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*e fourth-party logistics routing problem (4PLRP) is an important issue in the operation of fourth-party logistics (4PL). In this
paper, the study of fourth-party logistics (4PL) path optimization considers that more third-party logistics (3PL) undertake
transportation tasks. Under the condition that the 3PL transportation time, transportation cost, node transit time, and transit cost
are uncertain, 4PL provides customers with a set of transportation solutions to transport transportation tasks from the initial node
to the destination node according to the customer’s risk aversion preference. *e transportation scheme not only meets the
customer’s time and cost requirements but also meets the carrying capacity and reputation constraints of 3PL. Between the two
nodes, one or more 3PLs will undertake the transportation task.*e customer’s risk preference will be measured by the ratio utility
theory (RUT). An ant colony system-improved grey wolf optimization (ACS-IGWO) is designed to solve the model, and the grey
wolf optimization (GWO) is improved by the convergence factor and the proportional weight. Problem analysis is conducted
through simulation experiments.

1. Introduction

Fourth-party logistics (4PL) provides the customer with
satisfactory supply chain solutions by integrating their own
and other resources and capabilities. *e fourth-party lo-
gistics routing problem (4PLRP) is a basic and important
research issue in the process of supply chain integration. For
various operation modes of 4PL, scholars have studied the
routing problems for more than a decade by using a variety
of optimization methods.

Aiming to maximize the degree of customers’ satisfac-
tion, benefit third-party logistics providers, and minimize
transport costs simultaneously, Huang et al. [1] proposed a
mathematical model of the point-to-point single task path
optimization in fourth-party logistics with a soft time
window (4PLRPSTW). A harmony search (HS) algorithm
was designed to solve this problem. In order to find a route of
the minimum cost with constraints under uncertain envi-
ronments, Huang et al. [2] established a mathematical model
with fuzzy duration time (4PLRPF), and a two-step fuzzy

simulation genetic algorithm was designed to solve the
problem. Based on the reliability theory and multigraph, Li
et al. [3] proposed a chance-constrained programming
model of 4PL, aiming at the minimum cost and time
constraints. A messy genetic algorithm with double arrays
encoding was designed to solve the problem. To handle the
4PL routing optimization under emergency conditions that
lack historical data, Huang et al. [4] proposed an uncertain
programming model (UPM) with uncertain delivery time.
*e UPM was based on uncertainty theory (UT), and the
solution can satisfy the belief degree constrain effectively. Lu
et al. [5] proposed an uncertain delivery time control model
for 4PLRP which considers the selection of 3PL suppliers
and transportation routes, delivery time, and transportation
cost. An Improved Genetic Algorithm (I-GA) was developed
to solve this problem. Aiming at the dynamic time planning
in the logistics transportation network, Cui et al. [6] pro-
posed a 4PL model considering the transportation, staying,
and transit cost with the time constraint, and the dynamic
time is updated at the transit nodes. A Two-phase solution
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method based on the Ant Colony Optimization (TACO) was
established to solve the problem. In many previous studies, it
was considered that there was only one 3PL between nodes
to undertake transportation tasks. However, it is more in line
with the actual operation to consider that more 3PLs be-
tween nodes jointly undertake transportation tasks.

Traditional expected utility theory (EUT) and prospect
theory (PT) [7] in behavioral economics are two important
theories currently studying people’s behavioral decision-
making patterns. However, for the EUT, it is difficult to
make a reasonable explanation for the phenomena such as
the Allais paradox [8]. *e PTuses the amount of change in
wealth as a reference for people to make decisions but
converts the objective probabilities into subjective proba-
bilities with greater randomness. Wang and Kong [9] ex-
tended the two and proposed a new consumer behavior
decision-making mechanism: proportional utility theory.
Ratio utility theory (RUT) holds that the change value and
the absolute value both affect the behavior of the decision
maker [10]. It has been proved based on the panel data of
1997–2010 [11] and has been successfully applied to many
fields [12, 13]. As a result, the value function of RUT has
more advantages in representing customers’ risk aversion in
4PLRP.

In 1991, Dorigo et al. proposed the first ACO algorithm-
ant system (AS) and successfully used it to solve the TSP
problem [14–16]. Experimental results show that the AS
algorithm has strong robustness and the ability to find better
solutions, but it also has some defects, such as slow con-
vergence speed and stagnation. In order to improve these
problems, Dorigo and Gambardella [17] proposed an ant
colony system (ACS). *is algorithm is a simple and mature
ant colony algorithm framework, which has the advantages
of parallel computing of group biomimetic algorithms, and
as a probabilistic algorithm, it is usually used to find the best
path on the graph. For a complex combination optimization
problem such as 4PLPR that simultaneously performs path
optimization and 3PL vendor selection, if the ant’s auton-
omous optimization is used to obtain the initial solution, it
will fully reflect the advantages of the ant colony algorithm
and solve the problem efficiently.

In 2014, Mirjalili et al. [18] proposed a novel intelligent
algorithm—Grey Wolf Optimization (GWO) algorithm
based on the cooperative hunting method of the grey wolf
group intelligence. *is algorithm fully simulates the pyr-
amid-like social hierarchy of grey wolves and themechanism
of communication and sharing among grey wolves. In the
GWO algorithm, the initial position, convergence factor,
and the position update formula of the wolves will have a
certain impact on the performance of the algorithm. In order
to improve the optimization accuracy and search efficiency
of the GWO algorithm, researchers have done a lot of
improvement work. To strengthen the algorithm’s local
search capability and speed up the convergence rate, Saremi
et al. [19] improved the GWO algorithm by introducing a
dynamic evolution population operator, and the efficiency of
the algorithm was proved by solving function optimization
problems. Heidari and Pahlavani [20] introduced Levy flight
and greedy selection strategies into the GWO algorithm and

improved the hunting stage. Experimental results and sta-
tistical tests show that LGWO’s performance is significantly
better than other algorithms. In order to overcome the
premature convergence problem of the GWO algorithm,
Wang et al. [21] combined the basic GWOwith the Gaussian
distribution estimation, called the GEDGWO algorithm,
and proposed a poor solution repair based on the Gaussian
distribution method to modify the morbid distribution of
the population. *is algorithm applied the Gaussian dis-
turbance random walk method to enhance the local ex-
ploration ability and was used to solve the problem of multi-
UAVmultitarget tracking path planning. In [22], in order to
improve the searchability of the grey wolf, a GWO algorithm
RW-GWO based on a random walk was proposed. *e
algorithm was subjected to a nonparametric test, Wilcoxon
test, and performance index analysis, and the improved
algorithm has shown effectiveness. In [23], a multiobjective
GWO algorithm based on decomposition was proposed. By
defining a neighborhood relationship between the scaled
subproblems of the decomposition multiobjective problem,
the Pareto solution was cooperatively approximated. *is
algorithm was comparable to the performance of the six
most advanced biological heuristic techniques. *e com-
parison shows that it has high performance on the famous
benchmark problem and two real-world engineering
problems. Scholar Kamboj [24] designed a mixed particle
swarm optimization algorithm of the grey wolf, which
combines a grey wolf optimization algorithm and particle
swarm optimization algorithm to solve the unit commit-
ment problem (UCP). GWO has the advantages of fewer
parameters and fast convergence speed and is widely used in
engineering fields. *rough the improvement of the algo-
rithm convergence mechanism and weight update mecha-
nism, GWO will highlight its advantages in the solution of
choosing multi-3PL in 4PLRP.

*e uncertain environment always leads to delays in
transport time and an increase in transport cost, and the
related research of 4PL routing optimization based on risk
preference is still relatively rare. In this paper, a 4PLRP
model based on RUT is established to indicate the decision
problem when the customer is risk aversion. *is paper
applied an improved grey wolf optimizer (IGWO) [25] to
solve the proposed model. *e IGWO attempts to improve
the convergence factor and the proportional weight to solve
the model. IGWO adopts the convergence factor based on
the exponential law change, balances the global search and
local search ability of the algorithm, and introduces the
proportional weight based on the step of Euclidean distance
to update the grey wolf’s position and accelerate the
convergence speed of the algorithm. Among them, by
considering the dependence of GWO on the initial pop-
ulation, the principle of the ant colony system (ACS) is
employed to provide a good initial population for IGWO.
*erefore, the designed algorithm is named as ant colony
system-improved grey wolf optimizer (ACS-IGWO). Fi-
nally, the validity of the model is verified by the experi-
ments, which further emphasizes the necessity of
considering the customer’s behavior characteristics in
4PLRP.
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*ere are many contributions to our work, which are
listed as follows:

(1) In the transportation scheme provided to customers,
the situation of multiple 3PL cooperative trans-
portations between the two nodes will be considered
to avoid tardiness or overspending caused by in-
sufficient single 3PL carrying capacity

(2) Based on the ratio utility theory, this paper estab-
lishes the utility function and 4PLRP model from the
perspective of customers’ risk appetite for time and
cost

(3) Firstly, the grey wolf algorithm is improved by using
a nonlinear convergence factor, so that the algorithm
expands the search range at the early stage and finds
more high-quality solutions; secondly, the intro-
duction of proportional-based dynamic weighting
strategy improves the iteration method of the next
generation of individuals, making the algorithm have
powerful adaptability and faster convergence speed

*e rest of this paper is organized as follows. Section 2 is
the problem description and parameter definition. Section 3
describes our 4PLRP mathematical model based on the ratio
utility theory. In Section 4, the mechanism of population
initialization based on ACS is introduced and the improved
strategy of GWO is proposed. Section 5 presents the model
parameters analyses, validates the advantages of cooperation
of multiple 3PLs, and evaluates the performance of ACS-
IGWO heuristic.

2. Problem Description

*e 4PLRP can be defined as selecting routes and third-party
logistics (3PL) for a 4PL to optimize the supply chain. A key
problem that the 4PL should consider is how to optimize the
transport route from the source to the destination to ensure
the maximization of utility and the satisfaction of relevant
constraints. Assume that a 4PL undertakes a task design for
transporting supplies. Information on the current trans-
portation network, 3PLs, due date, and the total cost is
obtained. And one or more 3PLs can be selected between
nodes; the transport route must meet the 3PL provider’s
transportation capacity and reputation constraints at the
same time. To describe the problem more concisely and
clearly, an undirected multigraph is used to describe the
transportation network, as shown in Figure 1.

In Figure 1, the transportation network of 4PLRP is
represented by a multigraph G (V, E), where V is the set of
nodes and E is the set of edges. Node v1 represents the source
node vs and node v7 represents the destination node ve,
where other nodes are transit nodes. Each node has cost and
time properties; that is, the transit cost and time should be
considered when the task transits at this node. Each edge
represents a 3PL provider who wants to undertake a portion
of the task between pairs of nodes. Each edge also has cost
and time properties, which are the cost and time needed for
the 3PL provider to complete the transportation service
between two nodes. In such a graph, there may be more than

one edge (3PL provider) between pairs of nodes to undertake
the task. For a given task from the source to the destination,
the 4PL needs to select a feasible route, including nodes and
edges. To formulate the problem, parameters are defined in
Table 1.

3. Mathematical Model

3.1. Description of the Distribution Mechanism. 3PL pro-
viders are responsible for the transportation task between
the two nodes. A reasonable task distribution for the total
task volume is needed, and certain amount of tasks assigned
to the 3PL under the condition that the capacity of each
selected 3PL is satisfied, which is shown in picture 2. Assume
that three 3PLs are selected between nodes v2 and v5, and the
task distribution ratios of the three providers are h1

25 � 0.4,
h2
25 � 0.4, and h3

25 � 0.2. In order to obtain a better per-
formance of the task assignment and the optimal transport
plan, this paper distributes the total task randomly according
to the number of 3PLs and the transport capacity conditions.
In addition, as can be seen from Figure 2, 80% of the goods at
node v5 are transited, so the transit time and the transit cost
at node v5 are 80%T5 and 80%C5, respectively.

3.2. Mathematical Model Based on Ratio Utility .eory.
People often focus on the change value and the absolute
value when making decisions in an uncertain environment.
*erefore, this paper uses the ratio of the two to define the
utility of the consumers, and the three hypotheses [15] of
RUT are as follows:

(1) Consumer will maintain his wealth state G0 until
there exists an option ΔG. G0 � (G1, G2, G3, . . . , Gi),
ΔG � (ΔG1,ΔG2,ΔG3, . . . ,ΔGi), where G denotes
the quantity of wealth and “i” indicates the category
of wealth

(2) When option exists, the ratio of the change value ΔG
to the final value (G0 + ΔG) indicates consumer
utility, named RUTas follows: RU � iΔGi/Gi + ΔG,
if RU> 0, the consumer has a willingness to receive
the option ΔG; otherwise, the consumer will reject
the option

(3) *e sensitivity of RUT is limited
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Figure 1: Multigraph of the 4PLRP.
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If multiple 3PLs undertake transportation tasks, the
shortest transport time and the longest transport time
should be calculated by equations (1) and (2), respectively.
*e minimum and maximum transport costs between the
two nodes are calculated by equations (3) and (4),
respectively:

T
S
ij � Max xij1T

S
ij1, xij2T

S
ij2, . . . , xijkT

S
ijk, . . . , xijrij

T
S
ijrij

 ,

(1)

T
L
ij � Max xij1T

L
ij1, xij2T

L
ij2, . . . , xijkT

L
ijk, . . . , xijrij

T
L
ijrij

 ,

(2)

Table 1: Parameter definition of the model.

Parameter Parameter description
n *e number of city nodes in the transportation network; it also indicates the label of endpoint.
rij *e number of edges (3PLs) between node vi and node vj.
eijk *e kth edge between node vi and node vj, where i, j ∈ 1, 2, . . . , n, and k is the index number of edges.
Ti *e time of node vi, including the time of processing, inventory, loading, and unloading.
Ci *e cost of node vi, including the cost of processing, inventory, loading, and unloading.
Tijk *e time of the 3PL provider in edge eijk.
Cijk *e cost of the 3PL provider in edge eijk.
T(R) *e transport time of the route.
C(R) *e transport cost of the route.
TS

ijk *e minimum time of the 3PL provider in edge eijk.
TL

ijk *e maximum time of the 3PL provider in edge eijk.
TS

ij *e shortest transport time between node vi and node vj.
TL

ij *e longest transport time between node vi and node vj.
TS *e minimum transport time of the route.
TL *e maximum transport time of the route.
CS

ijk *e minimum cost of the 3PL provider in edge eijk.
CL

ijk *e maximum cost of the 3PL provider in edge eijk.
CS

ij *e maximum transport cost between node vi and node vj.
CL

ij *e maximum transport cost between node vi and node vj.
CS *e minimum transport cost of the route.
CL *e maximum transport cost of the route.
T0 *e due date required by the customer.
C0 *e total cost required by the customer.
φ1 Weight of the time.
φ2 Weight of the cost.
Qijk Transport capacity of the 3PL provider in edge eijk.
Dijk Reputation of the 3PL provider in edge eijk.
Q *e required transport capacity from the task.
ΔQi *e amount of task that transits at the node.
pt *e delay probability of transportation tasks.
pc *e probability of the overspending of transportation tasks.
D *e required reputation required by the customer.
R *e route from node vs to node ve.
hk

ij *e proportion of transport tasks undertaken by edge eijk.
xij Whether the 3PL provider is selected between node vi and node vj to undertake the transportation task, which is a 0-1 variable.
xijk Whether the edge eijk is selected to undertake the transportation task, which is a 0-1 variable.
yi Whether to select node vi as a transit node, which is a 0-1 variable.
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Figure 2: Schematic diagram of the distribution mechanism.
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Tij ∼ U[TS
ij, TL

ij], and Cijk ∼ U[CS
ijk, CL

ijk] so
T(R) ∼ U[TS, TL] and C(R) ∼ U[CS, CL]. *en, the tardi-
ness and overspending probability of the transport task are
as follows:

pt �

0, T0 >TL,

TL − T0

TL − TS
, TS <T0 <TL

1, T0 <TS,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

,

pc �

0, C0 >CL,

CL − C0

CL − CS
, CS <C0 <CL

1, C0 <CS.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(6)

*is paper proposes a decision-making method based on
RUT for the customer who is risk aversion on tardiness and
overspending. *e method gives the corresponding RUT
value, and in order to make it more reasonable, it refers to
the form of the prospect theoretical value function and
introduces the risk attitude coefficient υ and the loss aversion
coefficient λ. *is method calculates and obtains the utility
value of the transport time and transport cost of the

distribution plan. *e customer’s required due date T0 and
cost C0 are set as reference points, respectively. *erefore,
the utility functions of T(R) and C(R) are shown as follows:

Ut �

−λpt

T(R) − T0

T(R)
 

υ

, T0 − T(R)≤ 0,

1 − pt( 
T0 − T(R)

T R( )
 

υ

, T0 − T(R)> 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(7)

Uc �

−λpc

C(R) − C0

C(R)
 

υ

, C0 − C(R)≤ 0,

1 − pc( 
C0 − C(R)

C R( )
 

υ

, C0 − C(R)> 0.

⎧⎪⎪⎪⎪⎪⎨
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(8)

Based on the RUT, the model considering a risk aversion
customer is as follows:

maxω1Ut + ω2Uc, (9)

s.t. 
n

i�1


n

j�1


n

k�1
h

k
ij � 1, vi, vj ∈ R, (10)

h
k
ijQ≤Qijk,

vi,
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(11)

0≤ h
k
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vi,

vj ∈ R,

(12)

xijk �
1, 0≤ h

k
ij ≤ 1,

0, h
k
ij � 0,

⎧⎪⎨

⎪⎩
(13)

xijk �
1, vi, vj ∈ R,

0, otherwise,
 (14)

yi �
1, vi ∈ R,

0, otherwise,
 (15)

Dijk ≥Dxijk, (16)

y1 � yn � 1, (17)

R � vs, . . . , vi, 1h1
ij , . . . , k

hk
ij , . . . , r

h
rij

ij

ij , vj, . . . , ve. (18)

Equation (9) is the objective function, which means the
maximum of the total utility, including the utility of
transport time and the utility of transport cost; equation (10)
represents the task distribution ratio of the 3PL provider,
where the sum of them is 1; equation (11) represents the

Journal of Advanced Transportation 5



capability constraint of 3PL; equation (12) represents that
the task distribution ratio of each 3PL which undertakes the
transportation task between the two nodes is in [0, 1];
equation (13) represents whether the 3PL undertakes the
transportation task between the two nodes; equation (14)
represents whether to choose the 3PL between two nodes;
equation (15) represents whether the transport route passes
through the node; equation (16) represents that the repu-
tation of 3PL must meet customer’s needs; equation (17)
represents that both the start node and the destination node
must be selected; equation (18) is used to ensure that the
selected route is legal, which means that nodes and edges of
the route must be interconnected one by one and must start
from the source and end at the destination.

4. Algorithm Design

Since the selection of multiple 3PL 4PLRP is a complex
combinatorial optimization problem and is also an NP-hard
problem, therefore, grey wolf optimizer (GWO) is applied to
solve the model. GWO has a simple structure, requires few
parameters to be set, is easy to experiment with coding, and
is widely used in terms of attribute simplicity and feature
selection. However, GWO has the disadvantages of low
solution accuracy and slow convergence speed. *erefore,
this paper attempts to revise the convergence factor and the
proportional weight of GWO. *e ACS algorithm is used to
generate the initial solution, and the GWO algorithm is used
to solve the problem, which not only reflects the advantages
of the algorithm but also solves the problem. *erefore, an
ACS-IGWO is designed.

4.1. Population Initialization. *e GWO has a certain de-
pendence on the initial population. In order to find the
optimal route, the principle of ACS was used to provide the
initial population for GWO.

4.1.1. Coding Method. *is paper adopts the integer number
encoding method. Firstly, the multigraph is represented by
an adjacency list shown in Figure 1. If there is no edge
between two nodes, the value of the corresponding element
in the list will be set to 0; otherwise, the element value will be
set to the number of edges between the two nodes.

4.1.2. Transfer Strategy. *e ant determines the transfer
direction according to the pseudo-random scale rule of
equation (19):

j �
arg max

j∈Js(i)

τijk Ng  
α
ηijk 

β
 , q≤ q0,

Eq. (26), otherwise,

⎧⎪⎨

⎪⎩
(19)

where Ng is the current number of iterations, τijk(Ng) is the
pheromone concentration on eijk in iteration Ng, ηijk is its
route heuristic information, Js(i) is the set of nodes that ant s
can visit after visiting node vi, q is a random number
(q ∼ U[0, 1]), and q0 is a fixed algorithm parameter,

q0 ∈ [0, 1]; when q> q0, the ant will determine the node to be
transferred according to equation (20):

j �
arg

τijk Ng  
α
ηijk 

β

j∈Js(i)
τijk Ng  

α
ηijk Ng  

β, j ∈ Js(i),

0, otherwise,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(20)

where α and β are algorithm parameters, representing the
importance of pheromone and route heuristic information,
respectively. ηijk � (1/Tijk + t1/Cijkn + q1/Tih+1/Ci)

is the
heuristic information, and it will be provided in advance. Before
and after the node, if the same one 3PL provider is responsible
for the transportation task, the time and the cost of the node will
not be calculated; that is, ηijk � (1/Tijk + t1/Cijk).

4.1.3. Construction of Feasible Solution. *e feasible solution
of ACS is gradually generated by ants in a multigraph. At the
initial moment of the iteration, the ant is placed at the start
node vs, and the ant performs a proportional selection
according to the transition probability, thereby determining
the next direction of the transfer. After the ant moves to the
next node, the transfer is performed according to the transfer
strategy, and such step is repeated until reaching the desti-
nation node ve. And R, which is the optimal route from the
start to the destination, is obtained. In order to prevent the
situation where the ant cannot reach the destination node, it is
assumed that if the next node transferred by the ant is a node
that the ant has traveled to before, the connected edge with the
node is not considered within the feasible transfer direction.

4.1.4. Global Pheromone Update. In ACS, the pheromone of
the optimal ant route in each cycle globally was updated:

τbs
ijk(Ng) � (1 − ρ)τbs

ijk Ng  + ρΔτbs
ijk Ng . (21)

Δτbs
ijk � Q/T(R)bs + C(R)bs is the pheromone increment of

the current optimal route. T(R)bs and C(R)bs are the
transport time and transport cost of the current optimal
route. ρ and Q are algorithm parameters. ρ is the pheromone
volatilization coefficient, ρ ∈ [0, 1], and Q is a certain
amount of pheromone concentration.

4.1.5. Local Pheromone Update. After all the ants complete a
transfer, a local update of the pheromone was performed
according to equation (22). τ0 is the initial pheromone
concentration:

τijk(Ng) � (1 − ρ)τijk Ng  + ρτ0. (22)

4.2.GreyWolfOptimization. Grey wolves are top carnivores,
located at the top of the food chain. *eir lifestyles are
mostly group-based with an average of 5 to 12 wolves. *e
characteristics of the GWO can be described in the following
three aspects.
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4.2.1. Social Hierarchy. *e grey wolf group has a strict
hierarchy, α is the highest level of the grey wolf, β is a
subordinate of α, δ obeys the command of α and β, and the
grey wolf with the lowest rank is called ω.

4.2.2. Search and Surround Prey. Suppose that the number
of grey wolves is N, the position of the ith grey wolf is Xi, the
optimal solution of the group is α, the suboptimal is β, the
third is δ, and the other individuals areω.*en, the grey wolf
searches and surrounds the prey.*emathematical model of
prey behavior is described as follows:

D � C · Xp(t) − X(t)


,

X(t + 1) � Xp(t) − A · D.
(23)

Among them, t represents the current number of iter-
ations, Xp(t) is the position vector of the prey, X(t) is the
position vector of the grey wolf individual, D is the distance
between the individual and the prey, and A and C are co-
efficient vectors:

a � 2 − 2
t

tmax
 , (24)

A � 2 · a · r2 − a, (25)

C � 2 · r,1. (26)

r1, r2 are random numbers, and r1, r2 ∈[0, 1]. tmax is the
maximum number of iterations, and a is the convergence
factor, decreasing linearly from 2 to 0 as the number of
iterations.

4.2.3. Hunting. During the hunting process of the grey wolf
group, when α perceives the position of the prey, α will
combine with other wolves at the leadership level to com-
mand the entire group and guide the wolves to close the prey
from all directions and further achieve the ultimate pre-
dation. *e location of grey wolves ω in the population is
determined by the location of α, β, and δ. X(t) represents the
position of ω. Xα, Xβ, and Xδ are the positions of α, β, and δ,
respectively. C1, C2, and C3 represent random perturbations
for α, β, and δ, respectively. X1, X2, and X3 represent the
positions guided by α, β, and δ, respectively. *e updated
location X(t + 1) represents the new position of ω:

Dα � C1 · Xα(t) − X(t)


X1 � Xα(t) − A1Dα,

Dβ � C2 · Xβ(t) − X(t)


X2 � Xβ(t) − A2Dβ,

Dδ � C3 · Xδ(t) − X(t)


X3 � Xδ(t) − A3Dδ,

X(t + 1) �
X1 + X2 + X3

3
.

(27)

4.3. Nonlinear Convergence Factor Based on Exponential
Function. If |A|> 1, the algorithm will look for more

possible solutions globally, and the scope of the search is
further expanded, which is searched globally, and the
convergence speed is fast; when |A|> 1, the algorithm will
shrink the search range and seek the current range more
locally, and the convergence speed is slow. *erefore, the
value of A is related to the global search and local search
capabilities of GWO. It can be known from equation (25)
that A changes with the convergence factor a, and the
convergence factor a decreases linearly from 2 to 0 as the
number of iterations. But the algorithm is not linear in the
process of constant convergence. *e decreasing conver-
gence factor does not fully reflect the actual optimization
search process. *erefore, this paper adopts a convergence
factor based on the change of exponential law [33], and its
modified expression is in equation (28). *e comparison
before and after the improvement is shown in Figure 3:

a � 2 − 2
1

e − 1
× e

t/tmax − 1  . (28)

It can be seen from Figure 3 that the original conver-
gence factor a is linearly decreasing and decreases at the
same rate during the iterative process, and the improved
convergence factor a is a curve based on the exponential law,
which is reduced in the initial stage of the iteration. In the
initial stage of the iteration, a decreases slowly, so that a

keeps a large value for a long time, and A keeps a larger value
for a longer period to improve the searching efficiency. At
the end of the iteration, a decreases faster, so that a keeps a
smaller value for a longer period, andA keeps a smaller value
for a longer period to improve the search accuracy.*us, the
global search and local search capabilities of the algorithm
are balanced.

4.4. ProportionalWeight Based on Step of Euclidean Distance.

W1 �
X1




X1


 + X2


 + X3



, (29)

W2 �
X2




X1


 + X2


 + X3



, (30)

W3 �
X3




X1


 + X2


 + X3



, (31)

X(t + 1) �
X1 × W1 + X2 × W2 + X3 × W3

3
. (32)

W1,W2, and W3 represent the learning rates for α, β, and
δ, respectively.*e proportional weight is used to update the
grey wolf position to speed up the convergence speed of the
algorithm.

*e transportation plan update method represented byω
is shown in Figure 4. *e transportation plan represented by
the αω in Figure 5 is the result that ω learns from α wolf. *e
ω learns β and δ in the same way, and the most effective
scheme in αω, βω, and δω is called ωmax. Comparing ωmax
with X(t + 1), if ωmax ≥X(t + 1), the transportation plan
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represented by the wolf to the transportation plan is update;
if ωmax ≤X(t + 1), 3PLs between nodes are rerandomly
distributed to undertake the proportion of transportation
tasks 10 times and the maximum utility value is ω10. If
ω10 ≥X(t + 1), the transportation plan is updated; other-
wise, the transportation plan waits for the next iteration to
update.

4.5. Procedures of ACS-IGWO

Step 1: set the maximum number of iterations tmax, A,
and C. A and C are randomly generated.
Step 2: the population is initialized with NP individuals
by the principle of ACS.

Step 3: calculate the utility value of all grey wolves in the
population, and sort according to the utility value.
*en, select the top three best wolves, and record their
positions as Xα, Xβ and Xδ.
Step 4: update the positions of other grey wolves in the
population by equations (29)–(32).
Step 5: update a by equation (28), and update A and C

by equations (25) and (26), respectively.
Step 6: if tmax is reached, the calculation is stopped, and
output the current optimal position Xα and its utility
value, otherwise, go to step 3.

5. Numerical Experiments

A 4PL company receives a logistics order with a total car-
rying capacity of 100. In an uncertain environment, it is
shown that customers are risk aversion to tardiness and
overspending. In order to complete transportation tasks
successfully, the 4PL integrator provides transportation
solutions to meet customer’s requirements for the transport
time and transport cost. An ACS-IGWO (ant colony system-
improved grey wolf optimizer) is applied to solve the 4PLRP.
To compare the efficiency of the proposed algorithm, ACS,
D-ACS (ant colony algorithm for heuristic dynamic pher-
omone update strategy) [26], and ACS-GWO (ant colony
system-grey wolf optimizer) are used to solve the resulting
optimization problem.

*is section presents three experiments with different
problem scales of 7-node example, 15-node example, and
30-node example, and they are named example I, example II,
and example III, respectively.

Firstly, the material data is described. Secondly, the
problem is analyzed from three points of view.*e influence
of model parameters on the results is analyzed, the cus-
tomer’s risk attitude is studied, and the transportation
modes are comparatively researched. Finally, the algorithm
is studied from the point of parameter combination, and the
validity and efficiency of the algorithm are verified by ex-
ample tests between algorithms.

5.1. Data Description. For example I, the data of nodes and
edges are shown in Tables 2 and 3, respectively, and there are
a total of 33 edges. In addition, when the case scale is fifteen
nodes for example II, there are a total of 91 edges, and when
the case scale is thirty nodes for example III, there are a total
of 197 edges. Assume that the transportation task requires a
3PL supplier with a load capacity of 100 and a credibility
requirement of 8.

5.2. Problem Analysis and Discussion

5.2.1. Analysis of Model Parameters. *is section will first
take example I as an example to analyze the influence of the
model parameters T0, C0, φ1, and φ2 on the selection of
transportation plans. *en, the optimal combination pa-
rameters, the optimal route, and its utility are obtained. *e
utility is represented by U on different examples.
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Figure 4: *e update mode of the transportation plan.
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(1) .e Impact of T0 on the Optimal Route. Firstly, set
C0 �65, ω1 � 0.4, and ω2 � 0.6. 1⟶ (10.8, 30.2)⟶ 2 in-
dicates that the route passes through v1 and v2, selects 3PL 1
to complete 80% of transportation tasks, and selects 3PL 3 to
complete the rest 20% transportation task between the two
nodes. And the R represents the optimal route. For different
values of T0, the result is shown in Table 4.

It can be seen from Table 4 that a series of optimal routes
are obtained with a variance of T0, and the insight is given as
follows. (1) Different values T0 generate different optimal
routes. When T0 � 50, the optimal route that satisfies the
customer’s requirements for T(R) and C(R) is found for the
first time. (2) It can be seen from the grey part of Table 5 that

C(R) is extended from [53.4, 55.3] to [54.9, 56.9], and T(R) is
reduced from [54.8, 58.5] to [53.3, 57.6]. *e optimal route
that satisfies the customer’s requirements is obtained. When
only considering the tardiness of the route, the customer is
willing to choose a route with a relatively higher cost, where
both T(R) and C(R) meet the requirements. It also shows
that the customer is risk aversion and has behavioral
characteristics against loss. (3) If the customer’s require-
ments for T(R) become looser, the utility of objective
function becomes the main factor, and it affects the optimal
route.

(2) .e Impact of C0 on the Optimal Route. Set T0 �65,
ω1 � 0.4, and ω2 � 0.6. Change the value of C0. *e results
are shown in Table 6 and the findings are as follows. (1)
Different values C0 generate different optimal routes. When
C0 � 40, the optimal route that satisfies the customer’s re-
quirements for T(R) and C(R) is found. (2) It can be seen
from the grey part of the table that T(R) is extended from
[53.3, 57.6] to [55.0, 58.6], and C(R) is reduced from [54.9,
56.9] to [50.8, 54.8], and the optimal route meeting the
customer’s requirements is found. If the cost of the route is
only in overspending, the customer is willing to choose a
route with a relatively longer time, and both T(R) and C(R)
satisfy the requirements.*is shows that the customer is risk
aversion and has behavioral characteristics of loss avoidance.
(3) With the increase of C0, the customer’s requirements for
the optimal route transport cost are looser, and the objective
function utility value becomes the main factor determining
the optimal route.

(3) .e Impact of φ1 and φ2 on the Optimal Route. Set
T0 � 65, C0 � 65, and change the value of φ1 and φ2. *e
results are shown in Table 7. *e best parameters’ combi-
nation for example I is T0 � 65, C0 �65, ω1 � 0.4, and
ω2 � 0.6. And the utility value is 0.28. *e best route is
1⟶ (20.4, 30.5, 40.1)⟶ 3⟶ (10.5, 20.1, 30.4)⟶
4⟶ (20.4, 30.6)⟶ 7.

*rough the above analysis, the seven-node instance
parameter combination, the optimal utility value, and its
optimal path based on ACS-IGWO are obtained.
*rough the same method, we can get the fifteen and
thirty node case parameter combinations, as shown in
Table 8. *e optimal path of example I is shown in
Figure 5.

5.2.2. Customer’s Risk Attitude Analysis. *is section ana-
lyzes the influence of customer’s behavior characteristics on
the optimal route selection. In example I, if λ � 1 and υ � 1
in equations (7) and (8), the mathematical model is based on
RUT that is in line with the situation when the customer is a
risk-neutral attitude.

*e ACS-IGWO runs 100 times, and the average utility
is obtained, which is organized in Tables 9 and 10, re-
spectively. Figure 6 is drawn based on the information of the
two tables. RU represents the average utility of the customer
based on the RUT, and EUM represents the average utility of
the customer based on the EUT.

Table 2: Basic data of nodes for example I.

Node Ti Ci

1 3 5
2 3 4
3 4 4
4 2 3
5 3 4
6 5 2
7 4 5

Table 3: Basic data of edges for example I.

Node (i) Node (j) Edge (k) TS
ijk TL

ijk CS
ijk CL

ijk Qijk Dijk

1 2 1 12.7 13.4 11.4 12.2 80 8
1 2 2 19.8 21.3 14.7 15.5 120 10
1 2 3 19.8 20.4 13 15 70 9
1 3 1 21.6 23.2 13.7 14.3 90 10
1 3 2 16.5 17.2 16.9 18.6 120 11
1 3 3 17.8 18.5 18.4 19.5 60 9
1 3 4 9.2 10.4 11.4 13.2 80 10
2 3 1 10.8 11.3 12.8 13.7 100 14
2 3 2 9.7 10.3 11.5 12.5 70 10
2 4 1 12.5 13.4 10.5 11.3 90 10
2 4 2 10.5 11.2 9.9 11.6 110 12
2 5 1 11.7 12.2 16.8 17.5 140 11
2 5 2 10.7 11.2 14.9 15.6 70 8
3 4 1 9.7 10.3 8.6 9.5 110 9
3 4 2 11.8 12.5 11.8 12.6 80 9
3 4 3 12.7 13.3 10.4 11.7 90 10
3 6 1 12.7 13.4 18.5 19.7 90 9
3 6 2 12.9 13.8 10.1 11.7 80 10
3 6 3 9.9 10.5 8.7 9.6 70 11
3 6 4 17 18.8 6.4 7.2 60 15
4 5 1 11.8 12.3 7.8 8.9 70 12
4 5 2 9.8 10.1 13.5 15.5 110 7
4 5 3 12.8 13.2 11.8 12.6 90 11
4 6 1 13.7 15.3 14.5 16 120 9
4 6 2 8.9 9.4 7.9 9.5 110 7
4 7 1 12.5 13.2 11.4 12.2 50 14
4 7 2 10.4 11.3 10.2 11.3 70 10
4 7 3 11.6 12.3 13.8 15.5 90 8
5 7 1 12.5 13.5 13.4 15.1 80 12
5 7 2 12.6 13.6 12.7 13.1 70 15
5 7 3 11.7 12.1 14.8 15.7 90 13
6 7 1 9 10.5 9.9 10.1 110 10
6 7 2 17 18.5 6.4 7 90 9
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Table 4: *e impact of T0 on transportation plans.

T0 R U Cs CL TS TL

35 1⟶ (20.5, 30.1, 40.4)⟶ 3⟶ (10.5, 20.1, 30.4)⟶ 4⟶ (20.4, 30.6)⟶ 7 −0.31 52.3 55.1 55.2 58.8
40 1⟶ (20.3, 30.1, 40.6)⟶ 3⟶ (20.8, 30.2)⟶ 4⟶ (10.4, 20.2, 30.4)⟶ 7 −0.19 52.0 54.3 54.6 58.2
45 1⟶ (30.5, 40.5)⟶ 3⟶ (11)⟶ 4⟶ (20.4, 30.6)⟶ 7 −0.07 53.4 55.3 54.8 58.5
50 1⟶ (20.6, 40.4)⟶ 3⟶ (11)⟶ 4⟶ (20.5, 30.5)⟶ 7 0.05 54.9 56.9 53.3 57.6
55 1⟶ (21)⟶ 3⟶ (10.5, 20.5)⟶ 6⟶ (10.3, 20.7)⟶ 7 0.18 56.8 58.7 53.3 54.0
60 1⟶ (20.5, 30.1, 40.4)⟶ 3⟶ (10.5, 20.1, 30.4)⟶ 4⟶ (20.4, 30.6)⟶ 7 0.22 52.3 55.1 55.2 58.8
65 1⟶ (21)⟶ 3⟶ (10.7, 20.1, 30.2)⟶ 4⟶ (20.2, 30.8)⟶ 7 0.28 55.0 57.5 55.6 58.7
70 1⟶ (21)⟶ 3⟶ (10.8, 30.2)⟶ 4⟶ (20.4, 30.6)⟶ 7 0.32 56.8 58.5 53.7 58.7
75 1⟶ (21)⟶ 3⟶ (10.7, 20.1, 30.2)⟶ 4⟶ (20.4, 30.6)⟶ 7 0.36 55.4 57.9 55.6 58.7
80 1⟶ (21)⟶ 3⟶ (20.1, 30.2, 40.5)⟶ 6⟶ (10.4, 20.6)⟶ 7 0.40 55.8 57.8 54.1 56.8

Table 5: Logistics network adjacency list (7-node).

Node 1 2 3 4 5 6 7
1 0 3 4 0 0 0 0
2 0 0 2 2 2 0 0
3 0 0 0 3 0 4 0
4 0 0 0 0 3 2 3
5 0 0 0 0 0 0 3
6 0 0 0 0 0 0 2
7 0 0 0 0 0 0 0

Table 6: *e impact of C0 on transportation plans.
C0 R U Cs CL TS TL

40 1⟶ (21)⟶ 3⟶ (10.7, 20.1, 30.2)⟶ 4⟶ (20.2, 30.8)⟶ 7 −0.23 55.0 57.5 55.6 58.7
45 1⟶ (21)⟶ 3⟶ (20.3, 30.2, 40.5)⟶ 6⟶ (10.4, 20.6)⟶ 7 −0.12 55.8 57.8 54.1 56.8
50 1⟶ (20.6, 40.4)⟶ 3⟶ (11)⟶ 4⟶ (20.5, 30.5)⟶ 7 −0.01 54.9 56.9 53.3 57.6
55 1⟶ (20.1, 30.2, 40.7)⟶ 3⟶ (20.7, 30.3)⟶ 4⟶ (10.2, 20.1, 30.7)⟶ 7 0.14 50.8 54.8 55.0 58.6
60 1⟶ (30.5, 40.5)⟶ 3⟶ (11)⟶ 4⟶ (20.4, 30.6)⟶ 7 0.21 53.4 55.3 54.8 58.5
65 1⟶ (21)⟶ 3⟶ (10.7, 20.1, 30.2)⟶ 4⟶ (20.2, 30.8)⟶ 7 0.28 55.0 57.5 55.6 58.7
70 1⟶ (20.6, 40.4)⟶ 3⟶ (11)⟶ 4⟶ (20.5, 30.5)⟶ 7 0.33 54.9 56.9 53.3 57.6
75 1⟶ (21)⟶ 3⟶ (20.3, 30.2, 40.5)⟶ 6⟶ (10.4, 20.6)⟶ 7 0.37 55.8 57.8 54.1 56.8
80 1⟶ (21)⟶ 3⟶ (10.7, 20.1, 30.2)⟶ 4⟶ (20.2, 30.8)⟶ 7 0.42 55.0 57.5 55.6 58.7
85 1⟶ (21)⟶ 3⟶ (10.8, 30.2)⟶ 4⟶ (20.3, 30.7)⟶ 7 0.47 55.8 58.3 53.7 58.7

Table 7: *e impact of φ1 and φ2 on transportation plans.

φ1 φ2 R U Cs CL TS TL

0.1 0.9 1⟶ (30.6, 40.4)⟶ 3⟶ (10.1, 20.3, 30.6)⟶ 4⟶ (20.3, 30.7)⟶ 7 0.28 48.6 51.8 52.8 57.4
0.2 0.8 1⟶ (20.2, 30.2, 40.6)⟶ 3⟶ (20.4, 30.6)⟶ 4⟶ (20.5, 30.5)⟶ 7 0.27 49.6 52.8 53.6 57.2
0.3 0.7 1⟶ (20.5, 30.1, 40.4)⟶ 3⟶ (10.2, 20.5, 30.3)⟶ 4⟶ (20.3, 30.7)⟶ 7 0.27 50.6 54.5 53.4 57.0
0.4 0.6 1⟶ (20.4, 30.5, 40.1)⟶ 3⟶ (10.5, 20.1, 30.4)⟶ 4⟶ (20.4, 30.6)⟶ 7 0.28 51.9 54.7 54.0 57.6
0.5 0.5 1⟶ (21)⟶ 3⟶ (10.8, 30.2)⟶ 4⟶ (20.3, 30.7)⟶ 7 0.28 55.8 58.3 53.7 58.7
0.6 0.4 1⟶ (21)⟶ 3⟶ (20.3, 30.2, 40.5)⟶ 6⟶ (10.4, 20.6)⟶ 7 0.27 55.8 57.8 54.1 56.8
0.7 0.3 1⟶ (21)⟶ 3⟶ (20.3, 30.2, 40.5)⟶ 6⟶ (10.4, 20.6)⟶ 7 0.28 55.8 57.8 54.1 56.8
0.8 0.2 1⟶ (21)⟶ 3⟶ (20.3, 30.2, 40.5)⟶ 6⟶ (10.4, 20.6)⟶ 7 0.28 55.8 57.8 54.1 56.8
0.9 0.1 1⟶ (21)⟶ 3⟶ (10.5, 20.5)⟶ 6⟶ (10.3, 20.7)⟶ 7 0.27 56.8 58.7 53.3 54.0

Table 8: Model parameter combination and the best utility of different node cases.

Node T0 C0 φ1 φ2 Utility
7 65 65 0.4 0.6 0.28
15 90 120 0.4 0.6 0.30
30 150 180 0.4 0.6 0.30
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*e customer has higher requirements for transport
cost when C0 is small, so the two models take a negative
value, and the satisfaction of the routes is lower, which
means that the customer is in a loss state. As C0 increases
gradually, the values of the two models are increasing
gradually, and the customer is more satisfied with the
routes, which means that the customer transforms from
the loss state to the gain state. *at is, let the “0” utility be
the dividing line, if the customer’s utility is negative, the
customer is in a loss state; and if it is positive, the
customer is in a gain state. From Figure 6, the insights are
as follows:

(1) If the utility is negative, the customer is in a loss state.
Compared to EUM, the utility of RU is smaller,
which points out that the customer is risk aversion.
*e obtained optimal route will not delay, but it
overspends seriously. *e customer is risk averse to
overspending, so it is less satisfied with the optimal
routes

(2) If the utility is positive and C0 ≤ 55, the customer is at
the beginning of the gain state. Compared to EUM,
RU is smaller, which points out that that the cus-
tomer is risk aversion. In Table 6, when C0 � 55, C(R)
has a maximum value of 54.8, which is almost equal
to C0; in this perspective, the optimal routes will not
overspend. When C0 < 55, in Table 6, it can be found
that the optimal routes still overspend and do not
meet customer’s expectations

(3) If 55≤C0 ≤ 120, the customer is in the continuous
gain state. Compared to EUM, RU is larger, which
points out that that the customer is risk aversion.*e
optimal routes obtained neither overspend nor delay.
Compared with EUM, the RU value is larger, which
indicates that the customer is more conservative and
risk aversion and expects a higher utility value

(4) If C0 ≥ 120, the customer is in the “final” gain state.
Compared to EUM, RU is smaller, which points out
that that the customer is risk aversion. Although
there are no delays and overspending, the rate of
increase in customer satisfaction with the trans-
portation plan is gradually decreasing. *erefore,
customers are not willing to excessively reduce their
cost requirements, resulting in unnecessary cost
waste

(5) Overall, the RU curve of Figure 6 shows that the
slope of the loss state is higher than the gain state,
which indicates that the customer is more sensitive
to the loss than the gain.

When C0 is fixed, and C0 � 65, the trend of the result
is the same as in Figure 6, so the analysis will not be
repeated here. With the customer’s requirements for
transport time being gradually reduced, the customer’s
risk attitude is the same as the situation that the cus-
tomer’s transport cost requirements are gradually re-
duced. In summary, the model can accurately describe
the psychological characteristics of people. It also shows
that the consideration and analysis of customer behavior
characteristics in the 4PLRP have certain practical value
and practical significance.

5.2.3. Comparative Analysis of Transportation Modes. In
this section, two transportation modes are considered:
single 3PL and multiple 3PLs undertake transport tasks.
*e impact of different transportation modes in the cases of
simple tardiness, simple overspend, no tardiness, and
overspend is studied. Among them, simple tardiness,
simple overspending, and definitely no tardiness and
overspending are represented by F, O, and N, and single
3PL and multiple 3PLs are represented by A and M. when
T0 � 65, C0 � 65, φ1 � 0.4, and φ2 � 0.6.*e results are listed
in Table 11.

In Table 11, the following conclusions are obtained. In
three cases, the transportation cost of a single 3PL mode is

Table 9: Comparison of RU and EUM (T0 � 65).

C0 20 25 30 35 40 45 50 55 60 65 70 75 80

EUM −0.30 −0.22 −0.17 −0.12 −0.07 −0.02 0.03 0.08 0.13 0.18 0.23 0.28 0.33
RU −0.67 −0.56 −0.44 −0.31 −0.19 −0.07 0.05 0.14 0.21 0.28 0.33 0.38 0.43

Table 10: Comparison of RU and EUM (T0 � 65).

C0 85 90 95 100 105 110 115 120 125 130 135 140 145 150
EUM 0.38 0.43 0.48 0.53 0.58 0.63 0.68 0.73 0.78 0.83 0.88 0.93 0.98 1.03
RU 0.48 0.52 0.56 0.60 0.64 0.67 0.70 0.73 0.75 0.77 0.79 0.80 0.81 0.82
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Figure 6: Comparison of RU and EUM (T0�65).
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higher than the multiple 3PLs mode, and the time of both is
almost equal. A higher transportation cost corresponds to a
lower utility value; that is, the customer’s satisfaction with
the optimal route is lower.

5.3. Algorithm Analysis and Discussion. In order to test the
effectiveness of the proposed algorithm, firstly, the optimal
parameters’ combination of ACS-IGWO and the optimal
results are obtained. And then, the effectiveness of ACS-
IGWO is verified by comparing it with ACS, D-ACS (ant
colony algorithm for heuristic dynamic pheromone update
strategy) [26], and ACS-GWO.

5.3.1. Parameters Analysis of ACS-IGWO. In this paper, the
Taguchi method [27] is used to obtain the optimal pa-
rameters’ combination of the four algorithms.

In this section, the Taguchi method is used to obtain the
optimal parameters’ combination of the ACS-IGWO. Pa-
rameters such as α, β, Q, and ρ are selected to be tested. *e
application software Minitab19 is introduced to perform
parameter testing on ACS-IGWO for example I. *e or-
thogonal test table is shown in Table 12. *e signal-to-noise
ratio main effect diagram and the mean main effect diagram
are shown in Figures 7 and 8, respectively.

From Figures 7 and 8, the average value of the maximum
signal-to-noise ratio of the four parameters is −11.0578,
−11.0567, −11.0562, and −11.0566, respectively. To make the
means of the mean of the parameters, the largest, α, β, Q, and
ρ should take level one. *erefore, α � 3, β � 5, Q � 50, and
ρ � 0.6 are the parameters’ combination of ACS-IGWO.
Other parameters are NG, NP, and q0, which have fixed
value in each algorithm.*e parameters’ combination of the
four algorithms is shown in Table 13.

5.3.2. Comparative Analysis of the Four Algorithms. *e four
algorithms are run 100 times. To test the performance of the
algorithms, the relevant performance parameters of the
algorithm are defined. *e average maximum utility is Best,
the average minimum utility is Worst, the average utility is
Mean, the variance of utility is S, and the average running
time is Time (s). For the three examples, the paper is solved
by ACS, D-ACS, ACS-GWO, and ACS-IGWO. *e results
are shown in Table 14.

In Table 14, for example I, all algorithms can find the
global optimal solution. While for example II and example
III, ACS cannot find the global optimal solution and perform
worse with the increase of problem scale. And we can find

that ACS-IGWO performs best among the four algorithms.
From the comparison of variance value and the mean av-
erage utility of algorithms in each example, it can be found
that ACS-IGWO has a more stable convergence interval.

Table 12: *e orthogonal test table.

Running number Q α β ρ U
1 50 2 2Figure 0.6 0.2801
2 50 3 3 0.7 0.2800
3 50 5 5 0.8 0.2800
4 50 2 2 0.6 0.2801
5 50 3 3 0.7 0.2799
6 50 5 5 0.8 0.2799
7 50 2 2 0.7 0.2801
8 50 3 3 0.8 0.2799
9 50 5 5 0.6 0.2799
10 100 2 2 0.8 0.2800
11 100 3 3 0.6 0.2800
12 100 4 5 0.7 0.2800
13 100 2 2 0.7 0.2800
14 100 3 3 0.8 0.2799
15 100 5 5 0.6 0.2801
16 100 2 2 0.8 0.2799
17 100 3 3 0.6 0.2799
18 100 5 5 0.7 0.2799
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Figure 7: Signal-to-noise ratio main effect diagram.
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Figure 8: Mean main effect diagram.

Table 11: Transportation plans with different transportation
modes.
Situation Mode U CS CL TS TL

F A −0.22 56.8 58.1 54.7 58.0
M −0.19 52.0 54.3 54.6 58.2

O A −0.25 57.7 59.1 56.0 58.5
M −0.23 55.0 57.5 55.6 58.7

N A 0.25 58.9 62.1 55.4 59.0
M 0.28 55.0 57.5 55.6 58.7
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In addition, for the three examples, the optimal results
are collected and represented by the box plot, which is
shown in Figures 9–11. For example I in Figure 9, although
the four boxes are different in size, the difference of the
concentration range is almost zero, which indicates that the
four algorithms can find the optimal route accurately. For
example II in Figure 10, the optimal results of ACS-IGWO,
ACS-GWO, and D-ACS are better and more reliable than
ACS, which indicates that ACS-IGWO, ACS-GWO, and
D-ACS have strong ability to skip out of the local optimum.

*e solution effects of ACS-GWO and D-ACS are similar.
For examples II and III in Figures 10 and 11, the median line
of ACS-IGWO is closer to 0.3, and the upper and lower
limits are smaller, which shows that ACS-IGWO can find
more reliable results. Its feasibility and effectiveness for
solving this kind of routing optimization problem are
verified.

5.3.3. Comparative Analysis of the Efficiency of the Four
Algorithms. *e problem size and running time of each
algorithm in cases are shown in Table 15. In this problem,
the transportation path of the goods from the start node to
the endpoint will be planned, and the distribution ratio of
3PL between every two nodes in the path will be obtained.
Between the two nodes, the number of 3PL is between 2
and 4, and the proportion of goods allocated by 3PL is
between 0 and 1. *is ratio needs to be obtained through
optimization. It can be found that the scale of the problem
is very large, and there are even an infinite variety of
results. *erefore, we conservatively estimated the scale of
the problem and stipulated that two 3PLs were taken
between every two nodes, and the number of goods was
distributed 1 : 1. For example 1, there are at least 124
transportation possibilities; for example 2, there are at
least 761 transportation possibilities; for example 3, there

ACS-IGWO ACS-GWO ACS D-ACS
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0.2800
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Figure 9: Box plot of example I.
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Figure 10: Box plot of example II.
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Figure 11: Box plot of example III.

Table 13: Parameters’ combination of the four algorithms.

Example Algorithm α β Q ρ NG NP q0

I

ACS 2 2 50 0.7 30 30 0.7
D-ACS 2 2 50 0.6 30 30 —

ACS-GWO 2 2 50 0.7 30 30 0.7
ACS-IGWO 2 2 50 0.7 30 30 0.7

II

ACS 2 3 100 0.7 100 50 0.7
D-ACS 2 3 100 0.6 100 50 —

ACS-GWO 2 3 100 0.7 100 50 0.7
ACS-IGWO 2 3 100 0.7 100 50 0.7

III

ACS 2 3 100 0.7 150 80 0.7
D-ACS 2 3 100 0.6 150 80 —

ACS-GWO 2 3 100 0.7 150 80 0.7
ACS-IGWO 2 3 100 0.7 150 80 0.7

Table 14: Comparison of algorithms of different node cases.

Example Algorithm Best Worst Mean S

I

ACS-IGWO 0.28 −0.61 −0.01 0.01
ACS-GWO 0.28 −0.62 −0.01 0.03

ACS 0.28 −0.62 −0.03 0.04
D-ACS 0.28 −0.61 −0.04 0.05

II

ACS-IGWO 0.30 −0.51 −0.02 0.12
ACS-GWO 0.30 −0.51 −0.04 0.23

ACS 0.28 −0.67 −0.02 0.85
D-ACS 0.30 −0.53 −0.05 0.14

III

ACS-IGWO 0.30 −0.71 −0.01 0.12
ACS-GWO 0.30 −0.73 −0.01 0.32

ACS 0.25 −0.82 −0.06 1.76
D-ACS 0.30 −0.73 −0.03 0.30

Journal of Advanced Transportation 13



are at least 32,775 transportation possibilities. In Table 15,
the rate is the ratio of time to problem size.

*e running time of ACS-IGWO, ACS-GWO, and
D-ACS is shorter than that of ACS, and ACS-IGWO is the
fastest one. For the running time in example III, the con-
vergence speed can be arranged as ACS-IGWO>D-
ACS>ACS-GWO>ACS.

6. Conclusion

*is paper considers the customer’s tardiness and over-
spending risk aversion, based on the proportional utility
theory to establish a multi-3PL common distribution
model. ACS-IGWO is designed to solve the final opti-
mization problem.*e analysis of the experimental results
shows that when multiple 3PLs complete the trans-
portation task between two nodes, the model proposed in
this paper can accurately describe the customer’s risk
attitude. *is article compares ACS-IGWO with ACS-
GWO, ACS, and D-ACS to verify the effectiveness of ACS-
IGWO. Only single point to single point logistics dis-
tribution tasks are considered. In extensive research,
scholars can consider a distribution network with mul-
tiple supply starting points and multiple demand ending
points and establish a many-to-many route optimization
model to solve and study.
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[14] M. Dorigo and T. Stützle, Ant Colony Optimization, MIT
Press, Cambridge, MA, USA, 2004.

[15] M. Dorigo, V.Maniezzo, and A. Colorni, “Positive feedback as
a search strategy,” Technical Report 91-016, Dipartimento di
Elettronica, Politecnico di Milano, Milan, Italy, 1991.

[16] A. Colorni, M. Dorigo, and V. Maniezzo, “Distributed op-
timization by ant colonies,” in Proceedings of the First Eu-
ropean Conference on Artificial Life, pp. 134–142, Paris,
France, December 1992.

[17] M. Dorigo and L. M. Gambardella, “Ant colony system: a
cooperative learning approach to the traveling salesman

Table 15: Comparison of algorithms of different node cases.

Example Problem size Algorithm Time (s) Rate

I 124

ACS-IGWO 0.02 0.000161
ACS-GWO 0.04 0.000323

ACS 0.1 0.000807
D-ACS 0.05 0.000403

II 761

ACS-IGWO 0.3 0.000394
ACS-GWO 0.5 0.000657

ACS 1.5 0.001971
D-ACS 0.4 0.000526

III 32775

ACS-IGWO 1.2 0.000037
ACS-GWO 5.5 0.000168

ACS 22.5 0.000686
D-ACS 1.6 0.000049

14 Journal of Advanced Transportation



problem,” IEEE Transactions on Evolutionary Computation,
vol. 1, no. 1, pp. 53–66, 1997.

[18] S. Mirjalili, S. M. Mirjalili, and A. Lewis, “Grey wolf opti-
mizer,” Advances in Engineering Software, vol. 69, pp. 46–61,
2014.

[19] S. Saremi, S. Z. Mirjalili, and S. M. Mirjalili, “Evolutionary
population dynamics and grey wolf optimizer,” Neural
Computing and Applications, vol. 26, no. 5, pp. 1257–1263,
2015.

[20] A. A. Heidari and P. Pahlavani, “An efficient modified grey
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