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In order to improve the accuracy, reliability, and economy of urban traffic information collection, an optimization model of traffic
sensor layout is proposed in this paper. Considering the impact of traffic big data, a set of impact factors for traffic sensor layout is
established, including system cost, multisource data sharing, data demand, sensor failures, road infrastructure, and sensor type.
)e impacts of these influential factors are taken into account in the traffic sensor layout optimization problem, which is
formulated in the form of multiobjective programming model that includes minimum system cost, maximum truncation flow,
minimum path coverage, and an origin-destination (OD) coverage constraint. )e model is solved by the tolerant lexicographic
method based on a genetic algorithm. A case study shows that the model reflects the influence of multisource data sharing and
fault conditions and satisfies the origin-destination coverage constraint to achieve the multiobjective optimization of traffic
sensor layout.

1. Introduction

With the development of Intelligent Transportation Systems,
large-scale acquisition of urban traffic data has become
possible by fixed detectors, such as inductive loop detectors
[1], microwave radar detectors [2] and video detection
technology [3], moving detectors as probe-vehicle systems
[4], and new detectors, such as Bei Dou Navigation Satellite
systems [5, 6], mobile devices [7, 8], and wireless trans-
mission technology [9]. )erefore, traffic sensor is an im-
portant part of urban traffic information collection, and its
optimal layout is of great significance.

In recent years, optimal traffic sensor layout model is
mostly based on the theory of intelligent algorithms [10],
graph theory [11], and mathematical planning [12], con-
sidering various factors. On one hand, the objective external
conditions of detector layout have been well investigated.
Hao et al. [13] proposed the traffic detector optimal location
model and algorithm for dynamic OD estimation. Shao et al.
[14] built the network sensors model based on turning ratios.
Bertini and Lovell [15] explored infrastructure and traveler

characteristics and put forward a model on accurate freeway
travel time estimation for traveler information. Zhang and
Jin [16] explored the problem of traffic flow detector layout
on highways with the optimization goal of minimizing the
travel time estimation error. Li et al. [17] investigated the
reliability of traffic information spatially and then researched
the optimal traffic sensor layout. Overall, the most studies
develop mathematical models to optimize the sensor layout
based on road conditions and research objectives.

On the other hand, the sensor layout should not only
consider the location and ensure the reliability of the data,
but also consider the detection target, the engineering cost,
the subsequent service life, etc. )erefore, with the devel-
opment of measurement technology, the research related to
the detector itself, such as sensor target and fault conditions,
has been developed. Barcelo et al. [18] built an optimal traffic
sensor layout model considering link and node coverage in
order to estimate time-varying origin and destination. Luo
et al. [19] considered the shortcoming of sensors configu-
ration during short-time prediction and proposed an im-
proved method for short-time traffic flow prediction based
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on genetic algorithm and wavelet neural network. Xiang
et al. [20] built a predictivemodel of detector layout based on
multipoint prediction method. Zhu et al. [21] analyzed the
classical traffic sensor layout model and proposed a two-
stage optimization model, which considered fault conditions
of the sensor. Determining the optimal number and location
of traffic sensors is the key to solving OD travel matrices.
However, techniques based on traditional link and node
coverage are not enough to collect sufficient road infor-
mation, and short-term traffic flow prediction is susceptible
to contingencies [22, 23], which requires a more refined
technical approach to improve the efficiency and accuracy of
obtaining road information.

In general, the optimal traffic sensor layout is conducted
by mechanism models and knowledge models, without
consideration of the traffic big data. But in practical prob-
lems, these two models have disadvantages in some complex
optimization problems. )e detector layout problem in-
volves many factors, and some of them are difficult to obtain
or unable to calibrate, which seriously affects the accuracy of
the mechanism model and may cause the model fails to
match the actual phenomenon. However, the knowledge
model is based on practical experience which is highly
influenced by the researcher’s subjectivity, and the scientific
validity of the model cannot be guaranteed, so it also cannot
be used to model the detector optimization.

Nowadays, there is rapid development of Mobile In-
ternet, Internet of )ings, cloud computing, and other
technologies, putting us into the age of big data [24]. Unlike
traditional traffic data, traffic big data has “6V” character-
istics [25] (volume, velocity, variety, veracity, value, and
visualization).

With the evolution of information technology and the
emergence of intelligent transportation cities, traffic big
data has been developed rapidly and applied in various
fields, such as logistics, public transportation, and social
economic. Nowadays, traffic big data plays an important
role in traffic data resources, and scholars, government, and
companies cooperate to develop new mechanism for
sharing and applying data resources [26, 27]. Xu and Yang
[28] solved the low acquisition efficiency and low quality of
data information of channel traffic flow collection system
and proposed a design method of waterway traffic data
collection system based on big data analysis and designed
software for data acquisition, which can meet the demand
for any types of transportation. Ji et al. [29] fully used traffic
big data by video monitoring to develop a study of vehicle
category mining and application analysis and the potential
applications of the urban traffic big data and POI (Point of
Interest, POI) in urban planning. Zhu et al. [30] proposed
an algorithm for real-time vehicle detection in automatic
number of plate recognition data, which can effectively
discover the platoon companions effectively. Zhang et al.
[31] analyzed the traffic big data of the main urban area in
Chongqing and established a road network operation
evaluation model to evaluate the urban tail number re-
striction scheme. Wen et al. [32] proposed a large-scale
search algorithm for bus trip chain based on historical bus
data, which consists of bus IC card data and bus GPS data,

and constructed a method and database for estimating bus
capacity rate. In addition, traffic big data has been applied
in urban traffic congestion evaluation [33], subway and taxi
connection travel planning [34], and short-time traffic flow
forecasting [35]. It is shown that traffic big data mainly
comes from three aspects: internet-based public travel
service data, industry-based production supervision data of
operating companies, and vehicle-based sensor collection
data of IoT(Internet of Vehicles) and IoV(Internet of
Vehicles). Big data has great potential information and
value, and diverse data types can be effectively used for road
management and research, combining big data with de-
tector optimization models and using big data appropri-
ately can create extremely high value at low cost.

)e emergence of the concept of big data for trans-
portation has spurred the emergence of big data-driven
theory, which led to a focus on big data-driven mathematical
modeling approaches. Data-driven model is a bottom-up
modeling process that starts with data, which is widely used
in the analysis of complex traffic systems and various traffic
optimization problems due to its high accuracy and igno-
rance of the mechanism. )erefore, the impact analysis on
the number and location of traffic detector deployment in
the context of traffic big data can be combined to build a
deployment optimization model based on the data-driven
modeling approach. Specifically, on the one hand, traffic big
data can describe the influences of traffic flow detector layout
in detail, which is useful for model building and solving; on
the other hand, data sharing can enrich the data sources of
the urban traffic information collection system and reduce
the number of traffic flow detector layouts.

)erefore, the purpose of this paper is to present an
optimal traffic sensor layout model in the context of traffic big
data. According to the data characteristics of traffic big data,
this paper establishes an evaluation index system for the
influencing factors of traffic sensor layout and solves it by
tolerance hierarchical sequence method based on genetic
algorithm, which verifies the validity of the optimization goal
and the feasibility of solution. Combining big data with the
layout optimization is cost-effective for significantly opti-
mizing the layout of the sensor.)e remainder of this paper is
organized as follows: the influencing factors of traffic sensor
layout are given in Section 2. Section 3 presents the model
formulation of the multiobjective optimization model for
traffic sensor layout, in which the related parameters and
constraints are elaborated. In Section 4, a tolerant lexico-
graphic method based on genetic algorithm is proposed. A
case study based on the classical Nguyen-Dupuis network is
carried out in Section 5 to verify the reliability and feasibility
of the proposed model. Finally, in Section 6, a summary
concludes this paper.

2. The Influencing Factor Set of Traffic
Sensor Layout

2.1. Notation. To facilitate the presentation and analysis of
the optimal traffic sensor layout model, all definitions and
notations used throughout this work are described in
Table 1.
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2.2. %e Analysis of the Influencing Factors. )e quality and
integrity of the data acquired by the system, the one-time
input, and operation and maintenance cost of the system are
the main considerations in the planning and design of the
urban traffic information acquisition system. Both of them
are closely related to the number and the specific position of
sensor layout in the road network. According to the traffic
big data, the influencing factors of traffic sensor layout are
analyzed as follows.

2.2.1. System Cost. Urban traffic information acquisition
system is a subsystem of ITS for which the hardware cost,
especially the purchase of traffic sensor, accounts for a large
proportion of the total investment. )e construction cost of
traffic sensor varies according to the type and location of the
road infrastructure. In addition, the sensor in the road
network should be maintained regularly under the influence
of environmental factors and service life. Optimizing the
layout of traffic sensor and reducing the acquisition cost,

Table 1: Notation definitions.

Symbol Definition
SC System cost
C Acquisition cost of the sensor
CC∗ Minimum system cost
CCmax Maximum system cost
U Construction cost of the sensor
V Maintenance cost for the sensor
a a section
A Set of sections in the road network, a ∈ A

d Type of sensor
D Set of common sensor types, d ∈ D

W Set of OD pairs w

IF Truncated flow
IF∗ Maximum truncation flow
IFmax Maximum value of truncation flow
β Set of βa,d

β∗ Optimal solution
K Set of path k

PC Number of paths contained in the section
PC∗ Minimum path coverage
qk Traffic flow on path k, which satisfies (8)
qa Traffic flow of section a

ηa Number of paths through the section a

cd Unit price of sensor type d, influenced by the market
td Average life of sensor type d

vd Average annual maintenance cost of sensor type d

rk Level of reliability for obtaining traffic data for path k, i.e., the probability that path k traffic data will not be obtained
r0 )reshold for the level of reliability
rw Level of reliability of obtaining traffic data of OD pairs w

Ea,d a failure of the sensor type of the section
pa,d Probability of failure of the sensor type d on the section a

ua,d Construction cost of the installation of sensor type d in section a

na,d )e number of sensors of type d that need to be installed on the section a

αa,d 1 if other systems have sensor type d on section α and 0 otherwise
βa,d 1 if urban traffic information collection system needs to arrange the sensor type d in section a and 0 otherwise
χa,d 1 if sensor typed on section a and 0 otherwise
δa,w 1 if section a is on a certain path of the OD pair w and 0 otherwise
ϕa,k 1 if section a is on the route k and 0 otherwise
ck 1 if a sensor on the path kand 0 otherwise
θa 1 if a sensor on section aand 0 otherwise
ea,d 1 if a failure of the sensor type d on the section a and 0 otherwise
λk 1 if traffic data for the path k is available and 0 otherwise
L1 Individual size, the number of elements in the set β
L2 Population size
P1 Selection probability
P2 Cross probability
P3 Variation probability
Gmax Maximum number of evolutions
εcc Tolerance factor for minimum system cost optimization
εIF Tolerance factor for maximum truncation flow
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construction cost, and maintenance cost of traffic sensor are
the main ways to reduce the total investment of Intelligent
Transportation System.

)e system cost related to the layout of traffic sensor can
be expressed as

SC � C + U + V. (1)

2.2.2. Multisource Data Sharing. Many subsystems of the
ITS and other applications have data collection capabilities.
For example, traffic flow data can be obtained not only from
the traffic signal control system and inductive loop detector
but also from a monitoring system (including traffic and
speed detection bayonets) and a microwave or video de-
tector. )rough multisource data sharing, the data can be
directly connected to the urban traffic information collection
system.

)e sensor layout of different systems in section a is
represented by the variable αa,d:

αa,d �
0,

1,
 (2)

where αa,d � 1indicates that other systems have sensor type
d on the section a; αa,d � 0 means the opposite.

2.2.3. Data Demand. )e data acquired by the urban traffic
information collection system consists of the data collected
by the system layout sensor and the data directly accessed by
other systems. Traffic managers and travelers hope to obtain
as much OD data and traffic flow data as possible. Con-
sidering the system functions of signal control system,
monitoring system, and self-provided sensor, the sensor
layout in the urban traffic information acquisition system
can be primarily considered for OD data acquisition. )ree
basic principles of the traffic sensor layout based on OD
estimation are as follows [36, 37].

(1) OD coverage principle:

)e sensor layout in the road network should be
fully covered to ensure that the travel information
of any OD pair can be observed. In other words, any
OD pair must have an observation section.
)e layout of the detector d on the section a is
expressed in variables βa,d and χa,d.

βa,d �
0,

1,


χa,d �
0, αa,d + βa,d � 0,

1, αa,d + βa,d > 0,

⎧⎨

⎩

(3)

)e variable δa,w is used to denote the attribution of
section a. When section a is on a certain path of the OD
pairw, it takes 1, otherwise 0.

δa,w �
0,

1.
 (4)

OD coverage principle requirements:


a


d

δa,wχa,d ≥ 1, a ∈ A, d ∈ D, w ∈W. (5)

(2) Maximum truncation flow principle.

Considering the accuracy of OD estimation, the
sensor should be installed in the section with large
net flow. For a certain OD pair, the sensor should be
installed on the path with the maximum flow ratio.
ϕa,k and ck are both 0-1 variables; ϕa,k � 1means the
section a is on the route k andck � 1 means there is
a sensor on the path k; the value of 0 means the
opposite.

ϕa,k �
0,

1,


ck �

0, 
a


d

ϕa,kχa,d � 0,

1, 
a


d

ϕa,kχa,d > 0,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

a ∈ A, d ∈ D.

(6)

)e maximum truncation flow principle requires
that

max IF(β) � 
k

ckqk, k ∈ K, (7)

qa � 
k

ϕa,kqk, k ∈ K. (8)

(3) Minimum path coverage principle:

Considering the accuracy of the OD estimate, the
sensor should be installed in such a way that the
total number of passing paths is as small as possible.
For a given path, the sensor should be installed on
the path containing the smallest number of paths.
ηa is the number of paths through the section a and
θa indicates the existence of a detector sectiona. If
there is no detector on the road section a, θa is 0,
else 1.

ηa � 
k

ϕa,k, k ∈ K,

θa �

0, 
d

χa,d � 0,

1, 
d

χa,d > 0,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

d ∈ D.

(9)

Minimum path coverage principle requires that

min PC(β) � 
a

θaηa , a ∈ A. (10)

(4) Sensor failure:
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)e sensor may fail due to the failure of detection
equipment or communication equipment, or en-
vironmental and human factors, which can reduce
the data quality. In the optimal layout of traffic
sensor, the probability of sensor failure should be
considered.
)e probability of sensor failure varies when dif-
ferent types of sensor are laid out for different types
of sections. For example, the failure probability of
an inductive loop detector installed on a section
with heavy trucks passing frequently is much higher
than average.
ea,d is related to the detector failure; ea,d � 1 when a
failure of the sensor type d is on the section a and 0
is the opposite.

ea,d �
0,

1,


Ea,d ∼ B ea,d, pa,d ,

P ea,d � 1  � pa,d.

(11)

(5) Road infrastructure:

Not all sections of the road can be laid out with
sensors due to road infrastructure constraints.
When section a cannot or is difficult to install
sensor type d, the feasible region of βa,d can be
reduced to 0. Alternatively, variable ua,d represents
the construction cost of the layout of sensor type
din section a, and let ua,d take a maximum number.
In addition, the construction cost of different types
of sensor installed on different types of sections
varies, as does the number of installations. na,d

indicates the number of sensors of type d that need
to be installed on the section a.

(6) Types of sensors:

Currently, common traffic sensors include induc-
tive loop sensors, video sensors, and microwave
radar sensors. )e selection of sensor types is
generally carried out using qualitative analysis, the
more important principles of which are to mini-
mize the number of traffic flow sensor types and to
use multifunctional sensors where possible to fa-
cilitate management and reduce costs.
Different types of sensors have special applicability
[38]; for example, roads covered by ice and snow
frequently have a high susceptibility to inductive
loop sensor malfunctions; cities with long night
affect the efficiency of video sensor; roads with
obvious characteristics of mixed traffic flows have
low accuracy of microwave radar sensors. Con-
sidering the principle of selecting sensor type and
the applicable scope of sensor, the optimal traffic
sensor layout model considers that microwave
radar sensor is installed on urban expressway, and
video sensor is installed on urban trunk road and
subtrunk road.

3. Multiobjective Optimization Model for
Traffic Sensor Layout

3.1. Minimum System Cost Optimization. )e minimum
system cost optimization model based on (1) is established
by the acquisition cost, construction cost, and maintenance
cost of the traffic flow sensor.

minCC(β) � 
a


d

cdna,d + ua,d + tdvdna,d βa,d,

a ∈ A, d ∈ D.

(12)

3.2. Maximum Truncation Flow Optimization.
Considering the impact of sensor failure, the expression for
reliability level rk is shown as follows [39]:

rk � 
a

1 − ϕa,k 1 − 
d

pa,d 
αa,d+βa,d⎡⎣ ⎤⎦

⎧⎨

⎩

⎫⎬

⎭, (13)

where r0 indicates the threshold for the level of reliability,
and if rk ≤ r0, traffic data for the path k is accessible; if rk > r0,
traffic data for the path is unavailable.

λk is related to the possibility of obtaining traffic data for
path k. If traffic data for the path k is available, variable
λktakes 1, otherwise 0.

λk �
0, rk > r0,

1, rk ≤ r0.
 (14)

A maximum truncation flow optimization model is
constructed based on (7), which is expressed as follows:

max IF(β) � 
k

λkqk, k ∈ K. (15)

3.3. Minimum Path Coverage Optimization. )e minimum
path coverage is affected by multiple sources of data sharing
and is not affected by sensor failure. )e expression for the
minimum path coverage optimization model is shown in
(10).

3.4. OD Coverage Constraints. Consider the effect of sensor
failure, rw indicates the level of probability of obtaining
traffic data of OD pairs w, that is, the probability of not
obtaining traffic data of OD pairs w. )e expression is as
follows:

rw � 
a

1 − δa,w 1 − 
d

pa,d 
αa,d+βa,d⎡⎣ ⎤⎦

⎧⎨

⎩

⎫⎬

⎭. (16)

If rw ≤ r0, traffic data for the OD pairs w is accessible;
rw > r0, traffic data for the OD pairs w is unavailable.

On the basis of (5), the OD coverage constraint is
presented:

rw ≤ r0, w ∈W. (17)
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3.5. Multiobjective Optimization Model. Consider a multi-
objective optimization model of the traffic sensor layout can
be expressed as

minCC(β) � 
a


d

cdna,d + ua,d + tdvdna,d βa,d,

max IF(β) � 
k

λkqk,

minPC(β) � 
a

θaηa,

s.t.rw ≤ r0,

βa,d � 0, 1,

a ∈ A, d ∈ D, w ∈W, k ∈ K.

(18)

4. Tolerant Lexicographic Method Based on
Genetic Algorithm

4.1. Tolerant Lexicographic Method. For the multiobjective
optimization problem of traffic sensor layout, an im-
provement in one subobjective may reduce performance in
one or more, which make each subobjective as optimal as
possible to obtain the optimal solution—Pareto optimal
solution. In this paper, the tolerant lexicographic method is
chosen for solving the model [40]. )e tolerant hierarchical
sequence method classifies the objective functions in the
optimization problem according to their importance and
then solves the problem orderly to ensure the optimal so-
lution for the next objective. )is method has superior
performance, and each decision step has practical meaning
and context, which is a method that can transform a
multiobjective optimization problem into a series of single-
objective optimization problems for solving, improving the
model’s solving efficiency significantly [41].)e basic ideal is
the tolerance, which increased from the optimization value
of the previous step, which is added as a new target con-
straint to the next step, and the final iterative solution is the
optimal solution of the original problem [42]. Specific
processes include the following.

Step 1: minimum system cost CC∗ is obtained by
solving model below:

min CC(β) � 
a


d

cdna,d + ua,d + tdvdna,d βa,d,

s.t.
rw ≤ r0,

βa,d � 0, 1,

a ∈ A, d ∈ D, w ∈W, k ∈ K.

(19)

Step 2: maximum truncation flow IF∗ is calculated with
adding the constraint on the tolerance factor εcc:

max IF(β) � 
k

λkqk,

s.t.

rw ≤ r0,

CC(β) − CC∗ εCC + 1( ≤ 0,

βa,d � 0, 1,

a ∈ A, d ∈ D, w ∈W, k ∈ K.

(20)

Step 3: minimum path coverage PC∗ and the optimal
solutionβ∗ are given by increasing the constraint on the
tolerance factor εIF:

min PC(β) � 
a

θaηa,

s.t.

rw ≤ r0,

CC(β) − CC∗ εCC + 1( ≤ 0,

IF(β) − IF∗ εIF + 1( ≥ 0,

βa,d � 0, 1,

a ∈ A, d ∈ D, w ∈W, k ∈ K.

(21)

4.2. Genetic Algorithm. When applying tolerant lexico-
graphic method to solve the multiobjective optimization
model, the optimization problem for each subobjective
needs to be solved, which is nonlinear 0-1 integer pro-
gramming and can be solved by genetic algorithms [43]. )e
basic steps [44] are as follows:

Step 1 (initialization): the binary encoding is used to set
individual size L1, that is, the number of elements in the
setβ, population sizeL2, selection probabilityP1, cross
probabilityP2, variation probabilityP3, maximum
number of evolutionsGmax, etc.
Step 2 (adaptation): for the minimization problem, the
reciprocal of the function value is the fitness value of
the individual.
Step 3 (selection): the roulette method is used to
randomly select good individuals from the old pop-
ulation to form new populations to breed the next
generation of individuals.
Step 4 (crossover): two individuals are randomly se-
lected from the population for chromosomal exchanges
and combinations that pass on excellent characteristics
from the parent string to the child string, producing
new excellent individuals.
Step 5 (variation): one individual is randomly selected
from the population, and a point in the individual is
selected to mutate as a more superior individual.

5. Case Study

5.1. Basic Parameters of the Case. )e classical
Nguyen–Dupuis network [45] is used for the case study, with
13 nodes, 19 sections, and 4 OD pairs. )e Nguyen–Dupuis
network and basic characteristics are shown in Figure 1. )e
first item in parentheses is the section number, and the
second item is the free flow travel time; and the third item is
the traffic capacity (pcu/h). Nodes 1 and 4 are traffic demand
generation points, and nodes 2 and 3 are traffic demand
attraction points. )e OD traffic demand of this network is
given in Table 2.

)e optimal traffic sensor layout in the context of big
data requires considering a set of influencing factors.
However, calculating the system cost uses the road network
survey and choosing the type of detector is based on
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qualitative methods, both of which are difficult to show in
the case study. )erefore, specific conditions are set as
follows: the sections in the road network are all trunk roads;
section 13 is covered by the traffic monitoring system with
video detectors; section 8 is covered by the signal control
system with induction coil detectors; section 17 cannot be
installed detectors; other sections can be installed detectors
and the cost of the same type of detectors is equal.

Effective path sets and possible flow (pcu/h) are de-
termined by static traffic assignment calculations [46], as
shown in Table 3. For ease of calculation, the flow value is
approximated to an integer multiple of 5.

5.2. Optimizing the Effectiveness of Objectives. Minimum
system cost, maximum truncation flow, and minimum path
coverage models are solved by genetic algorithm and the
change of system cost, traffic flow intercept, and path
coverage with sensor layout’s number of points are shown in
Figures 2–4, respectively.

5.2.1. %e Minimum System Cost Model. As shown in
Figure 2, the system cost has a linear positive correlation
with number of points in the sensor layout, that is due to the
same type of sensor have the same system cost on the trunk
roads. )e higher the number of points, the greater the
system cost.

5.2.2. %e Maximum Truncation Flow Model. As shown in
Figure 3, there is an increasing trend between truncation
flow and the number of points at first, and the truncation
flow is optimal when the number of points exceeds two. For
different number of points, it may have one or more optimal
solutions to maximum truncation flow, where one of
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)
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 1
2,
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50

)
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 1
2,

 2
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) (18, 36, 150)

Destination

Destination

1

2

3

4

12

5 6 7 8

9 10 11

13

Normal section
Section cannot be installed
detectors

Video detectors
Induction coil detectors

Figure 1: Nguyen–Dupuis network.

Table 2: OD traffic demand.

OD pairs Origin Destination OD traffic demand (pcu/h)

1 1 2 350
2 1 3 350
3 4 2 350
4 4 3 350

Table 3: Effective path sets and flow.

Path Section Flow (pcu/h)

1 2⟶ 18⟶ 11 215
2 2⟶ 17⟶ 7⟶ 9⟶ 11 135
3 2⟶ 17⟶ 7⟶ 10⟶ 16 60
4 1⟶ 5⟶ 7⟶ 10⟶ 16 150
5 1⟶ 6⟶ 12⟶ 14⟶ 16 125
6 1⟶ 6⟶ 13⟶ 19 15
7 3⟶ 5⟶ 7⟶ 9⟶ 11 15
8 3⟶ 5⟶ 8⟶ 14⟶ 15 135
9 3⟶ 6⟶ 12⟶ 14⟶ 15 200
10 3⟶ 5⟶ 7⟶ 10⟶ 16 90
11 4⟶ 13⟶ 19 260
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optional solutions is taken arbitrarily to calculate the path
coverage. In addition, with the increase in dot numbers, the
path coverage corresponding to the truncated flow increases
volatility.

5.2.3. %e Minimum Path Coverage Model. As can be seen
from Figure 4, the path coverage decreases first and then
increases with the adding number of points. )e first re-
duction is due to installed sensors on the road. For different
number of points, it may have one or more optimal solutions
tominimum path coverage, where one of optional solutions is
taken arbitrarily to calculate the truncation flow. What is
more, the path coverage corresponding to the truncation flow
increases volatility with the increasing number of points.

5.2.4. Comparative Analysis. For ingle-objective optimiza-
tion, the range of feasible number of points is [1, 18;] the

system cost varies within [1.68, 30.24] and is optimal when
the, number of points is 1; the truncated flow varies in [725,
1400] and takes the optimal value when the number of
points is greater than 2; the path coverage varies in [4, 48]
and takes the optimal value when the number of points is 2
or 3.

In summary, Figures 2 to 4 describe the change of system
cost, traffic flow intercept, and path coverage and their
relationship, which prove the effectiveness of the multi-
objective programming model.

5.3. Calculation Procedure. )e specific steps to solve the
model are as follows:

Step 1 (minimum system cost optimization): the
minimum system cost CC∗ and the maximum system
cost CCmax can be obtained by solving (19), the values
of which are 1.68 and 30.24 million, respectively.
Step 2 (maximum truncation flow optimization): )e
maximum truncation flow IF∗ and the maximum value
of truncation flow IFmax are both 1400pcu/h according
to (20), on the basis of CC∗, CCmaxand

CC∗ εcc + 1(  � 0.2CCmax � 6.408. (22)

Step 3 (minimum contained path optimization): the
maximum path coveragePC∗ and the optimal sol-
utionβ∗ can be obtained by solving (21), on the basis of
IF∗, IFmaxand

IF∗ εcc + 1(  � (1 − 0.2)IFmax � 1120. (23)

PC∗ � 10and the optimal solution β∗ is that detectors
are installed in sections 2 and 3, where the type is a video
detector. )e system cost is 3.36 million, the traffic flow
intercept is 1125 pcu/h, and path coverage is 10.

5.4. Results and Discussion. )e optimization goal of traffic
sensor layout model includes minimum system cost,
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maximum truncation flow, minimum path coverage, and an
origin-destination (OD) coverage constraint, which meets
the data requirements and optimizes the system cost. An
optimal solution can be obtained by applying tolerant lex-
icographic method based on genetic algorithm.

In addition, the model takes into account the sharing of
data from multiple sources, the traffic jam system covers the
road section 13, and the video detector data connect to the
urban traffic information collection system, which reduces
the number of detector points. For example, the video de-
tector installed on road section 13 can satisfy the origin-
destination coverage constraint when putting one traffic
sensor on road section 7, road section 9, or road section 11;
otherwise, it cannot satisfy the origin-destination coverage
constraint when the number of points is 1.

Considering the influence of sensor fault condition,
signal control system covers the road section 8 in the case
study, and the induction coil detector of this section is easy
to fail, so it is necessary to increase the detector, improving
the system robustness. For example, without considering the
influence of sensor fault condition, only section 2 is a
possible solution. But it cannot satisfy the origin-destination
coverage constraint due to the fault conditions. In general,
the indicators considered in the optimization model, such as
whether to install detectors and the type and cost of detectors
installed, are easier to obtain in the actual case, which en-
ables a clear characterization of the influence of each factor
on the model results. )e computational steps of the model
are clear and the calculation is simple. After optimizing the
sensor layout with the optimization model, it shows an
obvious effect, which can prove that the constructed model
has strong feasibility and practicality.

6. Conclusions

In this paper, the optimal traffic sensor layout model, which
aims to promote the construction and development of urban
traffic information acquisition system, has been studied.
Considering the impact of traffic big data, a set of impact
factors for traffic sensor layout has been established, in-
cluding system cost, multisource data sharing, data demand,
sensor failures, road infrastructure, and sensor type. With an
optimal objective of minimum system cost, maximum
truncation flow and minimum path of inclusion, and OD
coverage as a constraint, the model was proposed and was
solve based on the tolerance lexicographic method of genetic
algorithm to demonstrate the validity of the optimization
target and the feasibility of the solution, with the classical
Nguyen–Dupuis network as a case.

)e multiobjective optimization model for traffic sensor
layout can not only guarantee the optimal system cost and
satisfy the data requirements consisting of OD coverage
principle, maximum truncation flow principle, and mini-
mum contained path principle but also reduce the dupli-
cation of detector layout under multiple source data sharing.
Also, system robustness in case of detector failure was
enhanced.

However, this paper presents an analysis based on an
arithmetic example, whereas the actual road network has

more constraints and more complex traffic conditions,
making the model difficult to apply. As different detectors
probably belong to different departments for management,
it is worth discussing whether the optimization of the
detector layout allows the sharing of data and achieves the
optimal effect. )e model should be extended in the next
study, where it will be applied to a specific problem in a city
to test the effectiveness and reliability of the model. Also,
the article does not consider the differences in data quality
between different detectors and the impact on data storage,
analysis, and application convenience. A comparison of
data collected before and after detector optimization should
be done to ensure that the model does not cause loss of
collected data. In addition, this paper considers the case of
detector failures, but does not go into the causes of detector
failures and the random distribution characteristics of the
probability of failure. It also neglects how to deal with the
case where the OD coverage constraint is not met after the
failure occurs, which is one of the directions for future
research.
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