Hindawi

Journal of Advanced Transportation
Volume 2020, Article ID 8854068, 9 pages
https://doi.org/10.1155/2020/8854068

Research Article

WILEY

Hindawi

Exploring the Application of the Linear Poisson Autoregressive
Model for Analyzing the Dynamic Impact of Traffic Laws on Fatal

Traffic Accident Frequency

Yue Zhang,l Yajie Zou ! Lingtao Wu,? Jinjun Tang ,> and Malik Muneeb Abid"*

'Key Laboratory of Road and Traffic Engineering of Ministry of Education, Tongji University, No. 4800 Cao’an Road,

Shanghai 201804, China

’Texas A+M Transportation Institute, Texas A&M University System, 3135 TAMU, College Station 77843, TX, USA
3School of Traffic and Transportation Engineering, Key Laboratory of Smart Transport in Hunan Province,

Central South University, Changsha 410075, China

“Department of Civil Engineering, College of Engineering and Technology, University of Sargodha, Sargodha, Pakistan
Correspondence should be addressed to Yajie Zou; yajiezou@hotmail.com and Jinjun Tang; jinjuntang@csu.edu.cn
Received 3 July 2020; Revised 10 September 2020; Accepted 20 September 2020; Published 9 October 2020

Academic Editor: Hailong Liu

Copyright © 2020 Yue Zhang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Annual fatal traffic accident data often demonstrate time series characteristics. The existing traffic safety analysis approaches (e.g.,
negative binomial (NB) model) often cannot accommodate the dynamic impact of factors in fatal traffic accident data and may
result in biased parameter estimation results. Thus, a linear Poisson autoregressive (PAR) model is proposed in this study. The
objective of this study is to apply the PAR model to analyze the dynamic impact of traffic laws and climate on the frequency of fatal
traffic accidents occurred in a large time span (from 1975 to 2016) in Illinois. Besides, the NB model, NB with a time trend, and
autoregressive integrated moving average model with exogenous input variables (ARIMAX) are also developed to compare their
performances. The important conclusions from the modelling results can be summarized as follows. (1) The PAR model is more
appropriate for analyzing the dynamic impacts of traffic laws on annual fatal traffic accidents, especially the instantaneous impacts.
(2) The law that allows motorcycles and bicycles to proceed on a red light following the rules applicable after a “reasonable period
of time” leads to an increase in the frequency of annual fatal traffic accidents by 14.98% in the short term and 30.69% in the long
term. The climate factors such as average temperature and precipitation concentration period have insignificant impacts on
annual fatal traffic accidents in Illinois. Thus, the modelling results suggest that the PAR model is more appropriate for annual fatal
traffic accident data and has an advantage in estimating the dynamic impact of traffic laws.

1. Introduction

A report of National Highway Traffic Safety Administration
(NHTSA) reveals that 37,461 people were killed in 34,439
motor vehicle crashes, an average of 102 deaths per day in
year 2016. To reduce the number of people killed in traffic
accidents, it is important to analyze the influential factors
affecting the frequency of fatal traffic accidents. Among
many factors, the traffic law is considered an effective
measure to reduce the severity of injuries and the number of
fatalities as a means of macroeconomic regulation and
control. Some existing studies have analyzed the impact of

certain traffic laws on the number of traffic accidents, such as
the seat belt law [1], driving under the influence (DUI) law
[2, 3], and alcohol control law [4]. However, the dynamic
impacts of these traffic laws on traffic accidents have not
been adequately studied.

So far, numerous traffic safety analysis models have been
developed. Since the frequency of traffic accident is non-
negative and integer, many studies assumed such events
follow a Poisson distribution and modelled the frequency of
traffic accidents using a Poisson regression model [5, 6].
However, the Poisson model cannot handle overdispersed or
underdispersed data and may result in biased estimation. In
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order to analyze the overdispersed data, many studies
proposed different mixed Poisson models, such as the
Poisson-gamma model (the negative binomial (NB) model)
[7-13], Poisson-lognormal model [14-16], and Poisson-
inverse gamma model [17]. For the data with many zeros
(i.e., excess zero-count data), the zero-inflated models were
applied, including the zero-inflated Poisson model [18, 19],
zero-inflated negative binomial model [20-22], and their
extension models (i.e., multiple random parameter zero-
inflated negative binomial regression model [20] and zero
expansion Poisson regression model with random param-
eter effect [23]). Although rare, crash data can sometimes be
characterized by  underdispersion. ~ The  Con-
way-Maxwell-Poisson model [24] and diagonal inflated
bivariate Poisson regression model [25] were appropriate.

Several recent works about regression models cannot
properly address the time series characteristics of the traffic
accident count data. Noland et al. [26] proposed a time trend
variable as an explanatory variable in the count regression
model to consider the series correlation. However, this
model may not clearly account for the effects of serial
correlation. An alternative approach was modelling possible
dynamics in the traffic accident count data with a lagged
dependent variable in the Poisson or NB models. These
models failed to represent adequately the dynamics in
persistent time series because they implied that the growth
rate of the process was the exponentiated coefficient on the
lagged dependent variable. Such a process may potentially
generate time series data rather than dynamic data [27].
These two kinds of models were dynamic models with a
trend, but not necessarily a cyclical or dynamic component.
Another approach to handle the time series was the
autoregressive integrated moving average (ARIMA) model
and its extensions including the seasonality autoregressive
integrated moving average (SARIMA) [28] and nonlinear
autoregressive exogenous (NARX) [29]. These time series
models may not be applicable to discrete time series vari-
ables (e.g., traffic accident count data). To consider both time
series and discrete characteristics of the response variables,
an integer-valued autoregressive (INAR) Poisson model
[30-34] was developed. However, the dynamic character-
istics of the influential factors were not adequately described
in the INAR model. Few approaches can adequately model
the dynamics and distribution of annual fatal traffic accident
data.

To address the above issues, this study proposed a linear
Poisson autoregressive (PAR) model. The objective of this
study is to apply the PAR model to analyze the dynamic
impact of traffic laws on annual fatal traffic accident fre-
quency from the macroscopic point of view using the data
collected in Illinois from year 1975 to 2016. The contribution
is to demonstrate the performance of the PAR model in the
analysis of the dynamic influence of factors on traffic ac-
cident frequency and quantitatively analyze the impacts of
traffic laws.

The rest of the paper is organized as follows. Section 2
introduces the specification, estimation, and interpretation
of the PAR (p) model. Section 3 describes the dataset used in
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this study and the source of our data. In Section 4, the results
of statistical modelling are shown to understand the con-
tribution of different factors to the annual fatal traffic ac-
cidents in Illinois and compare the performances of various
models. A conclusion and future recommendations are
provided in Section 5.

2. Methodology

2.1. The PAR Model. Before presenting the model, the linear
autoregressive (AR) process is firstly introduced. The AR
model describes the random variables at some time by using
the linear combination of random variables at earlier time as
equation (1). It is a common form of time series.

P
Vi= Y piyiitA (1)

i=1

where y, is the traffic accident count value at time ¢, y,_; is
the past traffic accident count value at the i moments before
time ¢, p; € [-1,1] is autocorrelation coefficient, and A is a
random error term.

Because there are explanatory variables in the PAR
model, it is necessary to redefine the variables in the AR
process. The conditional data Y,_; replace y,_; in the AR (p)
model, which is a vector that included all the observed
values of the dependent and independent variables at
time £.

Y., :(yO’yl""’yt—l;XO’Xl""’Xt—l)’ (2)

where X, ; are the past explanatory variables (factors af-
fecting traffic accidents) at the i moments before time ¢. Y,_,
can be regarded as all the prior information about the series
of interest at time ¢. Assume that y, is a realization from a
Markov process with the conditional transition probability
Pr(y,1Y,_;) and E[Y,] = p. Let the conditional expectation
E[y,1Y,_,] = m, at time t have a finite mean. Then, y, is a
pth order linear autoregressive process as shown in the
following equation:

p
E[)’t IYt—l] = ZPth—i +A (3)

i=1

Then, we can obtain equations (4) and (5) by using
iterated expectations [35] of equation (3):

p
E[E[y, Y]] = E[ZPth-i +/\:|’ (4)
i=1

M

E[Y,] =) pE[Y. ]+ A (5)

i=1
where equation (5) is a geometric series for p;; then,

A
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Since [Y,] = p, equation (3) can be written as

lim E[Y,] =

t—00
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P P
E[)’t|YH] = ZPthi+<1 ‘ZP:‘)H- (7)
i=1 i=1

This is a linear AR(p) process, where the distribution of y
is not used. The only role of distribution of y, is to define the
possible value of p;.

The PAR (p) model can be defined as follows. The as-
sumptions of the model are that the observed traffic accident
counts y,(t=1,2,---,T) are generated from a Poisson
distribution on the condition of m,. Then, the measurement
equation for the observation value is obtained in the following
equation:

mg’ te” m
Pr(yt | mt) = T (8)

Assume that m, is the conditional mean of the linear AR
process of E[y,|Y, ], which defines the state variable for
the model. According to the measurement equation (8), this
state density with its mean m, and variance o, is in the
exponential family. The mean or state variable of the
marginal Poisson distribution evolves according to a sta-
tionary AR (p) process with autocorrelation parameters p;,
and its transition equation is expressed as follows:

P P
me=Y piye+ <1 - Zm)eXp (X,9), (9)

i=1 i=1

where X, are T' x k-matrices of explanatory variables composed
of various factors affecting traffic accidents, § is a k x 1-vector of
regression parameters, and k is the number of factors.

Finally, assume that the density of the state variable has a
gamma-distributed conjugate prior with gamma’s location
parameter a,_, and scale parameterb,_;, so

Pr(””t |Yt—1) =T (o,ym_,0,4), m_>0,0,,>0,
(10)

where m, = E[y,|Y,_,] and 0,_, = Var[y, |Y,_,]. The prior
is constructed using the observed traffic accidents data. The
prior can help to find the conditional mean and variance at
time t based on the previous t — 1 observations.

Since the prior is gamma, using an extended Kalman
filter, the conditional distribution at time ¢ given ¢ — 1 is also
gamma, that is, my, ~T ((my,_,04,),0,.,). Since the
measurement equation is Poisson and the state equation is
gamma, an estimate of the posterior at time t is equation
(11). This is a negative binomial distribution.

Pr(n] Vo) = [ Pr(ve] 0)pr(6r] Y., )6

J eévte—et efﬂm,leefﬂt—lmtl[fl_lo,(tjtltflmtltfl

6y r(0t|t—lmt|t71)
r(at\t—lmtlt—l + yt) ( 1My
\Utlt—l)
Iy, + 1)r(0t|t—1mt|t—l)
><(1 i 0}|¢- 1)‘(Ur|r—1mt|t—1+)’t).
(11)

Replace the AR (1) process with m1, and obtain the PAR
(1) model with a negative binomial predictive distribution.
The one-step ahead conditional forecast function for the
PAR (p) model is expressed as follows:

E[ytﬂ |Yt] =My

P (12)
Py + < 1- Z Pi >.”-
i=1

M

i

I
—_

2.2. The Impact Multipliers. Because the PAR (p) model
considers an explanatory variable matrix X, and
u = exp(X,9), the interpretation differs from the Poisson
and NB models significantly [36]. There is a concept of
impact multiplier as in a Gaussian linear autoregressive
model, which is the effect of a change in explanatory variable
X,. The instantaneous impact multiplier can be obtained by
calculating the first derivative of the mean function for this
change. The calculation process is shown in the following
equation:

am, (XL pYi+(1-7 pi)exp(X,9))

ox, ox,

(13)

= <1 - ipi>exp(Xt6) -0,

i=1

where § is the coefficient of the explanatory variable X,. This
is the instantaneous effect of a shock in factors affecting
traffic accidents X, on the mean of traffic accidents m,. The
long-run impact multiplier which means the total effect of a
shock to X, can be calculated by equation (14), as in the
Gaussian time series analysis. The long-run multiplier can be
compared with the parameter estimation of other count
regression models, which measures the impact of a shock on
the conditional mean number of events.

om/0X, (1 - Zf:lp,»)exp (X,0)-6
(1_Z£1Pi) (1_ ;'pzlpi) (14)
= exp (X,9) - 6.

The long-run impact multiplier and the instantaneous
impact multiplier correspond to the concepts of average
impact and marginal impact in economics, respectively. In
economics, the average impact corresponds to the whole
time, while the marginal impact corresponds to the “pres-
ent” in time. The long-run impact is compared with the
whole of the past, which should consider the impact of the
past. However, the instantaneous impact multiplier or the
marginal impact (the marginal effect is obtained by the
partial derivation of X, as shown in equation (13)) focuses
on the impact on the future without considering the past.

In the Poisson and NB models, the long-run and in-
stantaneous impact multipliers are the same and they can also
be calculated by equation (14). The reason for this difference is



that the PAR (p) model accounts for the influence of ex-
planatory variables on traffic accidents and the dynamic re-
sponses to the changes in explanatory variables over time.

3. Data Description

The annual fatal traffic accident frequency data for Illinois
from year 1975 to 2016 were obtained from NHTSA’s Fa-
tality Analysis Reporting System (FARS). The annual fatal
traffic accident was taken as the dependent variable to avoid
underreporting due to various definitions of traffic acci-
dents. Some traffic laws were considered to evaluate the
instantaneous and long-run impact on traffic accidents from
a quantitative perspective. According to WHO [37], five
road safety risk factors (i.e., speeding, drunk-driving, the use
of helmets, seatbelts, and child restraint systems) played an
important role in traffic injuries and deaths. And Senna et al.
[38] concluded that driving under the influence of alcohol is
always a dominant problem. Due to the far-reaching in-
fluence of law on traffic accidents, the research data of law
are basically based on the year [1, 39]. Thus, the traffic laws in
Table 1 were selected for analysis of annual fatal traffic
accidents. The variables related to law were set as binary
variables here. For example, the initial effective date of safety
belt law in Illinois was January 1, 1988, and then this traffic
law variable equalled 0 for the first 13 periods and 1
thereafter (every traffic law used in this study and their
effective date are shown in Table 1). If the date of imple-
mentation of the law was in the latter half of the year, the law
was considered to work from the second year.

Besides, various factors identified as related to traffic safety
are composed of our dataset to analyze how the explanatory
variables affect the annual fatal traffic accident. In order to be
consistent with legal factors, we also select some macroscopic
indicators ranging from 1975 to 2016 with an interval of year in
Mlinois. The dataset is assembled from a variety of sources
including the U.S. Energy Information Administration, Federal
Highway Administration, and National Institute on Alcohol
Abuse and Alcoholism. The dataset covers economic, social,
driver, climate, and law factors. Summary statistics of the
dataset are shown in Table 1. Note that the climate factors
mentioned are different from the microscopic weather factor,
which indicates the wet and dry conditions over a large space-
time range. In the dataset, gross domestic product (GDP), total
vehicle miles of travel (VMT), rural VMT as proportion of total
VMT, per capita beer consumption, gasoline price, and safety
belt law are used to analyze the influence of various factors on
traffic accidents [3]. Geedipally et al. [3] demonstrated that
DUI laws, beer consumption, the proportion of rural VMT,
and shocks in the economy had a significant effect in traffic
fatalities. Note that all the economic indicators are converted to
2016 dollars using the consumer price index (CPI) calculator at
the Bureau of Labor Statistics.

4. Modelling Results

Four models (i.e., the ARIMAX, PAR, NB, and NB with a
time trend model) are developed using the Illinois data,
where the ARIMAX, NB, and NB with a time trend model
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are considered as benchmark models. All the models con-
structed in this paper are implemented with R. The main
purpose is to identify the influential traffic laws affecting the
fatal traffic accidents. Figure 1 shows the trend of the fatal
traffic frequency accident and VMT over time. As can be
seen from Figure 1, the frequency of fatal traffic accident
decreases significantly with time and shows sequence cor-
relation, while VMT increases with time.

For the PAR(p) model mentioned in the methodology,
the order p of the PAR (p) model is determined firstly
(Table 2). Based on the PAR (1) model, stepwise regression is
used to select all significant variables as the combination of
explanatory variables of each model. Thus, the final models
include only a subset of the original explanatory variables,
which is shown in Tables 2 and 3. The Akaike information
criterion (AIC) which is an estimator of the relative quality
of statistical models for a given set of data provided another
means for order selection. The smaller its value is, the better
the fitting effect of the model is. When p >4, the model
complexity increases but AIC does not decrease signifi-
cantly. As discussed by Eluru et al. [40], different from the
AIC, the Bayesian information criterion (BIC) imposes a
larger penalty on model overfitting with excess parameters.
As can be seen from Table 2, the BIC value for the PAR (4)
and PAR (5) models differ slightly because the PAR (5)
model has more parameters than the PAR (4) model. Be-
sides, the estimated insignificant parameters are shown in
bold in Table 2. There are insignificant parameters from
p>2, which will affect the analysis of the impact multiplier
of explanatory variables. Based on the modelling results in
Table 2, the PAR (2) model is chosen as the final model.

In addition to the PAR (2) model, the ARIMAX, NB, and
NB with a time trend models are also compared as alter-
native models. Because of the time series in the data, the
ARIMAX model considering the explanatory variables is
selected as one of the alternative models. Based on AIC
values, the final model is determined as ARIMAX (1, 1, 0).
Besides, the NB model, which is most commonly used in
traffic accident frequency analysis, is considered as one of the
alternative models. Furthermore, the NB with a time trend
model which can consider the time series and discrete
characteristic of the traffic accident frequency by using a
simple solution is also compared. The parameter values of
these models are estimated using the maximum likelihood
estimation method.

The results of these models are shown in Table 3.
According to the AIC and BIC values in Table 3, the PAR (2)
model fits this dataset best, followed by the NB with a time
trend model and ARIMAX (1, 1, 0) model. The NB model
provides the least fitting performance. The models with a
time trend structure seem to fit best since the traffic acci-
dents appear to be serially correlated. Taking AIC as ex-
ample, the fitting performance of the PAR model increases
by 12% compared to the NB model, 6% compared to the
ARIMAX model, and 5% compared to the NB with a time
trend model. However, the coeflicients of explanatory var-
iables estimated by the ARIMAX model are not significant;
in other words, the ARIMAX model is not able to explain
how these factors affect annual fatal traffic accidents. For the
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TaBLE 1: Summary statistics of annual fatal traffic accidents and factors in Illinois.

Variables Min  Max Mean St error
Fatal traffic accidents 832 1877 1316 299.31
Total VMT (million) 60943 109135 89696 16914.83
GDP (in $100,000) 405739 807458 593554 134797
Rural VMT proportion (%) 0.24 0.34 0.30 0.03
Gasoline price ($ per gallon) 1.54 3.71 2.41 0.64
Per capita beer consumption (gallons) 1.12 1.45 1.30 0.10
Average temperature (‘F) 49.38 5578 52.16 1.52
Precipitation concentration period 28.54 51.18  39.68 5.68

Safety belt law
DUI toughened penalties

Drivers under age 18 may not use a wireless phone while driving

Persons under age 18 who obtain a graduated driver’s license may not

of the license, or until the person reaches age 18, with more than one person under age 20 in the

vehicle
Disallow parents/guardians to knowingly permit the consumption of
their residence

Motorcycles and bicycles may proceed on a red light following the rules applicable after a “reasonable

period of time”

Graduated driver’s license provisions strengthened

Limit the use of mobile phones while operating a motor vehicle

Before: 0; after: 1
(year 1988: 1)
Before: 0; after: 1
(year 1982: 1)
Before: 0; after: 1
(year 2005: 0)

January 1988
January 1982

July 2005
drive during the first 6 months Before: 0; after: 1

January 2004 (year 2004: 1)

Before: 0; after: 1
(year 2007: 0)
Before: 0; after: 1
(year 2012: 1)
Before: 0; after: 1
(year 2008: 1)
Before: 0; after: 1
(year 2010: 1)

alcohol by underage invitees at August 2007

January 2012
January 2008

January 2010
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FiGURE 1: Annual fatal traffic accidents and VMT in Illinois.

NB with a time trend model, most of the explanatory var-
iables are significant and the values of parameter estimates
are similar to those of the NB and PAR (2) models. However,
the belt law and beer consumption variables are insignifi-
cant. This phenomenon shows that this model may not help
us to explain the impact of various legal factors on the
frequency of traffic accidents completely. Since the PAR (2)
model and NB model have all statistically significant vari-
ables, their fitting performance and parameter estimates are
compared in the following paragraphs.

Except the ARIMAX model, other models belong to the
regression model. During modelling the fatal traffic acci-
dents, total VMT is considered as an offset term because
there is a linear relationship between total VMT and fatal
traffic accidents [3]. From a qualitative point of view, both
the coefficients estimated by the NB and PAR models show
that beer consumption has the greatest impact among these
factors on the frequency of annual fatal traffic accidents
(Table 3). However, the AIC and BIC values of the PAR (2)
model are much smaller than those of the NB model. Note
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TABLE 2: Modelling results for different orders of PAR models.

PAR (4)

~7.028 (0.341)
~0.101 (0.037)

PAR (5)
—6.787 (NA)
~0.124 (0.048)

Model

Intercept
Gasoline price

PAR (1)
-6.216 (0.375)
~0.152 (0.038)

PAR (2)
~6.821 (0.328)
~0.074 (0.028)

PAR (3)
-6.811 (0.322)
~0.074 (0.029)

Beer consumption 2.12 (0.244) 2.37 (0.204) 2.363 (0.197) 2.476 (0.209) 2.491 (0.225)
Belt law ~0.196 (0.046) —0.157 (0.037) ~0.159 (0.038) —0.118 (0.042) —0.093 (0.049)
DUI toughened penalties ~0.379 (0.05) —0.279 (0.043) —0.278 (0.05) —0.206 (0.076) -0.451 (NA)

0.383 (0.089)
—0.247 (0.062)

0.434 (0.113)
~0.276 (0.075)

0.393 (0.083)
~0.237 (0.067)

0.301 (0.059)
~0.219 (0.049)

0.296 (0.065)
~0.216 (0.052)

Red running
Alcohol law

o 0.628 (0.057) 0.706 (0.093) 0.704 (0.095) 0.754 (0.095) 0.718 (0.098)
Py — ~0.194 (0.079) -0.179 (0.119) -0.218 (0.12) -0.157 (0.127)
03 — — —0.015 (0.086) -0.265 (0.118) -0.262 (0.12)
P4 — — — 0.287 (0.082) 0.144 (0.12)
s — — — — 0.147 (0.09)
N 42 42 42 42 42
Log-likelihood —-234.125 222116 —217.543 -200.139 ~197.746
AIC 482.249 460.232 453.069 420.277 417.492
BIC 494.414 474133 468.725 437.655 436.606

N is the number of samples.

TaBLE 3: Fatal traffic accident analysis (standard errors in parentheses).

Model ARIMAX (1, 1, 0) PAR (2) NB NB with a time trend
Intercept — -6.821 (0.328) —5.835 (0.347) 7.118 (0.29)
Gasoline price 3.836 (32.897) ~0.074 (0.028) ~0.077 (0.028) ~0.05 (0.02)

Beer consumption

Belt law

DUI toughened penalties
Red running

Alcohol law

Linear trend

P1

P2

ol

N
Log-likelihood
AIC

BIC

575.665 (514.852)
191.826 (66.103)
—98.515 (77.537)
58.631 (63.765)
~144.166 (67.999)

42
-237.85
491.71
505.61

2.37 (0.204)
~0.157 (0.037)
~0.279 (0.043)
0.301 (0.059)
~0.219 (0.049)
0.706 (0.093)
—0.194 (0.079)

42
-222.116
460.232
474133

1.805 (0.242)
~0.225 (0.048)
—0.445 (0.048)
0.162 (0.059)
-0.221 (0.06)

0.006
42
—254.633
525.27
539.168

0.393 (0.211)
0.029 (0.039)
—0.227 (0.042)
0.096 (0.039)
~0.228 (0.041)
—0.007 (0.003)

0.002
42
—232.543
483.087
498.726

"The dispersion parameter in the NB model. >N is the number of samples.

that the PAR model can capture dynamics in fatal traffic
accident data and provide better fitting performance. In
addition to the goodness-of-fit statistics, we further compare
the modelling results of the PAR (2) model and the NB
model.

For dynamic models, the results cannot be fully obtained
by displaying coeflicients in Table 3, which represented the
average effect of explanatory variables [41]. Besides, the
generalized linear model includes a link function, which
makes it difficult to explain the original coeflicients of the
model independently [41]. In other words, the estimated
coeflicients in Table 3 cannot directly quantify the impact of
factors per unit change on fatal traffic accident frequency.
Thus, in order to compare the effects of explanatory variables
on fatal traffic accidents in different models, the long-run
and instantaneous multipliers are calculated by using
equations (13) and (14). Since this study focuses on the
impact of traffic laws on annual fatal traffic accidents, only
the impact multipliers of law are presented in the first

column of Tables 4 and 5. Because of the dynamic structure
of the PAR (2) model, the value of long-run impact mul-
tiplier is larger than that of instantaneous impact multiplier
(0< Y7 p;<1). The three laws (e.g., belt law, DUI tough-
ened penalties, and alcohol law) lead to a decrease in fatal
traffic accident, among which the DUI toughened penalties
law has the greatest influence. After the implementation of
the DUI toughened penalties, the frequency of fatal traffic
accident decreases by 91 in the short run and 186 in the long
run. However, implementation of the law that allows mo-
torcycles and bicycles to proceed on a red light following the
rules applicable after a “reasonable period of time” (red
running) leads to an increase in the frequency of fatal traffic
accidents. Before this study, Pai and Jou [42] have revealed
the high association between bicyclist red-running and
accidents in Taiwan. The effect of red running is a total
increase of 201 fatal traffic accidents in the long run and 72
fatal traffic accidents in the short run, which indicates that
this law is not conducive to traffic safety. This law may be
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TaBLE 4: Fatal traffic accident analysis (long-run effect).

Variabl PAR (2) NB
ariable
Long-run multiplier Percentage change in mean (%) Long-run multiplier Percentage change in mean (%)
Belt law -105.137 -15.00 —155.447 -20.15
DUI toughened penalties -186.371 —-25.65 -309.795 -35.92
Red running 201.172 30.69 112.659 17.59
Alcohol law —146.495 -20.63 —153.839 -19.83

TaBLE 5: Fatal traffic accident analysis (instantaneous effect).

PAR (2) NB
Variable .
Instantaneous multiplier Percentage change in mean (%) Instantaneous multiplier Perce?:lii c(l;/a)n gemn

0

Belt law —-51.322 -7.32 —155.447 -20.15

DUI toughened penalties -90.975 -12.52 -309.795 -35.92

Red running 98.2 14.98 112.659 17.59

Alcohol law —-71.51 -10.07 —153.839 -19.83

designed to increase the traffic efliciency of nonmotorized
vehicles and reduce travel time, but it is not desirable to
improve traffic efficiency at the expense of traffic safety.
Finally, the impact multipliers of the NB and PAR (2)
models are compared (Tables 4 and 5). All signs of pa-
rameters estimated by the NB and PAR models are the same.
It can be observed that the frequency of fatal traffic accidents
decreases with the increase of gasoline prices, the imple-
mentation of the belt law, and the enforcement of the DUI
penalty law. With beer consumption rising and red running
allowed, the frequency of fatal traffic accident increases.
However, the values of impact multipliers estimated by the
NB and PAR (2) models differ significantly. Taking the
implementation of red running law as an example, which is
the only law variable leading to an increase in the frequency
of traffic accidents in the dataset, the instantaneous impact of
the red running law is about 98 for the PAR (2) model, which
means that the implementation of red running law has
increased the number of accidents by 98 at this point. The
long-run multiplier of red running law is 201, which means
the frequency of accidents increased by 201 in the long run.
The NB model estimates the impact of enforcing the red
running law by a multiplier of 113. These percentage changes
are shown in Tables 4 and 5. For the PAR (2) model, the total
percentage change due to this intervention in the number of
fatal traffic accidents is an increase of 30.69% while the
instantaneous percentage change is 14.98%. For the NB
model, the total change in the number of fatal traffic acci-
dents is 17.59%. The instantaneous effect of the PAR (2)
model is smaller than the instantaneous effect of the NB
model, and long-run effects of the PAR (2) model are larger
than the long-run effect of the NB model. The reason for this
phenomenon is that the estimated coeflicients of the PAR (2)
model include dynamic characteristics. The long-run mul-
tiplier takes into account the impact of the previous stage on
the present, while the instantaneous effect only takes into
account the current impact. Since § describes an average
effect, the multipliers calculated from exp (X,d) - § can only
describe the average effect. Thus, the instantaneous effect of

the NB model actually reflects the average effect, which leads
to overestimation of the short-run effect. The NB model
cannot properly consider the dynamics of fatal traffic ac-
cident data, which leads to overestimation of the instanta-
neous impact of explanatory variables on fatal traffic
accidents.

For the remaining three variables, both the long-run
and instantaneous impact multipliers estimated by the
PAR model are smaller than those estimated by the NB
model. Taking the belt law as an example, the instanta-
neous and long-run percentage changes due to the in-
tervention estimated by the PAR model are —7.32% and
—15%, respectively, and the estimated multiplier of the NB
model is —20.15%. This phenomenon indicates again that
the NB model overestimates the impact of explanatory
variables, especially for the instantaneous impacts. The
dynamic nature of the PAR (p) model makes it more
suitable for estimating the dynamic impact of traffic laws
on annual fatal traffic accidents. The instantaneous impact
of a safety intervention strategy can inform the trans-
portation management agencies to design more appro-
priate traffic laws, while the NB model cannot provide
such information.

5. Conclusions

Annual fatal traffic accidents are count data with time series
characteristics. The existing traffic accident analysis models
cannot fully model their dynamic characteristics and analyze
the dynamic influence of explanatory variables on annual
fatal traffic accidents. Among many explanatory variables of
traffic accident analysis, the dynamic effect of the enforce-
ment of traffic laws has not been widely concerned. In this
study, a linear Poisson autoregressive model is proposed to
analyze the long-run and instantaneous impact of traffic laws
on annual fatal traffic accidents. Then, the modelling results
of PAR (p), ARIMAX, NB, and NB with a time trend models
are compared. Several major conclusions are summarized as
follows:



(1) The PAR model can outperform the ARIMAX,
NB, and NB with a time trend models in terms of
fitting performance and estimation of dynamic
effects. The PAR (p) model is more suitable for
analyzing the dynamic impact of traffic laws on
annual fatal traffic accidents. Compared with the
ARIMAX model, the PAR (p) model can consider
discrete characteristics in the accident data and
analyze the influence of factors. Compared with
the NB with a time trend model, the PAR (p)
model can accurately analyze the influence of
more explanatory variables on the frequency of
fatal traffic accidents. Compared with the NB
model, the PAR (p) model can capture the time
series in annual fatal traffic accident frequency
and calculate the dynamic effect of traffic laws and
other explanatory variables. The omission of the
dynamics from the NB model leads to biased
parameter estimates, especially the inability to
estimate the instantaneous multipliers of factors.
However, instantaneous multipliers can indicate
the immediate effects of traffic law interventions
for traffic safety management agencies and help to
make new laws.

(2) Some climate and traffic law factors are considered
to quantitatively evaluate their impact on annual
fatal traffic accidents in Illinois. The average tem-
perature and precipitation concentration period
have insignificant impacts. The law of DUI
toughened penalties results in a decrease of annual
fatal traffic accidents by 12.52% in the short run and
25.65% in the long run, which has the greatest
inhibitory effect on fatal traffic accidents among the
analyzed laws. However, the law allowing red
running leads to an increase of annual fatal traffic
accidents by 14.98% in the short term and 30.69% in
the long term. Therefore, controlling the DUI be-
haviors and modifying the red running law may
significantly reduce the frequency of annual fatal
traffic accidents, which provide guidance for future
traffic law development.

The PAR (p) model can be widely applied to analyze the
time series count data. Besides the traffic laws mentioned in
this paper, the applicable explanatory variables exhibiting a
sudden change can be extended to the factors such as the
emergence of policies and regulations, and the dynamic
impact of these kinds of variables can be well explained by
the PAR (p) model. For future research, the PAR (p) model
can be applied to investigate traffic accident data collected
from other sites. Furthermore, with the development of data
acquisition technology, multisource datasets [43-46] can be
used to analyze traffic accidents.
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