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Quick and accurate crash detection is important for saving lives and improved traffic incident management. In this paper, a feature
fusion-based deep learning framework was developed for video-based urban traffic crash detection task, aiming at achieving a
balance between detection speed and accuracy with limited computing resource. In this framework, a residual neural network
(ResNet) combined with attention modules was proposed to extract crash-related appearance features from urban traffic videos
(i.e., a crash appearance feature extractor), which were further fed to a spatiotemporal feature fusion model, Conv-LSTM
(Convolutional Long Short-Term Memory), to simultaneously capture appearance (static) and motion (dynamic) crash features.
+e proposed model was trained by a set of video clips covering 330 crash and 342 noncrash events. In general, the proposed
model achieved an accuracy of 87.78% on the testing dataset and an acceptable detection speed (FPS> 30 with GTX 1060).+anks
to the attention module, the proposed model can capture the localized appearance features (e.g., vehicle damage and pedestrian
fallen-off) of crashes better than conventional convolutional neural networks. +e Conv-LSTM module outperformed con-
ventional LSTM in terms of capturing motion features of crashes, such as the roadway congestion and pedestrians gathering after
crashes. Compared to traditional motion-based crash detection model, the proposed model achieved higher detection accuracy.
Moreover, it could detect crashes much faster than other feature fusion-based models (e.g., C3D). +e results show that the
proposed model is a promising video-based urban traffic crash detection algorithm that could be used in practice in the future.

1. Introduction

Traffic crashes can cause property damage, injuries, death,
and nonrecurrent congestions. Accurate and fast crash
detection can help improve the response speed of incident
management, which in turn reduces injuries/fatalities and
congestions induced by crash occurrence. +us, developing
such crash detection methods is necessary and important for
traffic incident management.

Traditional crash/incident detectionmethodsmostly rely
on traffic flow modeling techniques [1–7]. +e basic idea of
traffic flow modeling is to identify nonrecurrent congestion,
based on data from loop detectors, microwaves, and probe.
However, nonrecurrent congestion and recurrent conges-
tion can be difficult to be differentiated without enough and
sound historical data. +us, the performance of traffic flow

modeling approach heavily depends on the data quality
obtained from traffic detectors. Moreover, it could often fail
when the traffic environment is too complex (e.g., multi-
modal traffic in urban area).+us, detection accuracy of such
method is sometimes not guaranteed. Another emerging
method is to identify incident based on crowdsourcing data
[8]. However, such method could also suffer from under-
reporting issues when there is no witness around the inci-
dent scene. Nowadays, with the development of intelligent
transportation systems (ITS), video cameras have been
widely installed in many cities and highways.+anks to their
wide coverage, vision-based crash detection techniques have
gained increasing research attention in the recent years [9].
+eir basic concept is to automatically identify crash scenes
based on the features of traffic images/videos through
computer-vision techniques. Such techniques, as a
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promising intelligent crash detection method, are expected
to significantly reduce human labors and have achieved
relatively high detection accuracy [10–12].

To ensure detection accuracy, a video-based crash de-
tection method needs to be capable of extracting important
crash features from traffic images/videos. In general, there
are two main types of features of interest: motion (temporal)
features and appearance (spatial) features. Appearance
features include apparent vehicle damage, vehicle rollovers,
and pedestrian fallen-off. Motion features need to be con-
tinuously identified, including the intersection of vehicle
trajectories and the gathering of pedestrians. From this
perspective, current crash detection methods can be clas-
sified into two groups: motion feature-based methods and
feature fusion-based methods.

Many research works are based onmotion features, such as
the intersection of vehicle trajectories, the overlap of bounding
box detectors, and the speed change of vehicles. Some used
background subtraction methods to extract vehicles’ motion
features (acceleration, direction, and velocity), based on which
certain rules and thresholds were applied to identify crashes
[9, 13–15]. Maalou et al. [16] tracked vehicles’ motion based on
optical flow methods and used heuristic methods to find a
threshold for crash identification. Sadeky et al. [17] used
Histogram of Flow Gradient (HFG) as the motion features and
discriminated crash from noncrash, based on logistic regres-
sion. Chen et al. [18] developed an Extreme Learning Machine
(ELM) for crash identification, based on motion features
represented by Scale-Invariant Feature Transform (SIFT) and
optical flow. In recent years, with the development of deep
learning methods (e.g., Faster R-CNN (Faster Region-based
CNN) [19] and YOLO (You Only Look Once) [20–22]), the
performance of vehicle detection and tracking has been sig-
nificantly improved. Vicente and Elian [23] used YOLOmodel
to detect motion features and used support vector machine
(SVM) for crash identification. Lee and Shin [24] used Faster
R-CNN for vehicle detection and SimpleOnline and Real-Time
tracking (SORT) for vehicle tracking. Based on those motion
features, the incident/crashes in tunnels were detected. Paul
[25] applied Mask R-CNN (Mask Region-based CNN) for
motion feature extraction and used rules for crash detection.
Motion feature-based models only depend on vehicle motions.
+is requires a high precision of object detection and tracking.
When the traffic environment is complicated, vehicle detection
and tracking performance could be decreased, resulting in low
crash detection performance. Furthermore, some crashes may
not be detected only based on motions, such as vehicle rollover
and pedestrian fallen-off.

Recently, the feature fusion-based (i.e., appearance and
motion) crash detection methods have become increasingly
popular. +ere are two types. One is based on unsupervised
learning methods. For instance, Singh and Mohan [26] and
Yao [27] developed a crash detection model based on
autoencoder methods. Another type is based on supervised
learning framework, which normally combines a module
(e.g., convolutional neural network) for spatial feature ex-
traction and a module (e.g., a recurrent neural network) for
temporal feature extraction. Batanina et al. [28] used
Convolutional 3D (C3D) model to capture both spatial and

temporal crash features from simulated video crashes. +en,
a domain adaption (DA) transfer learning was applied to the
real-world condition. +e accuracy has been improved by
10%. Huang et al. [29] employed two-stream network to
separately extract appearance features and motion features,
which were then further combined to detect crashes.
According to previous literature, the performance of crash
detection can be improved by feature fusion methods.

Although feature fusion-based methods have achieved a
better performance than motion feature-based methods,
some improvements still can be made. To simultaneously
capture both motion and appearance features, such models
oftentimes have complicated structures and a large number
of parameters. As such, those models require a lot of
computing resources and long computational time, which
prevent them from being used in a real-time traffic envi-
ronment.+us, the current fusion-basedmodels need to find
a better balance between detection accuracy and speed.

To fill the gap, we proposed a new feature fusion-based
urban traffic crash detection framework, aiming at achieving
a good balance between detection accuracy and speed. First,
we introduced attention module into residual neural net-
works to improve the performance of detecting local ap-
pearance features. Meanwhile, we linked ResNet with Conv-
LSTM model to simultaneously capture crashes’ appearance
and motion features. +e proposed model is expected to
achieve high accuracy as well as fast detection speed for crash
detection. +e remainder of the paper is organized as fol-
lows: Section 2 introduces methods used in this study.
Section 3 discusses data preparation. Section 4 presents
modeling results and discusses research findings. Section 5
provides the research conclusion and future directions.

2. Methodology

In this section, we introduce our proposed model in detail.
Figure 1 shows the overall framework of ourmodel. First, the
attention module was combined with ResNet to capture the
appearance features of the crash images. +e ResNet can
improve the speed of conventional convolution neural
network, while the attention module can enable the model to
focus on localized appearance features instead of other ir-
relevant information to further boost the model. +en, the
output feature map is reduced in dimension via a 1 × 1
convolutional layer, which is then chronologically input into
the Conv-LSTM network to further extract the motion
features of crashes. Conv-LSTM has an advantage over
conventional recurrent neural network (e.g., LSTM) in terms
of being lighter and retaining spatial information. Finally, a
global pooling layer and a fully connected layer were used to
detect a crash (or noncrash). +e following is a detailed
description of the residual network ResNet, attention
module, and Conv-LSTM module in the framework.

2.1. Crash Appearance Feature Module (ResNet +Attention)

2.1.1. Residual Neural Network (ResNet). Residual neural
network (i.e., ResNet) was proposed in 2015 [30] and has
been widely used in various deep learning-based computer-
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vision tasks for extracting image features. +e purpose of
ResNet solves the problem of training difficulties caused by
gradient explosion or vanishing in deep convolutional
neural networks. Compared to other conventional neural
networks (e.g., VGG (Visual Geometry Group Network))
continuously stacking convolutional layers to obtain higher
image expression capabilities, ResNet stacks flexible residual
modules to obtain stronger expression ability instead.

+ere are two main types of residual modules. +e first
type (Figure 2(a)) often appears in a shallow residual net-
work (ResNet 18/34). Each residual module includes two 3 ×

3 convolutions, the output of which is the sum of the input
(i.e., the output from the last residual module) and its
convolution. +e ReLU activation function is used to obtain
the output of the current residual module, as shown in the
following equation:

output � RELU input + W2 RELU W1(input)( ( ( , (1)

where Wi is the 3 × 3 convolution operation and i is the layer
index.

+e second type (Figure 2(b)) often appears in deeper
residual networks (ResNet50/101/152). Each residual
module includes three convolution layers (1 × 1, 3 × 3, and
1 × 1), the output of which is the sum of the input (i.e., the
output from the last residual module) and its convolution.

output � RELU input + X2 RELU W1 RELU X1(input)( ( ( ( ( ,

(2)

where Xi is the 1 × 1 convolution operation.
Since such residual network structure can compensate

for the unstable training caused by deep structures [30], it
can handle deeper network layers than VGG. +ree typical
ResNets are 50 layers (ResNet-50), 101 layers (ResNet-101),
and 152 layers (ResNet-152). +ey are similar in structure.
+e selection of ResNet depends on computational capa-
bility and training data amount. Deeper network could be
more powerful with adequate training data.

2.1.2. Visual Attention Module. In this paper, we further
extend ResNet by integrating visual attention modules.
+e visual attention module squeeze-and-excitation (SE)
Block was first proposed by Hu et al. [31]. +is module has

been widely used because it is relatively simple and is able
to improve the efficiency of many convolutional network
models. SE Block belongs to the channel attention
mechanism, which gives different weights to different
channels of a feature map. As is known, in convolutional
neural networks, different channels correspond to dif-
ferent feature extractions. +e different classification tasks
should lay particular emphasis on different feature se-
lections. +e concept is similar to the way that human
beings identify objects. For example, people may pay more
attention to the shape features when judging cats and dogs,
while they may focus on texture features when judging
jaguar and leopard (belonging to Felidae). +us, SE Block
improves the ability of feature selection for convolutional
neural networks.

As shown in Figure 3, SE Block converts the input X,
X ∈ RH×W×C, to U, U ∈ R1×1×C, through a global average
pooling operation Fsq, as shown in the following equation:

U � Fsq(X). (3)

For Xi, Xi ∈ RH×W, in input tensor X � (X1, X2, . . . ,

XC) and Ui, Ui ∈ R1×1, in output tensor U � (U1, U2, . . . ,

UC), the following equation holds.

UC � Fsq XC(  �
1

H × W


H

i�1


W

j�1
XC(i, j). (4)

After the global average pooling, the output U is passed
through a fully connected layer with a weight of W,
W ∈ RC×C, that is, Fex(·, W) in Figure 3, and the resultV is as
shown in equation (5), where “∗ ” refers to matrix
multiplication.

V � Fex(U, V) � σ(U∗V). (5)

+e above is the activation function, and the result V is
also called attention weight. Finally, multiply the attention
weight V and the input X by the channel weight to adjust the
importance of different channels of the input (equation (6)).
Here “ ∘ ” refers to the element-wise multiplication (i.e.,
Hadamard product):

Y � Fscale(X, V) � X ∘ V. (6)

ResNet + attention

Appearance feature module Feature fusion module

Output1 × 1 × 647 × 7 × 64

7 × 7 × 2048
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Figure 1: +e proposed crash detection model framework.
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An improved visual attention module over SE is called
convolutional block attention module (CBAM), which was
first proposed by Gupta [32]. Based on the basic channel
visual attention module (i.e., SE), CBAM innovatively in-
troduces the spatial visual attention module, as shown in
Figure 4. Different from the basic module, the spatial visual
attention module initially performs maximum pooling and
average pooling operations Fs sq(·) on the input XS by
channel and then converts the two-layer feature map to a
single-layer feature map through a 1 × 1 convolutional layer
with a weight of W, as shown in Fs ex(·, W) in Figure 4.
Finally, softmax is used to convert the original distribution
to a probability distribution and adjust the importance of the
model to different spatial positions of the input XS. +e
process can be expressed by the three following equations:

US � Fs sq XS( , (7)

VS � Fs ex US, W(  � softmax US ∗W( , (8)

YS � Fscale XS, VS(  � XS ∘ VS. (9)

CBAM module can be embedded into residual modules
to improve its feature selection performance. Figure 5 shows
how the two modules are integrated.

2.2. Feature FusionModule (Conv-LSTM). +e Conv-LSTM
module was first used in precipitation nowcasting [33], the
structure of which is shown in Figure 6. Traditional LSTM
input requires data flattening, which often causes spatial
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information loss. +e Conv-LSTM module inherits the
gating structure adopted by the traditional LSTM, while it
uses convolution neuron as a basic unit to retain spatial
features. +e data modeling process is as follows.

First, the inputs χt and Ht−1 are stacked along the
channel dimension to generate [χt, Ht−1]; then a one-di-
mensional convolution F(·; Wχ , WH) performs convolution
operation on [χt, Ht−1]:

Yf, Yi, Yg, Yo  � F χt, Ht−1 ; Wχ , WH ] . (10)

+en, obtain [ft, it, gt, ot] by using activation function
on [Yf, Yi, Yg, Yo], as shown in the following equation:

ft, it, gt, ot  � softmax Yf , softmax Yi( ,

softmax Yg , softmax YO( .
(11)

Finally, the outputs Ct and Ht of the Conv-LSTM
module at the time step t are obtained by gating operations,
as shown in the two following equations:

Ct � ft ∘ Ct−1 + it ∘ gt, (12)

Ht � ot ∘ Ct � ot ∘ ft ∘Ct−1 + it ∘ gt( . (13)

3. Data Preparation

To the best of our knowledge, there is no public database for
crash detection task.+us, in this study, all data were acquired
from local police in China.We prepared two datasets.+e first
dataset is an urban city traffic image dataset, which contains
5061 traffic crash images and 5573 noncrash traffic images.

+e crash images include multiple types, such as single-ve-
hicle, multivehicle, and non-motorist-related crashes. Fig-
ure 7 shows some examples. Another dataset is an urban
surveillance video dataset, which contains 420 crash video
clips and 432 noncrash video clips.+e duration of each video
clip is around 20 seconds, with 24/25 frames per second.

+e first image dataset was used to train the ResNet plus
attention module, while the video dataset was used to train
the whole network. By transferring the pretrained ResNet
module, the convergence speed of the whole network could
be boosted. To note that, images/video clips were manually
labeled with either crash or noncrash. As such, the capability
of the trained model was expected to identify crashes among
normal traffic scenes.

4. Results and Discussion

All experiments in this study were carried out on a laptop
equipped with Nvidia GTX 1060 GPU. Some detailed pa-
rameters of the laptop are as follows: (1) I7-7700HQ CPU
@2.80 GHZ and (2) GTX 1060 (6G) GPU, core frequency:
1506-1709MH, and floating-point operation: 4.4 TFLOPs.

First, a set of deep learning models was compared for
differentiating crash images (positive) from noncrash images
(negative), with the purpose of finding a best crash ap-
pearance feature module, which was further linked to Conv-
LSTM. VGG-16 and ResNet-50 were used as baseline
models. Four extended models were developed by incor-
porating SE and CBAMmodules into VGG and ResNet. +e
training dataset included 3861 crash and 4373 noncrash
images, while the testing dataset included 1200 images for
each category. Table 1 shows the performances of those
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models (i.e., crash appearance feature extraction models) in
the test dataset. Compared to VGG-16 and ResNet-50,
extended models with attention modules generally had
higher detection accuracy. Among those, the ResNet-
50 +CBAM model achieved the highest accuracy of 90.17%.
Figure 8 shows the testing accuracy for each training epoch
for those crash appearance extraction models.

It can be also found that all models hadmuchmore false-
positive (FP) cases than false-negative (FN) cases. +is in-
dicates that those models tend to determine noncrash traffic
scenes as crashes. Some traffic conditions (e.g., stopped
vehicles and heavy congestions with many overlapping
pedestrians and vehicles) could have very similar appearance
features to those of crash scenes. +us, models solely based
on appearance features cannot well identify those
conditions.

We further visualize those models based on the gradient-
weighted class activation mapping (Grad-CAM) technique
[34], as shown in Figure 9. ResNet appeared to be better than
VGG in terms of focusing on the appearance features of
crashes. For example, VGG failed to identify the appearance
features of crash D, while ResNet identified them correctly.
When adding attention modules, the extended models
(ResNet 50 + SE/CBAM) could better focus on appearance

Figure 7: Traffic image dataset.

Table 1: Performance of crash appearance feature extractors.

Model name True positive (TP) False negative (FN) False positive (FP) True negative (TN) Accuracy (%)
VGG-16 1056 144 273 927 82.63
ResNet-50 1087 113 233 967 85.58
VGG-16 + SE 1075 125 251 949 84.33
VGG-16-CBAM 1103 97 231 969 86.33
ResNet-50 + SE 1132 68 214 986 88.25
ResNet-50- +CBAM 1135 65 171 1029 90.17

Test acc. versus epoch on accident classification

VGG16
Resnet50
Resnet50 + SE
Resnet50 + CBAM
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Figure 8: Testing accuracy for each training epoch for crash ap-
pearance extractors.
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features. For instance, CBAM improved the performance of
ResNet in recognizing the location of fallen people for crash
C.

+en, using ResNet50 +CBAM as the pretrained model,
we further trained the whole model with 330 crash video
clips and 342 noncrash video clips. +e testing dataset in-
cluded 90 crash videos and 90 noncrash videos. To examine
the performance of the proposed model, six models were
compared. Model 1 determined crashes based on the
amount of velocity changes or anomalies of trajectory

extracted by Faster R-CNN+ SORT. Model 2 identified
crashes depending on the number of detected crash frames
of a video clip. Models 3–6 utilized Resnet-50 +CBAM/SE to
extract appearance features, while they employed LSTM/
Conv-LSTM models to extract motion features from videos.
Table 2 shows the performance of the six candidate models.

+e results indicate that model 1 had the lowest de-
tection accuracy and speed compared to other models. In
general, this model had a good performance in detecting
multivehicle crashes. However, it largely failed to detect

Crash E

E1 E2 E3 E4 E5

Crash D

D1 D2 D3 D4 D5

Crash C

C1 C2 C3 C4 C5

Crash B

B1 B2 B3 B4 B5

Original image

A1

Crash A

A2 A3 A4 A5

VGG-16 Resnet-50 Resnet50 + SE Resnet50 + CBAM

Figure 9: Crash appearance feature extraction visualization.
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vehicle-pedestrian crashes and single-vehicle crashes. +e
reason could be that such models can only recognize crash
motions (e.g., the intersection of vehicle trajectories, ab-
normal behaviours of nonmotorists [35, 36]) instead of crash
appearance (e.g., fallen people, vehicle rollover, vehicle
damage, etc.). Figure 10 shows some crash scenes that were
falsely detected by model 1.

Compared to model 1, feature fusion-based models had
better performance in detection accuracy. Among feature
fusion-based models, the rule-based model (model 2) and
the LSTM models (i.e., models 3 and 6) had lower detection
accuracy than the Conv-LSTMmodels (models 4 and 5).+e
basic idea of the rule-based model is to determine a crash
based on the number of detected crash frames of a video clip.
Based on experiments, a highest accuracy can be achieved
when the threshold is set to 10 (i.e., 10 frames). Since such
method requires no sequential information, it may not well
identify crash motion features (the FN rate is high). LSTM
models require the flattened layout of appearance feature
maps, which could lose spatial information. Conv-LSTM can
simultaneously detect both motion features and appearance
features, while retaining their original information consid-
erably (FN decreases compared to rule-based models).

Regarding detection speed, the proposed model
framework considerably outperformed motion-based deep

learning models. In order to get a high detection accuracy of
motion objects, motion-based models often require pow-
erful deep learning models for vehicle detection and
tracking. In general, Conv-LSTM achieved the highest de-
tection accuracy with acceptable detection speed (FPS> 30).

Furthermore, a typical feature fusion-based model (i.e.,
C3D model) was also compared to our best model (i.e.,
model 6). As shown in Table 3, an overfitting issue occurred
for the C3D model, with a training accuracy of 99.89% and a
test accuracy of 67.22%. +e reason is that the C3D model
has much more parameters (over 10 times) than our pro-
posed model. Since the dataset is limited, the model was
easily overfitted. Regarding computational loads and de-
tection speed, the proposed model was also better than the
C3Dmodel in terms of FLOP (floating point operations) and
FPS.

Of note, the best Conv-LSTM (i.e., model 6) models still
have some false-positive cases. Some noncrash scenes
(congestions) cannot be well identified by the model, as
shown in Figure 11. +is is probably due to limited sample
size. Another reason could be that the proposed model tends
to focus on part of images (thanks to attention module),
while ignoring the understanding of the whole traffic scene.

As for misdetection (i.e., FN), some typical cases were
discussed here (Figure 12).+e first crash is that two vehicles

Table 2: Crash detection models’ performances on testing set.

No. Model True positive
(TP)

False negative
(FN)

False positive
(FP)

True negative
(TN)

Accuracy
(%) FPS

1 Faster R-CNN+SORT+ rules [24] 58 32 18 72 72.22 0.73
2 ResNet-50 +CBAM+ rules 69 21 12 78 81.67 50
3 ResNet-50 +CBAM+LSTM 70 20 12 78 82.22 27
4 ResNet-50 + SE+Conv-LSTM 74 16 12 78 84.44 35
5 ResNet-50 +CBAM+Conv-LSTM 78 12 11 79 87.22 33

6 ResNet-50 +CBAM+Bi-Conv-
LSTM 79 11 11 79 87.78 30

Figure 10: False-negative examples of Model 1.

Table 3: Model 6 versus the C3D model in detection accuracy and speed.

Model Train accuracy (%) Test accuracy (%) Parameters (MB) FLOPs/per video (B) FPS
C3D [30] 99.89 67.22 249.99 574.36 14
Model 6 96.58 87.78 24.22 265.26 30

Journal of Advanced Transportation 9



collided with each other and led to an explosion. When it
happened, the fire quickly covered the whole traffic scene.
Such case is very rare in our current dataset, so that the
trained model cannot well identify appearance features. +e
second to fifth crashes all happened in congested or complex
traffic environment. In such environment, crash features
were blocked or were difficult to be identified, especially
when the original image quality is not high.

5. Conclusion

Detecting crash in a timely and accurate manner is im-
portant for traffic incident management. Previous video-
based crash detection models suffer from low detection
accuracy (e.g., some motion-based models) or high com-
putational costs (e.g., large feature fusion-based models). To
fill the gap, in this paper, we proposed a new feature fusion-
based deep learning model framework with the purpose of
achieving a balance between accuracy and speed for urban
traffic crash detection. To this end, ResNet with attention

modules was developed to capture the appearance features of
crash images. ResNet has faster speed than conventional
convolution neural network, while the attention module
enables ResNet to focus on localized appearance features
other than irrelevant information to further boost the
model’s speed. Conv-LSTM was introduced to link to
ResNet to simultaneously capture appearance and motion
features. Compared to conventional recurrent neural net-
work (e.g., LSTM), Conv-LSTM can retain most of the
spatial information with relatively fewer parameters.

Based on modeling results, the ResNet with attention
modules can improve the performance of detecting localized
appearance feature of crashes. Compared to simple rules and
LSTM, the Conv-LSTM can better capture the motion
features of crashes. +e proposed model achieved the overall
accuracy of 87.78% with relatively fast detection speed
(FPS> 30), which outperformed conventional motion-based
models and existing feature fusion-based models. +us, the
proposed method is a promising crash detection method,
achieving a good balance between speed and accuracy.

Figure 11: False-positive examples of model 6 (the best model).

Crash 1

Crash 2

Crash 3

Crash 4

Crash 5

Figure 12: False-negative examples of model 6 (the best model).
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Admittedly, the proposed model also has some limita-
tions. First, the model falsely detected some congested traffic
scenes as crashes. An understanding of the whole traffic
scene may need to be considered. In the future research, we
will attempt to improve the model framework. Second, it still
has some misdetections when traffic environment/crash
scenes are complicated, rare, and ambiguous. +us, the
model still needs more data and other supplementary
methods (e.g., multiangle cameras or few-shot learning) to
further improve its robustness. +ird, the model needs to be
further improved to identify different types/severity levels of
crashes. +e authors recommended that future research
should be focused on those topics.
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