVisibility
10 AVLRecords
11 Solid_PLM_Minute
12 SolidDistance.Distance
13 Solid_PLM_MinuteBefore
14 AfterRecords
15 BeforeRecords
16 LiquidDistance.Distance
17 PreLiquid.Distance
18 SolidDistance.DistanceBefore
Note: see Table 1 for the definition of each variable.
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estimate crash frequency [25, 26]. ,e negative binomial
model is written as in equation (1) using a fixed over-
dispersion parameter [27]:

Yi ∼ NB μi, α( 􏼁, (3)

where Yi is the number of crashes during a winter storm
event i, (i � 1, . . . , n), μi stands for the mean crash fre-
quency, and α is the overdispersion parameter.

It is assumed that μi is a function of explanatory variables
such that

μi �exp β0 + β1xi1 + β2xi2 + · · · + βkxik(

+ βik+1Ln Average Exposurei( 􏼁 􏼁,
(4)

where xij represents the jth variable in event i.
β0, β1, . . . , βk+1 is a vector of regression parameters. As
mentioned earlier, since the number of crashes is count data,
to make it comparable across different events, the
Ln(Exposurei) variable was devised as the offset variable in
our negative binomial model.

7. Results and Discussion

Our final negative binomial model, presented in Table 6,
includes variables from the top row of Figure 7. ,e “Pr
(>|t|)” column provides a visual indicator of each variable’s
significance (i.e., “P value” below 0.05). Noted that “Liq-
uidDistance.Distance” and “SolidDistance.DistanceBefore”
variables were dropped in the final model. As seen from the
R-squared score, no significant difference in performance
was observed. Because of the selection process and valida-
tion, such adjustments based on researchers’ judgement will
not impact model integrity as seen in Table 5 and Figure 6.

As expected, with “LnExposure” (i.e., vehicle count) and
“Worst Snow,” the higher the number, meaning more traffic

or worse weather, the higher the expected crash frequency.
,e “AVLRecords” and “AfterRecords” variables signify that
the more time snowplows are operating during and after a
storm event, the higher the crash rate. ,is is probably
because storms only mildly impacting roadway conditions
do not require as much plowing effort as storms that severely
impact roadway conditions. Note that the “RoadCondition”
variable is not significant in the estimated model. ,is is
because the limited number of Road Weather Information
System (RWIS) sensors across the study area resulting in
inadequate measurements of road weather conditions.
,erefore, frequent snowplow operations can be considered
as indicative of rapid degradation of roadway conditions.

,e “Solid_PLM_Minute” variable represents the total
amount of solid material spread divided by the total lane
miles per minute of the storm event, i.e., how much material
was spread on the roadway surface every minute during the
storm.,is variable has a positive coefficient, indicating that
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Figure 7: Adjusted R2 exhaustive search output.

Table 6: Crash frequency model.

Coefficients Estimate Std. Error P

value
Pr

(>|t|)
(Intercept) −17.58 4.36 −4.03 0.00 ∗∗∗
LnExposure 1.42 0.60 2.35 0.02 ∗
RoadCondition 0.59 0.68 0.87 0.39
WorstSnow 5.38 1.33 4.05 0.00 ∗∗∗
WorstVisibility 0.21 0.15 1.36 0.18
AVLRecords 0.04 0.01 4.85 0.00 ∗∗∗
Solid_PLM_Minute 21.87 9.07 2.41 0.02 ∗
Solid_PLM_MinuteBefore −11.90 3.81 −3.12 0.00 ∗∗
AfterRecords 0.03 0.01 1.96 0.05 ·

R-squared 0.4359
F-statistic 18.35 on 8 and 190 DF
Significance codes: 0 “∗∗∗”; 0.001 “∗∗”; 0.01 “∗”; 0.05 “·”.
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the more solid material spread per lane mile per minute
during snow events leads to a higher crash rate. ,is variable
essentially represents the intensity of material spreading
during a storm. In ideal conditions, agencies could plan for
storm events and have the roadways treated with deicing
material before the start of storms to limit degradation in
roadway conditions. However, when storms are more severe,
or they are flash storms that appear before proper pre-
treatment operations can take place, agencies might have to
spread more materials during the storm, leading to a higher
rate of spreading once the storm has begun.,is may explain
why a higher spreading rate per minute is associated with a
higher crash rate.

,e final variable, “Solid_PLM_MinuteBefore” repre-
sents the solid material spread per lane mile per minute
before the storm starts. ,is variable has a negative coeffi-
cient, meaning that the more solid material spread before the
start of the storm, the lower the crash rate. ,is suggests that
proper planning can inhibit the degradation of conditions
on the roadway. In turn, this will lower the amount of
material needed during the storm event. In addition, past
research has shown that a higher proportion of crashes occur
at the beginning of a storm event [5]. ,erefore, by miti-
gating the adverse conditions at the beginning of the storm
event, a greater impact on the crash rate reduction can be
achieved.

8. Conclusion

When working with large datasets including variables with
complex interactions, agencies and researchers must find
ways to perform effective analysis while also being able to
present the results in a way that can be easily understood.
,is paper presents a framework for selecting variables from
a complex and highly correlated dataset to develop a sta-
tistical model describing crash frequency in winter weather
conditions. In particular, a machine-learning algorithm,
known as the Boruta algorithm and exhaustive search are
used to select a list of variables to be included in the final
negative binomial crash frequency model. ,is method
provides consistent and intuitive results because the process
reduces the complexity of interactions amongst different
variables in the dataset.

By following this process, the current paper developed a
crash frequency model for winter-weather-related crashes.
,is model can help agencies identify effective ways to
improve roadway safety via winter maintenance operations.
For example, by increasing the plowing operations before
the start of storms, a decrease in crash rates is observed.
Previous works have shown that the beginning of a winter
storm carries the highest proportion of crash events com-
pared to any other point during the event [5, 13]. ,us,
pretreatment operations could have a significant role in
mitigating the impact of winter storms.
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Conflicts of Interest

,e authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

,is research was funded by the Traffic Safety Improvement
Program (TSIP) of Iowa Department of Transportation.

References

[1] Federal Highway Administration (FHWA), Road Weather
Management Program, Federal Highway Administration
(FHWA), Montgomery, AL, USA, 2020, https://ops.fhwa.dot.
gov/weather/weather_events/snow_ice.htm.

[2] T. Usman, L. Fu, and L. F. Miranda-Moreno, “Quantifying
safety benefit of winter road maintenance: accident frequency
modeling,” Accident Analysis & Prevention, vol. 42, no. 6,
pp. 1878–1887, 2010.

[3] Z. Hans, N. Hawkins, K. Gkritza, and M. Shaheed, “Nlenanya,
inya. “Safety and mobility impacts of winter weather—phase
3,”” Intrans Project Reports, vol. 82, 2014.

[4] Federal Highway Administration, Signalized Intersections
Informations Guide, Federal Highway Administration,
Montgomery, AL, USA, 2013, https://safety.fhwa.dot.gov/
intersection/conventional/signalized/fhwasa13027/, Second
edition.

[5] X. Qin, D. A. Noyce, C. Lee, and J. R. Kinar, “Snowstorm
event-based crash analysis,” Transportation Research Record:
Journal of the Transportation Research Board, vol. 1948, no. 1,
pp. 135–141, 2006.

[6] M. B. Kursa and W. R. Rudnicki, “Feature selection with the
boruta package,” Journal of Statistical Software, vol. 36, no. 11,
2010.

[7] M. B. Kursa, A. Jankowski, and W. R. Rudnicki, “Boruta—a
system for feature selection,” Fundamenta Informaticae,
vol. 101, no. 4, pp. 271–285, 2010.

[8] W. A. Nixon and L. Qiu, “Effects of adverse weather on traffic
crashes: systematic review and meta-analysis,” in Proceedings
of the TRB 87th Annual Meeting 2008, Washington, DC, USA,
2008.

[9] A. S. Potter, M. R. Gallagher, and C. W. Bayer, Synthesis on
GPS/AVL Equipment Used for Winter Maintenance (No. CR
14-01), Department of Transportation Clear Roads Pooled
Fund, Saint Paul, MN, USA, 2016.

[10] W. Schneider, M. Crow, W. A. Holik et al., Evaluation of the
GPS/AVL Systems for Snow and Ice Operations Resource
Management (No. FHWA/OH-2017-31), Department of
Transportation Office of Statewide Planning and Research,
Columbus, OH, USA, 2017.

[11] Z. Hans, N. Hawkins, P. Savolainen, and E. Rista, Operational
Data to Assess Mobility and Crash Experience during Winter
Conditions, Center for Weather Impacts on Mobility and
Safety, Cary, NC, USA, 2018.

[12] C. Chen and X. Shi, Modeling the Macroscopic Effects of
Winter Maintenance Operations on Traffic Mobility on
Washington Highways, Center for Advanced Multimodal
Mobility Solutions and Education, Charlotte, NC, USA, 2019.

[13] B. Hallmark and J. Dong, “Examining the effects of winter
road maintenance operations on traffic safety through visual
analytics,” in Proceedings of the 23rd International IEEE
Conference on Intelligent Transportation Systems (ITSC),
Rhodes, Greece, September 2020.

12 Journal of Advanced Transportation

https://data.iowadot.gov/
https://ops.fhwa.dot.gov/weather/weather_events/snow_ice.htm
https://ops.fhwa.dot.gov/weather/weather_events/snow_ice.htm
https://safety.fhwa.dot.gov/intersection/conventional/signalized/fhwasa13027/
https://safety.fhwa.dot.gov/intersection/conventional/signalized/fhwasa13027/


[14] S. Mafi, Y. AbdelRazig, and R. Doczy, “Machine learning
methods to analyze injury severity of drivers from different
age and gender groups,” Transportation Research Record:
Journal of the Transportation Research Board, vol. 2672,
no. 38, pp. 171–183, 2018.

[15] O. A. Osman, M. Hajij, P. R. Bakhit, and S. Ishak, “Prediction
of near-crashes from observed vehicle kinematics using
machine learning,” Transportation Research Record: Journal of
the Transportation Research Board, vol. 2673, no. 12,
pp. 463–473, 2019.

[16] A. ,eofilatos, C. Chen, and C. Antoniou, “Comparing
machine learning and deep learning methods for real-time
crash prediction,” Transportation Research Record: Journal of
the Transportation Research Board, vol. 2673, no. 8,
pp. 169–178, 2019.

[17] M. Amiri, H. R. Pourghasemi, G. A. Ghanbarian, and
S. F. Afzali, “Assessment of the importance of gully erosion
effective factors using boruta algorithm and its spatial
modeling and mapping using three machine learning algo-
rithms,” Geoderma, vol. 340, pp. 55–69, 2019.

[18] S. Demiroluk, M. A. Yazici, K. Ozbay, and J. A. Carnegie,
“Feature selection for ranking of most influential variables for
evacuation behavior modeling across disasters,” Trans-
portation Research Record: Journal of the Transportation Re-
search Board, vol. 2599, no. 1, pp. 24–32, 2016.

[19] R. Prasad, R. C. Deo, Y. Li, and T. Maraseni, “Weekly soil
moisture forecasting with multivariate sequential, ensemble
empirical mode decomposition and boruta-random forest
hybridizer algorithm approach,” Catena, vol. 177, pp. 149–
166, 2019.

[20] J. Li, M. Tran, and J. Siwabessy, “Selecting optimal random
forest predictive models: a case study on predicting the spatial
distribution of seabed hardness,” PLoS One, vol. 11, no. 2,
Article ID e0149089, 2016.

[21] M. Christ, “Distributed and parallel time series feature ex-
traction for industrial big data applications,” in Proceedings of
the ACML Workshop on Learning on Big Data, Hong Kong,
China, 2016.

[22] B. Hallmark, “Analyzing winter weather impact on safety
using snowplow automatic vehicle location,” 2019.

[23] M. Agarwal, T. H. Maze, and R. Souleyrette, Impact of
Weather on Urban Freeway Traffic Flow Characteristics and
Facility Capacity, Center for Transportation Research and
Education, Ames, IA, USA, 2005.

[24] K. Kim, “Ridge Regression for Better Usage: Medium, Towards
Data Science,” January 2019, https://towardsdatascience.com/
ridge-regression-for-better-usage-2f19b3a202db.

[25] D. Lord and F. Mannering, “,e statistical analysis of
crashfrequency data: a review and assessment of methodo-
logical alternatives,” Transportation Research Part A: Policy
and Practice, vol. 44, no. 5, pp. 291–305, 2010.

[26] A. Goswamy, S. Hallmark, and T. Litteral, Impact of
Destination Lighting and Other Factors on Driver’s Injury
Severity of Nighttime Crashes at Rural Stop-Controlled Cross-
Intersections Using Proportional Odds Model, Transportation
Research Board, Washington, DC, USA, 2018.

[27] X. Guo, L. Wu, Y. Zou, and L. Fawcett, “Comparative analysis
of empirical bayes and bayesian hierarchical models in hot-
spot identification,” Transportation Research Record: Journal
of the Transportation Research Board, vol. 2673, no. 7,
pp. 111–121, 2019.

Journal of Advanced Transportation 13

https://towardsdatascience.com/ridge-regression-for-better-usage-2f19b3a202db
https://towardsdatascience.com/ridge-regression-for-better-usage-2f19b3a202db

