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Road safety has recently been considered an important issue in the country. Single-vehicle accident statistics show the
importance of this issue. From a safety viewpoint, drivers need to have a reasonable time window for hazard recognition
and reaction; therefore, the hazard has to be in sight from a distance preferably longer than the standard minimum
stopping sight distance. Nevertheless, if the roadside configuration makes the sight available for a very long distance, the
hazard properties are the ones defining the visibility. )e hazard size, color, and mobility are some of the most important
hazard properties, which may mainly interact with ambient light (like being day or night) and driving speed. In this
research, effect of hazard properties on driving accident likelihood was investigated in a condition that enough recognition
and reaction time window was available for the driver to provide a ceteris paribus experiment. To fulfil that in a safe
experiment condition, a driving simulator was used to test the behavior of 90 licensed drivers encountering an average of
14 hazards with various sets of properties. Based on the findings of this research, there are some interactions between
influential hazard properties. )e results imply that it is approximately 23% more likely to observe an accident when
encountering a dark small stationary hazard at nighttime like a dark-colored with an observed size of 0.5 m × 0.5 m (e.g., a
stone) than a major moving light-colored hazard in the daytime like a camel of 1.5 m ∗ 2 m in size. A green-colored hazard
is 27% less likely to involve in an accident at nighttime than hazards with other colors. Each 10 km/h speed increment leads
to 1.9% more accident likelihood, and every time the driver encounters a hazard, they will be 0.84% less likely to crash
next time.

1. Introduction

)e proliferation of road accidents has made the safety of
any newly planned road to be one of the most important
criteria of design. )e statistics on single-car accidents
suggest the significance of these types of road accidents.
Research has shown that, in 2006, 883 accidents resulted in
deaths out of 82,343 road accidents registered by the police
in Iran, of which 43.17% was single-car accidents, ac-
counting for 55.4% of all road deaths in Iran [1]. Car
overturning, pedestrian-vehicle, animal-vehicle, or sta-
tionary object-vehicle accidents are some instances of
single-vehicle road accidents. )is type of accident occurs

as a result of an error in the interaction of the road and the
environment with the driver’s limited capacity regarding
hazard recognition [2].

In the road design procedure, to provide for the inter-
action between recognition abilities of drivers and hazards
and to make some error mitigations possible, a perception-
reaction time (PRT) is used to calculate enough braking sight
distance. )is time is defined as a period during which the
driver detects the hazard, perceives the danger (perception
time), concludes that there is a need to stop, and finally
decides to press the brake (reaction time). )is period starts
when the objects become visible first until the driver decides
to brake [3]. Some of the most influential factors on driver
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behavior and subsequently the length of PRTare the driver’s
anticipation of impending hazards, the driver’s age and sex,
driving workload, and driving emergencies [4].

According to the NCHRP Report 600 regarding the
human factors in highway systems, influential factors on
PRT include color contrast between the hazard and the
environment, light glare, the driver’s anticipations, road
visual complexity, drivers’ experience and familiarity
with the road, the driver’s age, and complexity of the
hazardous situation [5]. Although these factors are
deemed to affect all types of hazardous situations in
roads, including non-vehicular hazards, little is known
about non-vehicular hazards themselves. In other words,
the influence of the characteristics of a non-vehicular
not-anticipated hazard and how these characteristics
have interaction still need to be investigated. )us, in this
study, we aim to pay a more precise attention to these
hazards and their characteristics.

Regarding the tools to investigate influential factors in
road safety, researchers have exploited several mathe-
matical and probabilistic statistical models. )ey have
used different methods for different aspects of interest.
Probit and binomial logit models have been frequently
used to study the severity of accidents [6–8]. For severity
models, some more sophisticated instances of logit and
probit like “mixed logit model” and “random parameters
bivariate ordered probit” have been proven useful in the
literature [9, 10]. When the count of accident is the case,
generalized linear regression models, particularly Poisson,
negative binomial model, are widely used owing to being
custom-built for count data [11]. Some researches concern
the probability of accidents. In these cases, several ap-
proaches have been employed. Sometimes, accident
prediction indices are developed, and sometimes models
with an output of probability nature are used like the logit
model [12]. In other researches, descriptive statistical
methods are used to identify human factor influences on
accident probability [13]. Furthermore, analytical
methods like Gaussian models are exploited to illuminate
the effect of spatiotemporal variables on accident prob-
ability [14]. In the case of prediction with high accuracy,
specialized models like neural networks have helped re-
searchers [15]. Owing to the theoretical base of binomial
logit models and their binomial nature of the dependent
variable, they are suitable to model probabilistic two-
condition phenomena like the state of an accident being
observed or not [16].

According to the aforementioned studies, several
groups of affecting factors have been investigated, and
different results and conclusions have been reached
amongst which some instances of factors affecting the
count and likelihood of accident are as follows: Das et al.
found the driver’s behavior effective and claimed that it
was more likely for “accident-prone” drivers to engage in
an accident than others, particularly when the driver
violated driving laws [17]. )eofilatos studied the real-
time traffic and weather conditions and found these
factors considerably influential on accident likelihood
and severity [18]. In addition to weather and traffic

conditions, according to Ahmed’s study, the geometry
design of roads is associated with accident occurrence
[19].

Researchers have made much effort to understand fac-
tors affecting the accident likelihood. However, there are still
some questions to ask such as “Do hazard properties have
any significant and important and distinguishable effect on
the driver’s behavior and accident likelihood? hazards like
pedestrians, animals, and fixed objects);” “Are properties
such as mobility, size, and color influential?”

Using field data, studying human behavior has many
difficulties since this type of data has limited evidence to
show about the details of the driver’s reaction, recogni-
tion, and decision-making when encountering a hazard.
In this regard, technology introduces the driving simu-
lator as a means of considerable help. Simulators are a
branch of virtual reality putting the user in a virtual
environment and making them feel like a real environ-
ment [20]. A driving simulator putting the driver in a
simulated environment provides controlled laboratory
conditions for experiments and prepares a safe condition
for human factors in transportation safety experimental
studies [20–23].

According to previous studies, driving simulators are
mainly used in studies on the driver’s behavior. Abdel-Aty,
using a simulator, found that the use of variable speed limit
and variable massage signs affects the speed choice and speed
dispersion and leads to more uniform speed choices in the
road [24]. Bella, by driving a simulator, showed that the
driver’s behavior was affected only by cross-sections and
geometric elements, not by roadside configurations. Al-
though the presence of trees along the road represents a
factor increasing the severity of run-off-road accidents,
drivers do not change their behavior when barriers are not
present [25].

Calvi in a before-after study using a driving simulator
demonstrated the effectiveness of perceptual treatments,
especially red PTB, in enticing drivers to reduce their
speed while approaching the sharp curve under study or
driving through the curve [26]. In addition, a recent
study shows that most indicators are valid in the driving
behavior research in the work zone (driving simulator).
For example, spot speed, car-following distance, head-
way, and reaction delay time show absolute validity [27].

To answer the questions about the effect of hazard
properties on the driver’s behavior in this research, real
drivers’ reactions to non-vehicle road hazards have been
investigated in a simulated virtual environment. A driving
simulator was used to provide a controlled experiment
condition as well as precise and detailed hazard engagement
and reaction data. Statistical methods like regression analysis
were then used to extract information from the data and
answers to the research questions.

2. Materials and Methods

In this research, the situation of encountering some non-
motor-vehicle road hazards was prepared in a driving
simulator to study the effect of their properties on the
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driver’s behavior. )en, the effects were investigated using
mathematical modelling methods.

2.1. Apparatus. )is research employed a fixed-based car
driving simulator, including the front half of a Saipa Pride,
which is a popular car commonly used in Iran; the
stimulator consisted of all in-car equipment and three
monitors with an intermediate angle of 135 degrees. )e
experiments were conducted in a calm controlled room
with a fixed temperature and illumination conditions.
Figure 1 shows a view of the driving simulator and a driver
taking the test.

2.2. Scene andScenario. )e test route was a two-way three-
lane separated straight road with a 3.6m standard lane in
width in a plane terrain with a view of soil covered
roadsides with thin vegetation and some dispersed trees,
hills, and traffic signs. )e road was paved with asphalt and
separated from the opposing side of the road by a
guardrail-protected median. Light posts were placed in the
median.

A total of 60 different hazard engagements in 4 separate
test scenarios were prepared. For each of 4 scenarios, Table 1

lists the number of hazard engagements, length of the route,
and state of being day or night. An average of 14 hazard
engagements was due in every scenario. At the beginning of
each of them, there has been a 5 km warm-up length in
which no engagement was provided in order for the par-
ticipant to prepare and adapt himself to the virtual reality
environment. )e drivers were told they might face some
unknown hazards in the road as in the real world so that they
had to be ready to react.

)e hazards in the experiment had differences in terms
of properties such as size, color, and mobility. )ese hazards
included some adult and child pedestrians, some animals
like camels, cows, and cats, and some fixed hazards such as
rocks.

2.3.Participants. To choose test-takers, several over 18-year-
old licensed drivers from different groups of occupational
backgrounds like scholars, professional drivers, engineers,
other freelancers, and novice drivers were invited from
whom 90 individuals accepted to participate in the exper-
iment. Tables A-1 to A-4 in the Appendix (Supplementary
Materials) show the dispersion of the participants’ age, sex,
marital status, and driving experience. Since the focus
variables of this study are related to the hazards’

Table 2: Variable used in the modelling.

Variable
name Unit Average Std.

dev. Description

Accident Binary 0.1656 0.3719 Accident/no accident observation
Speed km/h 91.10 17.77 )e speed in the moment before the reaction is begun
PEN — — — )e number of events that the test taker has encountered before the intended event

Size m2 2.23 2.58 )e observed hazard size; the nominal area of hazard as its nominal product of height to width
displayed on the screen

Day Binary 0.5695 0.4954 Whether the simulated time is in day or night (ambient illumination)
Mobile Binary 0.6991 0.4588 )e state of the hazard being fixed or mobile passing across the road
Green Binary — — Hazard color (is the hazard green or not)
Yellow Binary — — Hazard color (is the hazard yellow or not)

Figure 1: A view of the driving simulator and a driver taking the test.

Table 1: Test scenario description.

Scenario number Route length (km) Day/night Number of engagements
1 31.5 Day 17
2 29/8 Night 13
3 24/4 Day 13
4 22.3 Night 13

Journal of Advanced Transportation 3



characteristics, the participants’ characteristics were not
influential in choosing the number of participants. In that
case, 90 participants were considered sufficient, since in rare
cases in similar simulator studies in the literature, the
number of participants has exceeded 50 [21, 27, 28].

3. Linear Probability Model (LPM)

In a linear regression mathematical model, if a binary
variable is set as the dependent variable, the model outcome
will be the probability of observing a “1” (the event of
success) in some particular states of independent variables.
In such a case, equation (1) is true:

P(y � 1|x) � E(y � 1|x) � β0 + β1x1 + · · · + βkxk. (1)

In the LPMmodel, the parameters (variable coefficients)
show the amount of change in the success probability with
one unit change in the independent variable as it can be seen
in the following equation:

ΔP(y � 1|x) � βjΔxj. (2)

)e LPM model output is a continuous value of prob-
ability, which sometimes takes a value smaller than zero or
greater than one. Furthermore, this output may sometimes
be desired as a binary discrete variable. In that case, as-
suming a value like the average of output is estimated as a
threshold, the estimates greater than this threshold are as-
sumed as a 1 or success, and those smaller than that are
assumed as a 0 or failure.

Before interpreting the LPM model, first, it is needed
to confirm the Gauss–Markov assumptions of multiple
linear regression consisting of five basic assumptions,
namely, linearity in parameters, random sampling, zero
conditional means of the error term, no multicollinearity,
and no heteroskedasticity. If these assumptions are con-
firmed, the model is assumed unbiased and can be
interpreted.

4. Model Estimation

)e effects of the hazards’ properties were investigated by
mathematical modelling using experiment data, and the
research hypotheses and main questions were addressed.

4.1. Variables Definition and Description. To investigate the
effect of hazard properties on accident likelihood, a binary
variable named “accident” was used as the dependent var-
iable, which took a 1 when an accident was observed and a 0
otherwise. )e independent variables used in the modelling
process are defined and described in Table 2.

4.2. Linear Probability Regression Model (LPM). )e LPM
model was developed regarding the “accident” as the de-
pendent variable, and a desirable LPMmodel was developed
through a trial-and-error process using different combina-
tions of other variables. In this model, the multiplicative
variables were used to catch the interactive effects of these
variables. Table 3 shows the variables, their corresponding
estimated parameters, and other important statistics.

In the resulted model, all P values were less than the
critical significance level of 0.05, and the R2 was equal to
0.5830. )e overall model F value was 21.27, and the ratio of
correct predictions was 0.7041.

4.3. Linear Regression Gauss–Markov Assumptions
Confirmation. To validate the unbiasedness of the model
and the hypotheses testing statistics like t value, the five basic
Gauss–Markov assumptions of linear regression have to be
confirmed as previously described. )e first three assump-
tions, including linearity in parameters, random sampling, and
zero conditional mean, are confirmed if the sampling is ran-
dom, and the OLS estimation method is used validly. )e
estimated parameters are linear, the sampling method is
explained previously, and Table 3 shows the conditional mean
of the model error term, which is practically zero.

Table 3: LPM model of accident likelihood in relation to hazard properties.

Dependent variable Independent variables Estimated parameters Standard error t value P value

Accident

Speed 0.0019 0.00061 3.39 0.000
Size −0.0545 0.01022 −5.34 0.000
Day −0.2467 0.04978 −6.41 0.000

Mobile −0.1105 0.18054 −3.08 0.002
PEN −0.0084 0.00241 −3.75 0.001
Green −0.02763 0.4286 −6.35 0.000

Green× day 0.2631 0.08790 3.16 0.003
Yellow −0.2258 0.04750 −5.91 0.000

Yellow× day 0.1174 0.04081 3.01 0.003
Mobile× size 0.0322 0.00773 3.89 0.000
Size× day 0.0186 0.00418 2.53 0.012
Intercept 0.3397 0.07019 4.99 0.000

Statistics

R2 0.5830
F 21.27

Observations 1068
ROC∗ 0.7041

E(u|xn)∗ ∗ 4.70×10–10
∗ Ratio of correct prediction; ∗∗ conditional mean of error term.
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)e fourth Gauss–Markov assumption, no multi-
collinearity, is investigated using the variance inflation factor
(VIF). )e estimated VIFs for this model corresponding to
each variable are all less than 10; therefore, there is no mul-
ticollinearity in themodel, and the 4th assumption is confirmed
(see Table A-5 in the Appendix (Supplementary Materials)).

)e models are usually inspected regarding the 5th

Gauss–Markov assumption, no heteroskedasticity, using
various statistical methods like the Breusch–Pagan test.
Since the observed dependent variable in the LPMmodel is a
binary variable, the error term in the calculation will be
divided into two groups of success and failure observations,
and the mean of each group shows a difference of 1 unit.)is
condition leads to a positive heteroskedasticity test outcome
even if there is no varying variance. In that case, it is needed
to check any correlations between the independent variables
and the error term of themodel. If there is no correlation, the
5th assumption is confirmed, and the estimates are suitable
for inference. In this regard, the correlations were investi-
gated, and near-zero correlations were found between the
error term and the independent variables, whereas the de-
pendent variable was highly correlated with the error esti-
mates. )is is shown in Table A-6 in the Appendix
(Supplementary Materials).

5. Results and Discussion

)e outcomes of this model are in essence the likelihood of
event of the accident. Although this estimate has a
probabilistic nature and should have a value between 0 and
1, 91 observations had an accident likelihood estimation of
less than zero. Approximately, 79% of the predicted
accidents were correct. )e statistical description of
estimations of the model is shown in Table A-7 in the
Appendix (Supplementary Materials).

5.1. Goodness of Fit. As stated in Table 3, the R2 of the model
as a measure of goodness of fit has been estimated (58.3%),
which is an acceptable amount relative to the number of
variables in the model and the nature of the study issue.

)e ratio of correct predictions also supports the de-
sirable fit of the model. )e average of the estimated out-
come of the selected model as the threshold of discretization
indicates that this model has predicted correctly 70.41% of all
observations and 79.01% of accident observations (i.e., 128
correct accident predictions out of 162 observed accidents).

5.2. Parameters Significance. )e significance investigation
of the model is conducted by evaluating the P value
corresponding to t and F tests stated in Table 3. )e P

values are all less than 0.05 supporting the statistical
significance of all variables and the whole model.

5.3. Results. After evaluating the significance of the overall
model and parameters, the results can be investigated and
interpreted.

5.3.1. Speed. )e parameter corresponding to speed is es-
timated to be 0.0019.)is value means that a 1 km/h increase
in the speed will result in a 0.19% increase in accident
likelihood, and a 10 km/h increase will lead to a 1.9% higher
accident likelihood. )is increasing effect is logical and
consistent with the previous research.

5.3.2. Day. )e corresponding parameter to day speed is
estimated to be −0.2467, which means that the accident
likelihood is 24.67% less in the daytime than at night. )is
difference is soundly consistent with common sense and the
literature.

5.3.3. Mobile. )is parameter has been estimated at −0.1105.
As Table 4 shows for a car passing by with a specific speed,
encountering a mobile hazard with a specific size at night
leads to 11.05% less accident likelihood than a non-moving
one. For such a car, encountering a non-moving hazard in
the daytime is associated with a 24.67% less accident like-
lihood than at night and results in 35.73% less accident
likelihood for a moving hazard in day compared to a fixed
hazard at night.

5.3.4. Size. )ere are four different conditions derived from
the combination of the mobility of hazard and time of day
affecting the influence of the size of hazard. Table 5 shows the
marginal effect of the size variable by those combination
conditions. In accordance with this table, an increase in the
hazard size by 1m2 will decrease the accident likelihood
from 0.37% to 5.45%.

5.3.5. PEN. Since drivers’ behavior in relation to hazard
properties was the subject of study in this research, the
previously encountered number of hazards (PEN) variable

Table 4: Comparison of the accident likelihood at night and in the
daytime and fixed or mobile hazard condition.

Night Day
Mobile Fixed Mobile
−11.05% −24.67% −35.73%

Table 5: Comparison of change in the accident likelihood by a 1m2

increase in the hazard size.

Night Day
Fixed Mobile Fixed Mobile
−5.45% −2.23% −3.59% −0.37%

Table 6: Marginal effects of colors of green and yellow on accident
likelihood at night and day.

Green Yellow
Day −0.0131 −0.1084
Night −0.2763 −0.2258

Journal of Advanced Transportation 5



was defined to account for the drivers’ ability of learning
from previously encountered hazards. )e parameter esti-
mated for PEN variable is equal to 0.0084, which means that
1 more time of encountering a hazard leads to 0.84% less
crash likelihood.

5.3.6. Colors. In this research, the effect of the green and
yellow colors of a hazard on accident likelihood has been
investigated. Using two multiplicative variables, the inter-
action between these colors and the time of day (being day or
night) is explored. To evaluate the effect of these colors at
night and day, there will be four different conditions, which
are shown in Table 6.

As Table 6 clearly shows, both colors have decreasing
effects on accident likelihood, and the effects at night are
considerably more than in the daytime. According to these
results, the green color of hazard leads to approximately 5%
more decreasing effects than those in the daytime, and the
yellow color decreases the likelihood by approximately 10%
more in the daytime than at night.

6. Model Validation

For model validation, about ten percent of the whole data
was reserved, which contained 118 observations, including
30 records of accident. )e accident likelihood of each
observation was calculated using the model, and then, these
probability amounts were discretized by setting the esti-
mation mean as threshold. )en, the observations and these
predictions were compared, which showed 56.78% correct
predictions. It was also seen that the model correctly pre-
dicted 27 accidents out of 30 equal to 90% of all validation
data accidents; therefore, the model can be considered valid
in the scope of data.

7. Conclusions

A slightly similar study has been conducted on the impact of
hazard specifications on accidents; however, some studies
have noted the impact of hazard properties on the times
affecting accidents. Like the research study by Asadamraji
et al. [15], which showed the effects of color, mobility, size,
and contrast with the environment on the driver’s hazard
perception, previous studies like the one conducted by
Hooper and McGee [3] indicated that the main parameters
in the driver’s perception of reaction time are the driver and
road characteristics. Perception reaction time can be ef-
fective in preventing the occurrence of an accident and some
parameters such as the color of danger and mobility and
ambient light in NCHRP Report Number 600 and the re-
search by Campbell et al. [29]. Our modelling results in-
dicated that the color and mobility of hazards and the
environment light influence single-car accidents.

Our findings have proven the effect of hazard color and
mobility in rural road single accident, as demonstrated in the
research by Krauss et al. [30] and Levulis et al. [31], with
respect to overtaking time detection. Our findings confirm
the result of Wogalter et al., [32]. )e main difference be-
tween this research and the studies by Wogalter et al. [32]

was that their studies focused on the colors of signs, but we
examined the colors of other fixed and moving hazards.

In addition, our findings show that an increasing vehicle
speed in high-risk situations, such as work zones, increases
the likelihood of an accident. However, the research by
Zhang et al. [27] showed that increasing or decreasing speed
in this situation depended on design, strategies, or con-
siderations in that environment.

In various road safety studies in which driving simu-
lators were used such as those conducted by Calvi et al. [26]
and Bella [25], the environmental conditions and their ef-
fects on driver perception were examined. Nevertheless, in
our study, changes in hazard properties that can pass the
width of the road in addition to the environment were also
investigated, and its consequences on the probability of an
accident were assessed. )e common part of all research was
the use of the speed parameter in the analysis.

)e results of the evaluation of different models in our
research demonstrated that, in the analysis of single-car
accidents, the linear probability model is preferred to
Poisson and negative binomial models used in the research
by Lu and Tolliver [11] and probit and binomial logit models
in the research conducted by Deng et al. [6] and Yu and
Abdel-Aty [8]. However, it is important to note that the way
we collect our research data compared to the research
mentioned is different. Paying attention to the normal
distribution of error data and how to convert aggregate to
binary mode is highly important. In particular, LPM is very
useful, since we can interpret the parameters on the prob-
ability scale, which is the scale of interest.

Owing to some practical limitations, the researchers have
considered a limited number of factors regarding hazard
characteristics. However, the driver’s characteristics like the
ones used in Luo et al. [33] and Asadamraji et al. [2] along
with the hazard characteristics are suggested to be further
investigated. In addition, fuzzy models used in the study can
be considered for single-vehicle collisions.

Finally, it should be mentioned that the scope of the
findings of this study is valid in the limits of the simulated
environment and the sociodemographic characteristics of
the participants as described. One of the major limitations
of this study is the number of participants. In this study,
due to budget constraints and the difficulty of people
visiting the laboratory, it was impossible to increase the
number of participants more than the mentioned number.
Moreover, the accident variable here is defined as the
occurrence of a severe incident after which neither the
driver, if alive, nor the car would have the ability to
continue the trip. In the future, it is recommended to
investigate such occasions of milder incidents in which
the driver has made an urgent reaction, but no property or
health damage is made. Investigation of the findings in a
naturalistic driving study paradigm is suggested.

Data Availability

)e research data are available in the .XLSX format file.)ey
are available from the corresponding author upon request.
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In this part, some detailed descriptions of the participants,
variance inflation factors, correlations between the variables
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