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)is manuscript focused on analyzing electric vehicles’ (EV) charging behavior patterns with a functional data analysis (FDA)
approach, with the goal of providing theoretical support to the EV infrastructure planning and regulation, as well as the power grid
load management. 5-year real-world charging log data from a total of 455 charging stations in Kansas City, Missouri, was used.
)e focuses were placed on analyzing the daily usage occupancy variability, daily energy consumption variability, and station-level
usage variability. Compared with the traditional discrete-based analysis models, the proposed FDA modeling approach had
unique advantages in preserving the smooth function behavior of the data, bringing more flexibility in the modeling process with
little required assumptions or background knowledge on independent variables, as well as the capability of handling time series
data with different lengths or sizes. In addition to the patterns revealed in the EV charging station’s occupancy and energy
consumption, the differences between EV driver’s charging time and parking time were analyzed and called for the needs for
parking regulation and enforcement.)e different usage patterns observed at charging stations located on different land-use types
were also analyzed.

1. Introduction

Electric vehicles (EVs) produce fewer emissions that con-
tribute to climate change and smog than conventional ve-
hicles and help the United States achieve a greater diversity
of fuel choices available for transportation. )e evolution of
EVs has advanced frommodels best suited for commuting or
traveling short distances to vehicles that can travel more
than 200 or even 300 miles per charge.

Proper planning of the EV charging infrastructure and
scientific determination of their locations are critical to
promoting EV ownership and usage. Modeling efforts can be
found in the literature, such as the electric vehicle infra-
structure projection (EVI-Pro) model developed by the
National Renewable Energy Lab to address the fundamental
question of how much charging infrastructure is needed in
the United States to support Plugin-EVs (PEVs) [1]. )e
model generated a quantitative estimate for a US network of

nonresidential (public and workplace) EVSE that would be
needed to support broader PEV adoption. He et al. studied
how to optimally locate public charging stations on a road
network, considering drivers’ spontaneous adjustments and
interactions of travel and recharging decisions [2]. A bilevel
programming model with the consideration of EV’s driving
range was proposed in [3], with the upper level to optimize
the position of charging stations so as to maximize the path
flows that used the charging stations, while the user equi-
librium of route choice with the EV’s driving range con-
straint was formulated in the lower level. Other research on
EV charging station locations can also be found in [4, 5] and
many others.

Another approach to supporting the planning of
charging infrastructure was to perform analysis of EV-re-
lated data, with the goal of identifying charging behavior
patterns and inferring the scenarios of when and where
people need to charge their vehicles. For example, the
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driving data in Denmark was analyzed to extract the in-
formation of driving distances and driving time periods
which were used to represent the driving requirements and
the EV unavailability.)e Danish National Transport Survey
data were used to implement the driving data analysis [6].
)e analysis of charge event data in Ireland for public
charging infrastructure, including data from fast-charging
infrastructure, and additionally a limited quantity of
household data was performed in [7]. Sun et al. studied
driver’s charging timing decisions, in which a mixed logit
model with unobserved heterogeneity is applied to panel
data extracted from a two-year field trial on battery electric
vehicle usage in Japan [8]. )e analysis over the real-world
dataset can also be found in [9, 10] and others.

)is manuscript focused on performing analysis over the
5-year real-world charging event log data, from a total of 455
charging stations in Kansas City, Missouri (KCMO), with a
functional data analysis (FDA) approach. )e EV charging
equipment recorded which vehicle was charged at which
charging station, at what day and time. Such charging event
log data contained many significant pieces of information
for understanding EV charging patterns and user behavior.
)e goal of this research was to provide theoretical support
to the EV infrastructure planning and regulation, as well as
the power grid load management. We argue that compared
with the existing research over the real-world charging event
data, the proposed FDA modeling approach had many
unique advantages over the prevailing discrete-based anal-
ysis models and led to some important insights that were
difficult to model or discover with the other approaches.

Commonly, time series data (such as the EV charging log
data used in this research) were treated as multivariate data
because they were given as a finite discrete time series
[11–13]. )is usual multivariate approach completely ig-
nored important information about the smooth functional
behavior of the generating process that underpins the data
[14]. For example, in our context, the vehicles’ charging
process was continuous and so was the time-dependent
occupancy of a particular charging station. Additionally, in
the previous research, performance measurements need to
be defined by the researchers to extract useful information
from the raw dataset, before any meaningful analysis can be
performed. However, they were usually defined arbitrarily,
based on the researcher’s experience in the field. Instead of
assuming a variety of explanatory variables, which was
difficult or even impossible to enumerate and collect data
for, FDA is much more flexible with little required as-
sumptions or background knowledge on independent var-
iables. Last not but least, time series data often has different
time intervals or different lengths which are hard to deal
with by other tools. In our context, some charging stations
were more frequently used and might have thousands of
charging records while others might only have a few hun-
dred. It was thus impossible to apply principal component
analysis (PCA) to the charging log dataset directly because of
the dimension inconsistency.

)e basic idea behind FDA is to express discrete ob-
servations arising from time series in the form of a function
(i.e., to create functional data) that represents the entire

measured function as a single observation and then to draw
the modeling and/or prediction information from a col-
lection of functional data by applying statistical concepts
from multivariate data analysis [15]. With this said, this
manuscript firstly represented the EV charging dataset with
a continuous functional form, then performed function
principal component (FPC) analysis to identify the main
contributing principal components (PC), and analyzed the
dataset from different perspectives to understand EV
owner’s charging behavior patterns.

)is research aimed to provide theoretical support to
the EV infrastructure planning and regulation, as well as
the power grid load management. To achieve such goals,
the focuses were placed on three aspects. (1) )e first aspect
is the variability analysis of the daily usage patterns of all
EV charging stations, in which the 24-hour occupancy of all
charging stations in one day was treated as one continuous
curve. Such analysis can provide insights and directly
support the planning of new EV charging infrastructures.
(2) )e second aspect is the variability analysis of the daily
energy consumption of all EV charging stations, in which
the total energy consumption of all charging stations in one
day was treated as one continuous curve. Such analysis was
important from the power grid load management per-
spective. (3) At the station level, the usage pattern vari-
abilities were analyzed, in which one station’s usage over
the entire observation period was treated as a continuous
curve. )is analysis revealed insights on the usage pattern
differences at the station level and was combined with the
land-use information for better EV charging infrastructure
planning and management purposes.

)e remaining part of this paper is organized as follows.
)e charging event log dataset used in this research is firstly
presented in Section 2. Section 3 presents the analysis
methodology, including the data smoothing, variable cal-
culation, and the functional principal component analysis.
)e analysis results are shown and compared in Section 4.
Section 5 concludes this research.

2. Data

)is section presents the real-world charging event log data
used in this research. )e data was collected from 455
charging stations between January 2014 and November 2019
in Kansas City, Missouri (KCMO). )e dataset included a
total of 226,652 charging records from 4,921 users. Most of
the stations were concentrated in the downtown area of
KCMO. )e spatial distribution of charging stations was
shown in Figure 1, in which Figure 1(a) showed an overview
and Figure 1(b) zoomed in to the downtown area.

In the collected dataset, each row contained the infor-
mation of a charging event and had a total of 30 columns/
attributes. Table 1 showed the sample data from the dataset,
in which only the most critical and relevant information was
displayed. )e complete dataset included information of the
following three categories:

(1) Charging station information: including a unique
station ID, station name, address and zip code where
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the station was located at, MAC address, latitude and
longitude of the station, and type of the charging
ports which included level 1, level 2, and DC fast
charge

(2) Electric vehicle attribute: including a unique ID of
the electric vehicle and zip code where this electric
was registered in (which is usually the zip code of the
driver’s home)

(3) Charging event data: including the start date and
time of the charging event, end date and time of the
charging event, charging time which is equal to the
end time minus start time, total duration which
included not only the time spent on charging but also
the time spent on parking afterward, start state of
charge (SOC), end SOC, energy charged, Green-
house Gas (GHG) saving, and information on how
was the charging event ended (e.g., terminated by

customer or server). Duration is the total time that a
station is occupied, which is one of the most sig-
nificant properties we are interested

3. Methodology

)is section presents the analysis methodology used in this
manuscript, including a brief overview of the function data
analysis approach, charging pattern definition, and func-
tional principal component analysis.

3.1. FDA Method Overview. To process “curve-liked” data
that are continuous in nature, such as the time-dependent
charging station usage rates of this manuscript, one ad-
vanced and popular method is functional data analysis [16].
Apart from the commonly seen multivariate data analysis
approaches, the proposed FDA approach considered EV

(a) (b)

Figure 1: Locations of the charging station in KCMO. (a) Overview. (b) Downtown.

Table 1: Sample Charging Event Log data.

Station name Start date End date Time duration (hh :
mm : ss)

Charging time (hh :
mm : ss)

Energy
(kWh) Latitude Longitude User ID

KCPL/@JE DUNN
PG125C

9/18/2018
14 : 27

9/18/2018
15 : 50 1 : 23 :15 1 : 23 : 02 5.934 39.1011 94.5763 756927

KCPL/@WOLF PG-
129A

9/18/2018
6 : 57

9/18/2018
15 : 39 8 : 42::04 2 :15 :18 6.766 39.0999 94.5791 1533491

KCPL/@LOOSE
PRK-121A

9/18/2018
15 : 09

9/18/2018
15 :10 0 : 00 : 30 0 : 00 : 00 0 39.0346 94.5947 598567
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charging usage as a function of time; thus, all the EV
charging events that were sampled in different scales, from
different charging stations built at different time periods,
and used with different frequencies with different data sizes,
were all modeled uniformly by functions. In other words,
under the functional data analysis approach, each charging
pattern to be defined in Section 3.2 was treated as one
functional data. By applying basis expansion techniques
such as B-spline expansion denoted in (4) [17, 18], each
charging pattern can be modeled and expressed in a func-
tional form.

y(t) � 
M

j�1
βjφj(t), (1)

where y(t) is the original function, φj(t) is jth basis
functions, and βj is the coefficient of the corresponding basis
function.

With such a data analysis approach, all charging patterns
which were sampled in different scales can be uniformly
expressed in the same functional form. Additional benefits of
such an approach also included the reduction of unnecessary
noise in raw data by basis expansion smoothing. Based on
this model, all the information from the raw data can be
projected to M basis coefficients βj. Obtaining the basis
coefficients can be done through an ordinary least square
(OLS) regression. )is process is also known as B-spline
smoothing. Section 3.3 will further describe the basis ex-
pansion and modeling process.

3.2. Charging Pattern Definition. )is subsection defines the
three charging patterns to be analyzed, corresponding to the
three analyses performed in the numeric analysis section.

3.2.1. Daily Usage Occupancy. Daily usage occupancy was
defined to measure the 24-hour time-dependent usage oc-
cupancy within a single day, by aggregating the charging
events at all charging stations.

A binary variable uj, d(t) was firstly defined to denote the
usage condition of a charging station j in hour t at day d. If
the charging station was used for at least once, uj, d(t) � 1,
else 0.

uj, d(t) �
1, the stationwas in use,

0, otherwise.
 (2)

Next, the 24-hour time-dependent occupancy for each
day can be calculated by aggregating all charging station’s
usage, so that in the end, one curve was generated to rep-
resent the daily usage occupancy of each day.

ud(t) �
1
J


j

uj, d(t), (3)

where ud(t) means the average occupancy of time t at day d,
and J means the total number of stations on day d. Note J is
day-dependent, so J � J(d).

3.2.2. Daily Energy Consumption. As shown in Table 1, the
energy consumption ei,d associated with each charging event
i at day d was recorded and thus was directly available. First,
ei,d was proportionally assigned to each hour, so that

ei,d
′ (t) �

ei,d

li,d
∗ li,d(t), (4)

in which ei,d
′ (t) was the proportion of energy con-

sumption ei,d in hour t, li,d was the duration of charging
event i, and li,d(t) was the proportion of li,d in hour t.

Next, the 24-hour time-dependent energy consumption
for each day can be calculated by doing aggregation over all
charging stations, so that in the end, one curve was generated
to represent the daily energy consumption of each day.

ed(t) �
1
J


i

ei,d
′ (t). (5)

3.2.3. Station-Level Occupancy. Similar to the daily usage
occupancy calculation, to analyze the difference between
stations, aggregations can be performed over the days. For
each station j, its aggregated occupancy at time t was
denoted as uj(t) and calculated as follows.

uj(t) �
1
T


d

uj,d(t), (6)

where uj,d(t) was calculated from (2), and T denoted the
total number of days in the analyzed time period. In the end,
one curve was generated to represent the aggregated usage
occupancy of each charging station.

3.3. Data Smoothing. )is subsection focuses on how to
represent the charging patterns defined above as curves.
Since ud(t), ed(t), and uj(t) are all time-dependent, they can
be represented by (t, ud(t), ed(t), and uj(t)). Based on
B-spline expansion, these discrete points can be modeled by
a continuous function:

ud(t) � 

M

j�1
αi,jφj(t) � αi,1 αi,2 . . . αi,M 

φ1(t)

φ2(t)

. . .

φM(t)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
� αT

i ϕ(t),

ed(t) � 

M

j�1
βi,jφj(t) � βi,1 βi,2 . . . βi,M 

φ1(t)

φ2(t)

. . .

φM(t)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
� βT

i ϕ(t),

uj(t) � 
M

j�1
ci,jφj(t) � ci,1 ci,2 . . . ci,M 

φ1(t)

φ2(t)

. . .

φM(t)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
� c

T
i ϕ(t).

(7)

An example of B-spline expansion was depicted in
Figure 2, where a smoothed function (solid black curve) was
represented as a summation of B-spline basis functions
(dashed black curves) to model the raw daily usage occu-
pancy data (red diamond). )e heights of these basis
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functions were determined by the basis coefficients αT
i , βT

i ,
and cT

i . Such basis expansion method was advantageous in
terms of transferring a high volume of data points into
several basis functions’ coefficients without losing the
original pattern [11].

To obtain the basis coefficients αT
i , βT

i , and cT
i , the least

square regression model was constructed as follows. ud(t)

was used as an example to avoid repetition, but the method
presented hereinafter was directly applicable to ed(t) and
uj(t) as well.

u SSEi � 

Ki

k�1
ud(t) − αT

i φ ti,k  
2
. (8)

To simplify the notations for the lease square model,
some matrix-formed data were introduced as follows:

ud(t) �

udi(1)

udi(2)

. . .

udi(k)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Φi �

φ1 ti,1  φ2 ti,1  · · · φM ti,1 

φ1 ti,2  φ2 ti,2  . . . φM ti,2 

⋮ ⋮ ⋱ ⋮

φ1 ti,Ki
  φ2 ti,Ki

  · · · φM ti,Ki
 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(9)

where udi(k) was a vector that contained raw data points in
day i. Φi was a Ki ×M matrix; each column was the basis
function value at all the time points. By reconstructing these
usage occupancy data, the least square model can be re-
written in a simple quadratic form:

u SSEi � udi −Φiαi( 
T

udi −Φiαi( . (10)

)us, the basis coefficients for day i can be estimated by

αi � ΦT
i Φi 

−1
ΦT

i udi. (11)

)rough the B-spline model and least square regression,
all three charging patterns defined above were converted
into the basis coefficients. )e functions can be obtained by
ud(t) � αT

i φ(t); ed(t) � β
T

i φ(t), and uj(t) � cT
i φ(t).

3.4. Functional Principal Component Analysis. After data
smoothing, functional PCA was enabled as a powerful tool
of the FDA approach to explore the curve’s underlying
features. In multivariate data analysis, PCA was commonly
used to convert a large number of variables to some
comprehensive variables that are much less in quantity but
account for the highest variability. )e mathematical so-
lution of this problem was similar to finding the eigenvalue
and the new variables were the functional principal
components (FPCs).

In the FDA approach, the analyzed function contained
information of a set of specific variables at enormous time
points in a time interval. As a result, the work was con-
fronted with the curse of dimensionality if the time was seen
as the independent variable in the functional case. Conse-
quently, the functional PCA method can be applied for the
purpose of dimension reduction. In [19, 20], FPCA was
employed as a data dimensionality reduction technique in
the modeling of traffic flow patterns, which inhibit similar
functional characteristics observed in EV charging. )e
approach was similar to the multivariate case. )e depen-
dent variable xi(s)(s ∈ T) was relative to xij in multivariate
case.

fi �  β(s)xi(s) �  βxi, (12)

where β(s) was the weight value andβk(s) denoted the weight
function of kth principal component. )e variance function can
be represented as Var(f) � (1/N) 

N
i�1 ( βxi)

2.
Let fk denote the kth principal component, where

k � 1, 2, . . . , K, so the relationship is Var(f1)>Var(f2)>
. . . >Var(fK).

To calculate the first principal component, we just need
to solve the following optimization problem:

max
1
N



N

i�1
 β1xi 

2

s.t.

 β1(s) 
2
ds �  β1 

2
� β1

����
����
2

� 1,

(13)
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Figure 2: Illustration of B-Spline expansion.
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and the kth principal component can be calculated by the
following optimization problem:

max
1
N



N

i�1


βk

xi 
2

s.t.

 βk
 

2
� 1;  βkβk− m

� 0, m � 1, . . . , k − 1.

(14)

)e covariance of x(s) and x(t) can be calculated by

v(s, t) �
1

N − 1


N

i�1
xi(s)xi(t). (15)

)e weight function of functional principal components
β(s) is needed to satisfy the following secular equation:

 v(s, t)β(t)dt � λβ(s), (16)

where λ was the eigenvalue and λk/
N−1
k�1 λk meant the

proportion of variability which the kth principal component
accounted for. )e left side of (6) was an integral transform
V of the weight function β(s) with the kernel of the
transform v defined by

Vβ(s) �  v(s, t)β(t)dt. (17)

)e covariance operator was denoted by V. )erefore,
(17) can be expressed as

Vβ(s) � λβ(s). (18)

Equation (1) can be calculated through several methods,
and we can calculate the FPC score fi through (12).

4. Numeric Analysis

In this section, the numeric analysis was performed with the
goal of understanding the EV owner’s charging behavior
patterns. )e focuses were placed on three aspects: (1)
variability analysis of the daily usage patterns of all EV
charging stations, (2) variability analysis of the daily energy
consumption of all EV charging stations, and (3) at the
station level, the usage pattern differences analyzed.

4.1. Daily Usage Pattern Variability Analysis. To analyze the
time-dependent usage pattern variabilities, the time-dependent
occupancy of each day was calculated by aggregating all
charging stations, so that in each year, a total of 365 curves were
obtained, with each curve representing the occupancy of a day.
Function PCA was then applied to extract the FPC from the
dataset. It was observed that FPC1 accounted for 94% of the
variance, and FPC2 accounted for 3%. When combined to-
gether, they reflected 97% of the data’s variability and were kept
for further analysis.

Figure 3 showed a way to look at the two FPCs and how
they supported the unique analysis that FDA enabled. X-axis
represented the time (0–24 hours in a day), and Y-axis
represented the percentage of charging stations that were
occupied at that time. )e blue curve in both subfigures (a
for FPC1 and b for FPC2) stood for the mean occupancy of
all charging stations, while the green and red curves stood
for the functions adding and subtracting one functional
principal component. For example, in Figure 3(a), the green
curve was generated by adding one FPC1 to the mean
function represented by the blue curve, and the red curve
was generated by subtracting one FPC1 to the mean
function.

)e first principal component focused on daytime
between 7 am and 5 pm, which corresponded to the time
that public charging stations were busiest in the day,
especially workdays. )erefore, the first FPC essentially
distinguished between working days and nonworking
days. )is observation was directly supported by Figure 4,
in which almost all weekdays (blue dots) were located on
the right-hand side of the plot, indicating a higher FPC1
score (X-axis), while almost all weekend days (red dots)
were located on the left-hand side of the plot with lower
FPC1 score. A few exceptions were identified in the plot
and turned out to be the holidays, such as Labor Day and
Independence Day, so these were nonworking days as
well.

)e second FPC accounted for only 3% variability and
mainly captured the variance in the evening time from
midnight to 6 am and again from 6 pm tomidnight.)e days
with higher usage after 6 pm and before 6 am and with
slightly less or average usage in the daytime would receive
higher scores. However, due to the dominance of FPC1, the
effect of FPC2 was rather limited.

Figure 5 presented the monthly and yearly charging
usage patterns. )e X-axis was the score of FPC1 and the Y-
axis was that of FPC2. Figure 5(a) showed the monthly
pattern with the colors standing for 12 months, respectively.
No clear monthly pattern was observed.

Figure 5(b) showed the yearly pattern with the colors
standing for years from 2014 to 2019. Dots in 2014 were
almost invisible due to the low data size and overlap with
pink color.)e observation led to a clear pattern that as time
went by, the scores of both FPC1 and FPC2 increased
significantly. )at meant that for the days with a higher
FPC1 score, the occupancy continued to increase at an ever-
increasing speed, while for the days with higher FPC2 scores,
its morning and evening usage also increased significantly.
)is interpretation was in line with the rapid increase of EV
ownership in Kansas City at a 78% year-over-year growth
rate [21] and emphasized the needs for more charging in-
frastructures in the region.

Figure 6(a) shows the clustering result of the data. To
make sure that similar data sizes are studied, data from 2016
to 2018 are selected for clustering. Compared with
Figure 6(b), the result indicates that the data points in 2015
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have a lower FPC1 score and FPC 2 scores and are obviously
separated from the other data points. However, the differ-
ence between 2017 and 2018 is less significant, which means
that they have a similar occupancy pattern.

4.2. Daily Energy Consumption Variability Analysis. )is
section aimed to analyze the energy consumption vari-
ability caused by EV charging, which had a significant
impact on the power grid and was helpful for grid load

management. Similar to the analysis above in Section 4.1,
the time-dependent energy consumption of each day was
calculated by aggregating all charging stations, so that in
each year a total of 365 curves were obtained, with each
curve representing the energy consumption of a day.
Function PCA was then applied to extract the FPC from the
dataset. It was observed that FPC1 accounted for 81% of the
variance, and FPC2 accounted for 5%. So when combined
together, they reflected 86% of the data’s variability and
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were kept for further analysis. )e results were shown in
Figure 6.

FPCA analysis of energy consumption resulted in some
very different patterns when compared with daily occu-
pancy. FPC1 mostly captured the variance of energy con-
sumption during the morning peak between 7 am and 11
am. During this time range, the green curve increased
dramatically, representing the days with a higher FPC1
score, and the required energy to charge EVs in the morning
would be higher. On the other hand, FPC2 mostly captured
the variance of energy consumption during the evening peak
between 4 pm and 9 pm. In other words, if a day was ob-
served to have a higher FPC2 score, its impacts on the power
grid in the evening hours would be significantly increased.

A comparison between Figures 3 and 6 led to some
interesting conclusions. While Figure 3 indicated that

from an occupancy perspective, the peak hour during the
day started from as early as 7 am and did not end until 5
pm, Figure 6 suggested that the impact on the power grid
became low after 11 am.)is suggested that some vehicles
did not leave the charging stations after they were fully
charged, under which circumstances, the charging sta-
tions continued to be occupied (and thus unavailable to
the other EV drivers), but from a power grid perspective,
they did not require any energy. To validate such in-
terpretation, the team went on to compare the charging
event duration and the time EV actually spent on
charging. )e finding was as follows: while 40% of EVs
left the charging stations within 1 minute after they are
charged, the remaining 60% of EVs continued to park at
the charging stations for various durations, and among
them, two-thirds (or 40% of the entire population) would
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Figure 5: FPC scores for (a) monthly and (b) yearly pattern.
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even occupy the charging stations for at least an hour.
While the discrepancy between EV owner’s daily activity
and the time needed for charging was understandable, the
longer-than-reasonable parking behavior effectively re-
duced the availability of charging stations to the other EV
drivers and, in our view, called for the need for parking
regulation and enforcement.

4.3. Station Occupancy Variability Analysis. Different from
the above analysis performed from the daily perspective,
this analysis in this section examined the occupancy at the
station level. So, each curve represented one charging
station’s 24-hour occupancy rates with all days aggre-
gated, and a total of 455 curves (representing a total of
455 charging stations) were derived. Function PCA was
then applied to extract the FPC from the dataset. It was
observed that FPC1 accounted for 85% of the variance,
and FPC2 accounted for 8%. So, when combined to-
gether, they reflected 93% of the data’s variability and
were kept for further analysis. )e results were shown in
Figure 7.

In the morning before 6 am and in the evening after 5
pm, stations with higher FPC1 scores were utilized more
often than average, while in the daytime, their utilization
rates were lower. On the other hand, stations with higher
FPC2 values were utilized more often than average in the
first half of a day (before noon) but were used less often in
the second half of a day (afternoon).

An intuitive guess was these patterns might be at-
tributed to the differences in the land-use patterns. As
such, all 455 charging stations were mapped to five
categories of land-use types: (1) recreational, which was

meant to be used for the enjoyment of the people who
used it, such as arts center and theater; (2) commercial,
which was designated for businesses, warehouses, shops,
and any other infrastructures related to commerce, such
as plazas, hotels, and hospitals; (3) transport, which was
built for the structures that help people get from one
destination to the other, such as airport; (4) industrial
such as the plant and industrial parks; and (5) residential,
such as apartments and condominiums. )en, the scores
of FPC1 and FPC2 were plotted in Figure 8, in which
Figure 8(a) had all land-use types together, while Figures
8(b)∼8(f ) stood for commercial, residential, industrial,
transportation, and recreational.

No clear patterns can be found in Figure 9(a), in
which charging stations of all land-use types were plotted
together. However, when they were separated, some
conclusions can be drawn. (1) For charging stations that
were built on residential (Figure 9(c)), transport
(Figure 9(e), and recreational (Figure 9(f )) areas, the
majority of the dots in those subfigures had positive FPC1
scores. In other words, charging stations in these three
categories shared a common pattern that they were used
more often in the evening than in the daytime. Con-
sidering the nature of activities happening at these lo-
cations, this interpretation was consistent with what was
observed in the real life. (2) FPC1 values for commercial
(Figure 9(b)) and industrial (Figure 9(d)) areas were
mixed and thus inconclusive to identify clear patterns. (3)
Charging stations in the recreational area, in general, had
negative FPC2 scores, meaning that they were used more
in the second half of the day than before noon. Again, this
seemed to be in line with our understanding of human
behavior patterns.
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Figure 7: Effect of the first 2 FPCs on daily energy consumption. (a) Left: first FPC. (b) Right: second FPC.
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Figure 8: Effect of the first 2 FPCs on station occupancy. (a) Left: the first FPC. (b) Right: the second FPC.
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5. Conclusions

In this manuscript, the focus was placed on analyzing the
electric vehicle’s usage behavior pattern with a functional
data analysis approach, specifically, based on functional
principal component analysis. Compared with the tradi-
tional discrete-based analysis models, the proposed FDA
modeling approach had unique advantages in preserving
the smooth function behavior of the data, bringing more
flexibility in the modeling process with little required as-
sumptions or background knowledge on independent
variables, as well as the capability of handling time series
data with different lengths or sizes. 5-year real-world
charging event log data from a total of 455 charging stations
in Kansas City, Missouri (KCMO), was used. )e daily
usage variability, daily energy consumption variability, and
station-level usage variability were analyzed, with the goal
of providing theoretical support to the EV infrastructure
planning and regulation, as well as the power grid load
management. In addition to the patterns revealed in the EV
charging station’s occupancy and energy consumption, the
differences between EV driver’s charging time and parking
time were analyzed and called for the needs for parking
regulation and enforcement. )e different usage patterns
associated with charging stations of different land-use types
were also analyzed.
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