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System resources allocation optimization through dynamic scheduling is key to improving the service level of bike-sharing. ,is
study innovatively introduces three types of invalid demand with negative effect including waiting, transfer, and abandoning,
which consists of the total demand of bike-sharing system. ,rough exploring the dynamic relationship among users’ travel
demands, the quantity and capacity of bikes at the rental points, the records of bicycles borrowed and returned, and the vehicle
scheduling schemes, a demand forecasting model for bike-sharing is established. According to the predicted bikes and the
maximum capacity limit at each rental point, an optimization model of scheduling scheme is proposed to reduce the invalid
demand and the total scheduling time. A two-layer dynamic coupling model with iterative feedback is obtained by combining the
demand prediction model and scheduling optimization model and is then solved by Nicked Pareto Genetic Algorithm (NPGA).
,e proposed model is applied to a case study and the optimal solution set and corresponding Pareto front are obtained. ,e
invalid demand is greatly reduced from 1094 to 26 by an effective scheduling of 3 rounds and 96 minutes. Empirical results show
that the proposedmodel is able to optimize the resource allocation of bike-sharing, significantly reduce the invalid demand caused
by the absence of bikes at the rental point such as waiting in a place, walking to other rental points, and giving up for other travel
modes, and effectively improve the system service level.

1. Introduction

With the popularization of the concept of sharing economy
and green travel, bike-sharing, as an energy-saving, envi-
ronmental protection, flexible, and healthy way of traveling,
is being increasingly popular. Bike-sharing refers to the bike-
sharing service provided by enterprises in residential areas,
commercial areas, public service areas, public transportation
stations, campuses, etc. As a new type of sharing economy
based on time-sharing rental model, this service has de-
veloped rapidly in recent years. According to the Global
Development Report on Bike-sharing (2018) [1] published
by Cheetah Lab, a global mobile data research firm showed
that, in 2019, there were more than 1,000 bike-sharing
companies and more than 300 million users. While vigor-
ously developing bike-sharing, various problems have also
emerged. ,e most prominent problem is unavailability of

bikes during peak hours which is due to uneven distribution
of bikes; some rental points have excessive bikes which
sometimes disrupt the road while some rental points have no
bikes. In view of this problem, apart from planning the
layout and scale of the bike-sharing rental points [2], it is also
imperative to establish an accurate and efficient dynamic
scheduling system of bike-sharing and maximize the ad-
vantages of sharing the economy by improving the service
level of system.

,e research of bike-sharing scheduling problem mainly
focuses on path selection and optimization. Ho and Szeto
designed an iterated tabu search heuristic to solve the static
bike repositioning problem [3]. Dell’Amico et al. considered
the Bike-sharing Rebalancing Problem (BRP) as a special
one-commodity pickup-and-delivery capacitated vehicle
routing problem and presented four mixed integer linear
programming formulations of this problem [4]. Brinkmann
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et al. presented an inventory routing problem for bike-
sharing systems [5]. Liu et al. proposed a multiobjective
model under one hybrid mode with morning fixed and
evening demand-responsive by considering the effect on
endogenous demands from bike-sharing and studied the
influence on feeder transit services [6]. Shi et al. formulated
the VRP model for bike-sharing inventory rebalancing and
vehicle routing and designed an improved particle swarm
optimization (PSO) algorithm to solve this problem [7].
Bulhões et al. established an integer programming model to
describe the static bike relocation problem with multiple
vehicles and visits [8]. Schuijbroek et al. took service level
requirements at each bike-sharing station into account and
designed route optimization model. ,en, a cluster-first
route-second heuristic algorithm was proposed to solve the
model [9]. Caggiani et al. proposed a comprehensive dy-
namic redistribution methodology to mitigate the imbalance
of bicycles among zones. ,e optimal model is aimed to
maximize the satisfaction of users and minimize the repo-
sitioning cost of vehicles [10]. Guan et al. proposed a layered
scheduling strategy for bike-sharing and a static scheduling
model with minimum time cost as the objective and vehicle
capacity as the constraint is established [11]. Ahmed et al.
proposed four upper bounds based on a genetic algorithm, a
greedy search algorithm and two hybrid methods that in-
tegrate a genetic algorithm, a local search method, and a
branch-and-bound algorithm for the balancing problem of
bike-sharing stations [12].

In the existing research, dynamic scheduling of bike-
sharing is defined as vehicle routing problems with time
window (VRPTW). Pureza et al. presented a mathematical
programming formulation for VRPTW, as well as a tabu
search and an ant colony optimization heuristic for
obtaining minimum cost routes [13]. Ben Ticha et al. pre-
sented an empirical analysis based on VRPTW and solved
with branch-and-price algorithms developed for the dif-
ferent types of graphs [14]. Harzi and Krichen proposed a
VND approach and benchmark instances were applied to
demonstrate the performance [15]. Hernandez et al. pro-
posed the branch-price framework to solve the multitrip
vehicle routing problem with time windows [16]. Pierre and
Zakaria proposed a stochastic optimized cyclic shift cross-
over operator for the optimizationmodel with time windows
using genetic algorithms [17]. Ma et al. proposed a back-
pressure-based model with fixed phase sequences for traffic
signal optimization under oversaturated networks and a
forecasting model for daily traffic flow through a contextual
convolutional recurrent neural network as well [18, 19].

,e above literature mainly focused on the optimization
method of path planning algorithm for scheduling vehicles,
while most of them considered the demand for bike-sharing
trips as static. Actually, as a new mode of transportation,
bike-sharing possesses the characteristics of both public
transportation and slow traffic.

,e problem comes originally from the dynamic con-
tradiction between the existing vehicles, parking space ca-
pacity, and the demand for borrowing and returning
vehicles. Based on the traffic travel theory, it is the focus of
this paper to predict the vehicle demand of each rental point

over multiple periods and to formulate the dynamic
scheduling scheme.,e cause of the problem is the dynamic
contradiction between the existing bicycles, capacity, and the
demand for borrowing and returning at rental points. Based
on the theory of transportation travel, this paper focuses on
the multi-period prediction of bicycle demand at each rental
point and the formulation of dynamic scheduling scheme.

,e rest of the paper is organized as follows: Section 2
presents the procedure of establishing a two-layer dynamic
coupling model through 5 steps. Section 3 conducts a case
study to illustrate the feasibility and effectiveness. Section 4
concludes with a summary of the main findings in this
research and suggestions for future study.

2. Methodology

2.1. Problem Description. Bike-sharing is generally con-
centrated in residential areas, commercial areas, subway
stations, and other places with high demand for travel and
transfer. ,erefore, the continuous distribution of bike-
sharing in space can be aggregated into a series of discrete
rental points on the road network. All bike-sharing users
travel from one rental point to another.

,e bike-sharing scheduling system consists of a series of
bike rental points, scheduling vehicles, and a parking base.
,e scheduling process is as follows: the command center
generates a scheduling scheme according to the scheduling
requirements of one or more rental points, which is executed
by the scheduling vehicles. ,e vehicles start from the
parking base, load and unload the bikes at multiple rental
points according to the scheme, and finally return to the
base.

,e difference between bike-sharing scheduling prob-
lems and general vehicle dynamic scheduling problems is as
follows:

(a) Fairness: as a form of public transport, bike-sharing
treats all users equally, and there is no indicator of
the importance of the rental points.

(b) Flexibility: there is no fixed path or rigid time
window for bike-sharing scheduling.

(c) Flow direction: bikes between rental points will
generate flow direction according to travel demand;
that is, bikes borrowed from one point must return
to that point or arrive at another point after a period.
,is demand is predictable.

(d) Waiting, transfer, and abandoning: when the travel
demand at one point is greater than the existing
bikes, the excess demand waits in place according to
the expected cost, transfers to the nearby rental point
(voluntarily looking for bikes), or even cancels (drop
for other modes of travel), the probability of which is
affected by the user’s personal characteristics.

,e above characteristics determine that the bike-
sharing scheduling scheme must be premised on the dy-
namic change of travel demand. Furthermore, it depends on
the relationship between the number of bikes and the de-
mand at the point when the scheduling vehicles arrive.
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,erefore, this paper describes the dynamic scheduling
problem of bike-sharing as follows:

,e bike-sharing system consists of H scheduling ve-
hicles, 1 parking base, and N rental points.

,e scheduling period is from t0 to tK. ,e capacity of
each rental point is Ci, i � 1, 2, · · · , N. ,e bikes at rental
point i at time tk, k � 0, 1, · · · , K is V

tk

i ; the total demand of
borrowing bikes is indicated as D

tk

i . According to the current
status and location of the scheduling vehicle h, combined
with the borrowing and returning records of the past, the
scheduling demand of each rental point is predicted, and a
scheduling optimization scheme including scheduling ve-
hicles, scheduling order (set each rental point to be
scheduled only once), arrival time, and number of bikes is
formulated, so as to ensure the lowest cost of travel for all
bike-sharing users at the minimum cost.

2.2. Model Formulation. According to the analysis above,
the dynamic scheduling model of bike-sharing includes two
submodels: lower demand prediction and upper scheduling
optimization. ,e former is used to establish the dynamic
relationship among the users’ travel demands, the quantity
and capacity of bikes at the rental points, the records of
bicycles borrowed and returned, and the vehicle scheduling
schemes, while the latter formulates the optimal scheduling
scheme according to the prediction results.

2.3.DemandForecastingModel. Let us start with a definition
of the invalid demand of bike-sharing, as shown in Figure 1.

When a user arrives at a rental point, the bike would be
successfully borrowed and cycled to another rental point if
there are available bikes. Otherwise, the user will face three
options: wait in place for other users to return bikes, walk to
another rental point to borrow a bike, or give up and switch
to other modes of travel.

Let the total demand and returned bikes at the time of tk

rental point i be L
tk

i and R
tk

i , respectively, and the scheduling
amount is S

tk

i ; then, the bikes at the next time V
tk+1
i are the

result of the current bikes V
tk

i minus the total demand bikes
L

tk

i , plus the valid returned bikes R
tk

i as well as the scheduling
bikes S

tk

i :

V
tk+1
i � V

tk

i − L
tk

i + R
tk

i + S
tk

i . (1)

,e components are shown as follows.

2.3.1. Valid Demand L
tk

i . If the current bikes meet the total
demand for borrowing at this time, then the valid demand is
the total demand; otherwise, all bikes will be borrowed. ,e
valid demand is represented as

L
tk

i �
D

tk

i , D
tk

i ≤V
tk

i ,

V
tk

i , D
tk

i >V
tk

i .

⎧⎨

⎩ (2)

2.3.2. Invalid Demand L
tk

i . ,e invalid demand L
tk

i can be
expressed as

L
tk

i � D
tk

i − V
tk

i � W
tk

i + T
tk

i + A
tk

i , D
tk

i >V
tk

i . (3)

In the formula, L
tk

i represents the invalid number of
bikes borrowed by time tk and at rental point i. W

tk

i , T
tk

i , and
A

tk

i represent the number of waiting, transfer, and aban-
doning of bikes by time tk at the rental point i.

,e following assumptions are made for the invalid
demand and formulas (4) to (7) are obtained:

(a) ,e waiting probability pw
tk

i of the rental point i is
positively correlated with the valid returned bikes
during this period and negatively correlated with the
waiting time and the users waiting in the previous
period.

(b) ,e transfer probability pt
tk

ij of walking from the
rental point i to rental point j is positively correlated
with the waiting users at the last time period of the
rental point i, and the number of bikes that can be
borrowed at rental point j, and negatively correlated
with the expected returned bikes, and shortest path
distance between rental points i and j.

(c) ,e abandoning probability pa
tk

i at rental point i is
positively correlated with the waiting users in the
previous period and negatively correlated with the
expected returned of bikes at point i during this
period.

(d) All invalid users only make one choice within one
period and cannot be changed.

pw
tk

i � θ1 · pw
tk−1
i ·

R
tk

i

W
tk−1
i Ci

, (4)

pt
tk

ij � θ2 ·
W

tk−1
i · V

tk

j

R
tk

i · dij

, (5)

Successfully
borrowed a

bike

Walk to another
point for bikes

Cancel

Find bikes 
available

Yes

Waiting?

No

Transfer?

Waiting
Yes

No

No

Yes

Return the
bike

Arrive at a
rental point

Figure 1: ,e invalid demand of bike-sharing.
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pa
tk

i � θ3 ·
W

tk−1
i

R
tk

i

, (6)

pw
tk

i + 
N

j�1
pt

tk

ij + pa
tk

i � 1. (7)

In the formula, θ1, θ2, θ3, and pw
t0
i are all undetermined

coefficients greater than 0, which are related to the user’s
individual characteristics, and can be determined by SP/RP
survey. dij in formula (5) represents the shortest path
distance between the rental points i and j, which is generally
implemented by Dijkstra algorithms. Equation (7) guar-
antees that the sum of the probabilities of waiting, transfer,
and abandoning is 1.

,e above formula is summed up to get the amount of
waiting, transfer, and abandoning in the invalid demand of
time tk at rental point i.

T
tk

i � 

L
tk

i

s�1
pt

tk

i ,

� θ2
V

tk

j

R
tk

i · rij



L
tk

i

s�1
W

tk−1
i ,

W
tk

i � 

L
tk

i

s�1
pw

tk

i ,

� θ1
R

tk

i

Ci



L
tk

i

s�1

pw
tk−1
i

W
tk−1
i

,

A
tk

i � 

L
tk

i

s�1
pa

tk

i ,

� θ3
1

R
tk

i



L
tk

i

s�1
W

tk−1
i .

(8)

2.3.3. Valid Return R
tk

j . ,e valid return bikes are deter-
mined by the valid demand at the starting rental point and
the distribution probability matrix between the starting
point and the ending point. ,e latter is defined as

P
tk �

P
tk

11 · · · P
tk

1N

⋮ P
tk

ij ⋮

P
tk

N1 · · · P
tk

NN

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

s.t. 0≤Pkj ≤ 1,



n

j�1
Pkj � 1, k � 1, 2, . . . , n.

(9)

In the formula, P
tk

ij represents the probability of bor-
rowing bikes from rental point i at time tk and returning
them at rental point j, which can be obtained from the
operation records of bike-sharing.

Since bikes are generally ridden in nonmotorized lanes,
the capacity limit of the road is generally not considered, so
the shortest path of distance can be used for conversion. ,e
valid return R

tk

j at rental point j is expressed as

R
tk

j � 

N

i�1
L

tk− dij/v( 
i P

tk− dij/v( 
ij , (10)

where v represents the average speed of the bike.

2.3.4. Scheduling S
tk

i . Set each rental point to be scheduled
only once, so S

tk

i is abbreviated as Si. ,e scheduling bikes at
rental point i are determined by scheduling optimization
model. Si < 0 indicates loading at the rental point, while
Si > 0 indicates unloading.

2.4. Scheduling Optimization Model. ,e optimization
model for scheduling is based on the predicted result of bikes
and the maximum capacity at each rental point. On the one
hand, the optimal scheduling scheme is to ensure the service
level and reduce the invalid demand. On the other hand, it
will also reduce the scheduling cost and improve the effi-
ciency of the operating enterprise. ,is is a multiobjective
problem and the objective function is established as follows:

min Z1(  � 
K

k�0


N

i�1
β1W

tk

i + β2T
tk

i + β3A
tk

i ,

� 
K

k�1


N

i�1
β1θ1

R
tk

i

Ci



L
tk

i

s�1

pw
tk−1
i

W
tk−1
i

+ β2θ2
V

tk

j

R
tk

i · rij



L
tk

i

s�1
W

tk−1
i

⎛⎜⎜⎜⎜⎜⎝

+ β3θ3
1

R
tk

i



L
tk

i

s�1
W

tk−1
i

⎞⎟⎟⎟⎟⎟⎠,

(11)

s.t. ∀Vtk

i � 0⋃

V

tk

i >CiB
ti×dt

j < 0, B
ti×dt

l >Cl, (12)

min Z2(  � 
H

h�1


N

i�0


N

j�0,j≠ i

QUOTE ta taXijh + c0 Si


 , (13)

s.t. i � 0, 
H

h�1


N

j�0
Xijh � H, 

H

h�1
yhi � 1, 

N

i�0


N

j�0,j≠i
SiXijh




≤Qh,

∀h � 1, 2, · · · , H, tj

� 
H

h�1


N

j�0,j≠ i

Xijh ti + cij + c0 Si


 , Xijh

�
1, vehicle h drive from rental point i to j,

0, otherwise,
 yhi

�
1, rental point i is served by vehicle h,

0, otherwise.


(14)
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In the formula, ta represents the travel time of the
scheduling vehicle from rental point i to j, c0 represents the
average loading and unloading time of one bike, H is the
total scheduling vehicles, and Qh is the maximum load of
vehicle h.

,e objective function (14) indicates that the minimum
invalid demand has a negative effect on the service level of
bike-sharing. Since this is a Soft TimeWindows Problem, the
time window constraints are incorporated into the target
function by introducing waiting penalty factor β1, transfer
penalty factor β2, and abandoning penalty factor β3. Con-
dition (15) indicates that the schedule needs to meet the
situation where there is no bike to borrow or the rental point
exceeds its capacity.

,e objective function (16) indicates that the scheduling
cost of an enterprise is minimized, which is represented by
the sum of the driving time, the loading, and unloading time
of the bikes. Condition (17) indicates that there are H paths
for departure from the rental point and H paths for arrival.
Condition (18) indicates that the rental point i can only
schedule one bike, condition (19) indicates that the loading
number of each vehicle does not exceed the capacity,
condition (20) indicates that the time to reach the rental
point j is equal to the time when the vehicle reaches point i
plus the loading and unloading time at point j and the travel
time from point i to point j.

2.5. Model Solution. ,e lower demand prediction model
regards all the bike-sharing rental points in the area as a
whole system, and it is appropriate to establish a system
dynamics simulation model to solve the changes of system
characteristics in the subsequent moments with the current
user demand, historical travel distribution, and scheduling
scheme for the input and deduction. ,e upper level
scheduling optimization model is a multiobjective optimi-
zation problem with a time window (vehicle routing
problems with time windows, VRPTW) that determines the
time and order of the scheduling vehicle through each rental
point based on the dual objectives of invalid demand and
enterprise scheduling cost. It is generally solved by heuristic
algorithm [20].

In the simulation process, the predicted scheduling
demand is influenced by the number of past bikes borrowed,
which is the basis for the development of scheduling scheme,
which will affect the demand prediction results of all rental
points in the process of development. At the same time, the
implementation of scheduling affects the valid demand and
pushes the time forward. Compare the difference between
valid and predicted demand to determine whether the
scheduling scheme needs to be adjusted. When the actual
time reaches the end, the result will be output. ,e simu-
lation process is shown in Figure 2.

,roughout the simulation process, on the one hand,
demand prediction and scheduling optimization are inter-
twined with constant feedback; on the other hand, sched-
uling optimization is a multiobjective VRP problem, which
needs to be considered separately. For the traditional VRP
problem, heuristic algorithm is generally used to solve the

problem. ,e selection of bike-sharing requirement path
needs the support of modelled and quantitative methods,
and it has the complete nature of NP. Genetic algorithm has
some outstanding advantages for solving this kind of
problem. Since the submodel of bike-sharing scheduling
involves two objective equations (11), (12) of user service
level and enterprise scheduling cost, it is advisable to adopt a
multiobjective genetic algorithm (MOGA). ,is method is
an algorithm developed in recent years to deal with mul-
tiobjective optimization problems using genetic algorithms.
Traditional methods are difficult to deal with large-scale
problems; MOGA not only can deal with large-scale
problems but also is not limited by the nature of the problem
(linear, continuous, microusability, multipeak, etc.) and can
search for the global optimal solution of the problem. It is
also independent of the form of Pareto’s optimal frontier
compared to conventional optimization methods [15]. We
choose the Ned Pareto Genetic Algorithm (NPGA) which is
more economical to calculate.

,e specific model solving steps are as follows.

Step 1. Starting from t0, the matrix is constructed by the
demand forecasting model to predict the number of
bikes at each rental point at any time in the future based
on historical bikes borrowing records.

V �

V
t0
1 · · · V

t0
N

⋮ V
tk

i ⋮

V
tK

1 · · · V
tK

N

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (15)

Step 2. Select n (n≤N) rental points to be scheduled
from V to satisfy V

tk

i � 0 or V
tk

i >Ci or other safety
inventory conditions. If there is no rental point that
needs to be scheduled, advance a time step and then
move on to step 1; otherwise, move to step 3.
Step 3. Develop a scheduling scheme, when a rental
point is determined;V needs to be updated.,e scheme
includes the scheduling sequence and the scheduling
number of each rental point Si.

Step 3.1. ,e construction of the solution and the
generation of the initial group.
A string of genes is used to represent a group of bike-
sharing rental point scheduling schemes. Each gene is
a positive integer variable of length N, where each
represents the order in which the corresponding al-
ternative locations are accessed, such as {3, 6, 1, 2, 5,
4}. According to the structure of the solution, L in-
dividuals are randomly generated to form the initial
group, which is denoted as G0 � g1, g2, · · · , gL .
Step 3.2. Adaptive Equation
,e adaptive equation reflects the function of the
individual’s proximity to the optimal solution in the
optimization calculation, and the adaptability equa-
tion for multiobjective problems can be directly ob-
jective equation (11) and (13).
Step 3.3. Selection
,e selection of Pareto genetic algorithm is based on
league selection of league-size 2, using a dynamically
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updated niche strategy. In league selection, two
individuals are randomly selected from a parental
population. Compare them with subpopulations
originally selected from the population. ,e two
individuals are superior to everyone in the sub-
population. If one of the individuals is not inferior
to all individuals of this subpopulation and the
other is at least inferior to one individual of this
subpopulation, then select the former, and if all of
them are inferior to at least one individual of this
subpopulation or none of them are inferior to any
individual of this subpopulation, then examine the
two individuals in the current subpopulation. ,is
method is done by placing the two individuals in
separate subpopulations and calculating their totals;
the individual with a smaller total number wins the
game.
Step 3.4. Crossover
Since the structure of the solution is nonbinary, the
method of selecting the crossing point and simply
cross recombination cannot be possible. ,e specific
method is to select the father individual and the
mother individual from the population and randomly
determine the crossing of the two parents, such as {3,
6, 1, 2, 5, 4} and {1, 2|3, 4|5, 6}, the cross-produced

child is the part between the cross points of the
mother, followed by the parent, and the repeated
numbers in the child are removed, that is, {3, 4, 6, 1, 2,
5}.
Step 3.5. Mutations
,e specific operation of the mutation is to select two
of the mutated individuals and exchange their posi-
tions. For example, 1 and 2 of {3, 6, 1, 2, 5, 4} are
mutated to {6, 3, 1, 2, 5, 4}.

Step 4. Scheduling Implementation
When a new rental point had been reached and the
current time is recorded after loading and unloading,
the scheduling is ended when t � tK; otherwise, go to
step 5.
Step 5. Check whether the valid bikes at each rental
point are consistent with the predicted value, and if
consistent, delete the current point from the scheduling
scheme and go to step 4; otherwise, return to step 1.

3. Case Study

A bike-sharing travel scenario in the peak hour is built to
test the model. Assume that there are 8 bike-sharing rental
points and 1 parking base in this area as shown in Figure 3,

Lower model: 
predicted V and S

Update D

Upper model: 
scheduling

optimization

The scheme is implemented, and the 
vehicles get to the next point

Update

No, k = k + 1

Consistent with
the prediction?

Yes, the scheme remains the same

No, adjust the sheme

Yes

End

Set tk = t0

tk = tK ?

Figure 2: Simulation flow chart of bike-sharing dynamic scheduling system.
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and the numbers in this figure mean the length of each link
and the unit is kilometers. ,e simulation starts at 7:00 am
and ends at 9:00 am with a time interval of 5 minutes. ,e
capacity of each rental point, the number of initial bikes,
and the demand by every time interval are shown in Table 1,
and the probability distribution of bike-sharing travel
destinations is shown in Table 2. ,e capacity of the
parking base is infinity.,e rental point will be added to the
scheduling scheme if the bikes are all gone or exceed the
capacity when the vehicle arrives.

One scheduling vehicle departs from the parked base and
eventually returns. ,e maximum loading is 300, and each
rental point is scheduled only once. Regardless of the in-
fluence of road traffic, the speed of walking, bike-sharing,
and scheduling vehicle is 5 km/h, 8 km/h, and 30 km/h,
respectively, and the average loading and unloading time is 3
seconds per bike. ,e bikes for each period without
scheduling are shown in Table 3.

,e bikes at points 1 and 5 exceed the capacity, and at
points 3, 4, 7, and 8 the bikes are empty. Only points 2 and 6
do not need to be scheduled.

,e multiobjective optimization model with the lowest
cost and minimum invalid demand was established by
using the Niche Pareto genetic algorithm. Suppose that
the population size is 50, the maximum evolutionary
algebra is 100, the probability of crossover is 0.9, the
probability of mutation is 0.04, the waiting penalty factor
β1 is 1, the transfer penalty factor β2 is 2, and the aban-
doning penalty factor β3 is 3. Taking the product of the
objective functions (19) and (21) as the optimal solution,
after multiple rounds of iteration (the evolution process is
shown in Figure 2), the optimal scheduling scheme is 7-4-
6-8-3-1-5-2.

As shown in Figure 4, the overall evolution obtained the
optimal solution for the first time in the 20th generation and
remained stable in the 49th generation.

Figure 5 reflects the Pareto frontier corresponding to the
optimal solution set of the double objective function, and the
weights can be further clarified according to valid demand.

,e bikes at each rental point under the optimal scheme
are shown in Table 4, and the records of vehicle are shown in
Table 5.

It can be seen from Table 3 to Table 5 that, after the
scheme is adopted, the vehicle unloads bikes at points 3, 4, 7,
and 8 and loads bikes at points 1 and 5. Most of the time,
there will be a bike to borrow and a place to return. ,rough
three rounds of effective scheduling which takes 96 minutes,
the invalid demand is greatly reduced from 1094 to 26, and
the bike-sharing resource allocation is better.
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Figure 3: Location of bike-sharing rental points and parking lot.

Table 1: Capacity, initial number, and demand of bike-sharing.

Point Ci V
t0
i D

tk

i (random)

1 100 45 1–5
2 100 50 1–5
3 120 65 6–10
4 110 50 6–10
5 120 55 1–5
6 80 40 1–5
7 90 45 6–10
8 70 65 6–10

Table 2: Travel destination selection probability of bike-sharing.

Point 1 2 3 4 5 6 7 8 Sum
1 0 0 0 0 0.2 0.2 0.3 0.3 1
2 0 0 0 0 0.5 0.1 0.2 0.2 1
3 0 0 0 0 0.1 0.5 0.3 0.1 1
4 0 0 0 0 0.2 0.2 0.1 0.5 1
5 0.2 0.5 0.1 0.2 0 0 0 0 1
6 0.3 0.1 0.4 0.2 0 0 0 0 1
7 0.1 0.1 0.3 0.5 0 0 0 0 1
8 0.2 0.4 0.2 0.2 0 0 0 0 1
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Table 3: Numbers of bikes for each period without scheduling.

Point 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
1 41 40 43 51 61 69 76 86 91 100 103 110 111 115 113 111 112 114 117 117 117 117 116 120
2 47 45 46 47 48 48 48 49 49 51 53 54 55 55 56 52 49 49 49 48 45 42 41 41
3 56 48 43 40 36 35 33 32 32 30 23 21 19 13 5 0 0 0 0 0 0 0 0 0
4 44 36 33 27 25 23 20 14 8 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 52 56 63 71 79 89 96 106 113 122 127 139 143 150 156 162 165 168 172 170 175 180 182 184
6 38 38 40 40 38 41 40 41 44 45 47 47 48 49 47 48 47 49 45 45 46 46 45 42
7 38 31 29 25 19 14 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 55 47 40 35 27 22 15 9 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Figure 4: Process of evolution.
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Figure 5: Pareto frontier.

Table 4: Numbers of bikes for each period in the optimal scheduling scheme.

Point 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
1 41 40 43 51 61 69 76 86 91 101 106 116 121 9 12 18 24 32 40 44 48 54 58 67
2 47 45 46 47 48 48 48 49 49 51 53 55 58 61 63 61 61 62 63 64 63 62 62 63
3 56 48 43 40 36 35 33 32 32 31 27 146 145 142 138 134 130 128 122 117 117 115 110 108
4 44 36 33 27 25 133 130 124 118 113 111 108 106 99 96 89 82 79 73 66 63 59 53 46
5 52 56 63 71 79 89 96 106 113 122 127 139 143 152 161 171 178 190 17 23 35 47 54 64
6 38 38 40 40 38 41 40 41 44 45 47 47 48 51 50 53 54 58 58 60 64 67 68 67
7 38 31 29 25 109 104 96 90 85 78 75 70 66 59 54 51 47 45 42 36 34 27 23 18
8 55 47 40 35 27 22 85 79 74 66 60 52 44 36 28 23 19 17 11 7 4 0 0 0
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4. Conclusion

Faced with the practical problem that the bike-sharing is
difficult to borrow and return due to the lack of effective
scheduling, this paper establishes a dynamic scheduling
model of bike-sharing with demand prediction and
scheduling optimization and proposes a model solution
method based on NPGA. ,e model is validated by a case
study. By optimizing the scheduling, the attitude of waiting,
transfer, and abandoning by users when they cannot
borrow a bike will be significantly reduced. ,e results
show that rational dynamic scheduling can effectively
optimize the resource allocation and improve the service
level of system.

In order to simplify the model, some practical prob-
lems were not considered, including the prediction of
demand, the uncertainty of scheduling time, the gender,
age, travel purpose, and other personal characteristics of
the users into the waiting, transfer, and abandoning
probability functions. ,ese issues will be the focus of
future research.
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“,e static bike relocation problem with multiple vehicles and
visits,” European Journal of Operational Research, vol. 264,
2018.

[9] J. Schuijbroek, R. C. Hampshire, and W.-J. Van Hoeve,
“Inventory rebalancing and vehicle routing in bike sharing
systems,” European Journal of Operational Research, vol. 257,
no. 3, pp. 992–1004, 2017.

[10] L. Caggiani, R. Camporeale, M. Ottomanelli, and W. Y. Szeto,
“Amodeling framework for the dynamic management of free-
floating bike-sharing systems,” Transportation Research Part
C: Emerging Technologies, vol. 87, pp. 159–182, 2018.

[11] H. Guan, S. Lu, and M. Song, “Hierarchical scheduling
strategy for free-floating bike-sharing,” Journal of Chongqing
Jiaotong University (Natural Science), vol. 39, no. 02, pp. 1–7,
2020.

[12] A. K. Ahmed, K. Imed, and L. Karim, Lower and Upper
Bounds for Scheduling Multiple Balancing Vehicles in Bicycle-
Sharing Systems, Springer Berlin Heidelberg, vol. 23, no. 14,
Berlin, Germany, 2019.

[13] V. Pureza, R. Morabito, and M. Reimann, “Vehicle routing
with multiple deliverymen: modeling and heuristic ap-
proaches for the VRPTW,” European Journal of Operational
Research, vol. 218, no. 31, pp. 636–647, 2012.

[14] H. Ben Ticha, N. Absi, D. Feillet, and A. Quilliot, “Empirical
analysis for the VRPTW with a multigraph representation for
the road network,” Computers & Operations Research, vol. 88,
pp. 103–116, 2017.

[15] M. Harzi and S. Krichen, “Variable neighborhood descent for
solving the vehicle routing problem with time windows,”
Electronic Notes in Discrete Mathematics, vol. 58, pp. 175–182,
2017.

[16] F. Hernandez, D. Feillet, R. Giroudeau, and O. Naud,
“Branch-and-price algorithms for the solution of the multi-
trip vehicle routing problem with time windows,” European

Table 5: Records of vehicle in the optimal scheduling scheme.

Scheduling ID Time Point Loaded
1 15 9 300
1 17.217 7 300
1 21.717 7 210
1 23 4 210
1 28.5 4 100
1 30.117 8 100
1 33.617 8 30
1 38.34 9 30
2 51.84 9 300
2 52.792 3 300
2 58.792 3 180
2 61.285 1 180
2 67.285 1 300
2 68.848 9 300
3 83.848 9 0
3 85.413 5 0
3 94.613 5 184
3 96.177 9 184

Journal of Advanced Transportation 9

https://www.chinanews.com/cj/2018/03-07/8462117.shtml
https://www.chinanews.com/cj/2018/03-07/8462117.shtml


Journal of Operational Research, vol. 249, no. 2, pp. 551–559,
2016.

[17] D. M. Pierre and N. Zakaria, “Stochastic partially optimized
cyclic shift crossover for multi-objective genetic algorithms
for the vehicle routing problem with time-windows,” Applied
Soft Computing, vol. 52, pp. 863–876, 2017.

[18] D. Ma, J. Xiao, X. Song, X. Ma, and S. Jin, “A back-pressure-
based model with fixed phase sequences for traffic signal-
optimization under oversaturated networks,” Institute of
Electrical and Electronics Engineers Transactions on Intelligent
Transportation Systems, vol. 2020, 12 pages, 2020.

[19] D. Ma, X. Song, and Li Pu, “Daily traffic flow forecasting
through a contextual convolutional recurrent neural network
modeling inter-and intra-day traffic patterns,” Institute of
Electrical and Electronics Engineers Transactions on Intelligent
Transportation Systems, vol. 2020, 10 pages, 2020.

[20] K. Braekers, K. Ramaekers, and I. Van Nieuwenhuyse, “,e
vehicle routing problem: state of the art classification and
review,” Computers & Industrial Engineering, vol. 99,
pp. 300–313, 2016.

10 Journal of Advanced Transportation


