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In order to make an accurate prediction of vehicle trajectory in a dynamic environment, a Unidirectional and Bidirectional LSTM
(UB-LSTM) vehicle trajectory prediction model combined with behavior recognition is proposed, and then an acceleration
trajectory optimization algorithm is proposed. Firstly, the interactive information with the surrounding vehicles is obtained by
calculation, then the vehicle behavior recognition model is established by using LSTM, and the vehicle information is input into
the behavior recognition model to identify vehicle behavior. /en, the trajectory prediction model is established based on
Unidirectional and Bidirectional LSTM, and the identified vehicle behavior and the input information of the behavior recognition
model are input into the trajectory prediction model to predict the horizontal and vertical speed and coordinates of the vehicle in
the next 3 seconds. Experiments are carried out with NGSIM data sets, and the experimental results show that the mean square
error (MSE) between the predicted trajectory and the actual trajectory obtained by this method is 0.124, which is 97.2% lower than
that of the method that does not consider vehicle behavior and directly predicts the trajectory. /e test loss is 0.000497, which is
95.68% lower than that without considering vehicle behavior. /e predicted trajectory is obviously optimized, closer to the actual
trajectory, and the performance is more stable.

1. Introduction

Trajectory prediction is an important research direction in
the field of autopilot [1, 2]. /e research on the decision-
making characteristics of the driver shows that factors
such as the relative speed and relative distance between
the car and the surrounding moving vehicles will greatly
affect the driver’s decision [3] and then affect the driving
safety. For static vehicles in the driving environment,
intelligent vehicles can drive safely along the planned
trajectory; for dynamic vehicles, human drivers can use
past experience and intuition to predict the behavior of
other drivers to avoid potential accidents [4]. Intelligent
vehicles need to improve their driving safety by predicting

the trajectories of the moving vehicles around them in real
time.

/e existing methods are basically separate research on
vehicle behavior recognition and vehicle trajectory predic-
tion, and there are not many methods to combine the two to
make a more accurate trajectory prediction [5–10]. Im-
proving the accuracy of vehicle trajectory prediction is the
most urgent problem to be solved. In fact, the accurate
identification of vehicle behavior is very important to im-
prove the accuracy of vehicle trajectory prediction, so this
paper will take vehicle behavior recognition into
consideration.

/ere are many existing trajectory prediction methods,
such as the Markov model [11]. Its advantage is that it can
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calculate the probability of maintenance capability and
multiple degraded state systems, but it is not suitable for
long-term prediction and is easily affected by the external
environment./e advantage of Bayesian model [12] is that it
is not sensitive to missing data but needs to know a priori
probability, and a priori probability often depends on as-
sumptions, and there can be many hypothetical models;
therefore, at some point, the prediction effect is poor due to
the hypothetical a priori model. /e advantage of Kalman
filter [13] is that the prediction in a short time (1 step or 2
steps) can be judged stably and accurately, but the trajectory
prediction for a long time (such as more than 3 seconds or
more than 5 steps) will seriously affect the prediction ac-
curacy due to the increase of prediction error, and the model
is very complex and easy to be affected by external noise.

LSTM has a long-term memory function and can learn
to translate languages; control robots; make image analysis,
document summaries, speech recognition, image recogni-
tion, and handwriting recognition; control chatbots, predict
diseases; click rates and stocks; and synthesize music
[14–17]. Vehicle trajectory prediction is also a time series
problem, and there is a correlation between each track point
and the historical track point, so it is very suitable to use
LSTM to solve the trajectory prediction problem.

In order to solve the problem of vehicle trajectory
prediction, a UB-LSTM vehicle trajectory prediction model
combined with vehicle behavior recognition is proposed in
this paper. Firstly, a many-to-one vehicle behavior recog-
nition model is established based on LSTM, and then a
trajectory prediction model is established based on one
unidirectional LSTM and one bidirectional LSTM. /e
identified vehicle behavior information and the input in-
formation of the vehicle behavior recognition model are
input into the trajectory prediction model to predict the
horizontal and longitudinal speed and coordinates of the
vehicle, and in the follow-up process, based on the predicted
horizontal and longitudinal velocity, an acceleration tra-
jectory optimization algorithm is proposed, and the pre-
dicted trajectory based on the optimization algorithm is
more consistent with the actual trajectory and more stable.
/e contributions of this paper are as follows:

A better trajectory prediction model is proposed, and a
small test loss is obtained. In this paper, the influence of
the surrounding vehicles on the predicted vehicles (that
is, interactive information) is taken into account in the
model, and the prediction effect of the model is
improved.
/is paper considers a method that combines the ve-
hicle behavior recognition model with the trajectory
prediction model; that is, the behavior of the vehicle is
input into the trajectory prediction model as one of the
input information, which can obviously improve the
accuracy of trajectory prediction.
Based on the predicted horizontal and vertical velocity,
an acceleration trajectory optimization algorithm is

proposed, which obviously improves the accuracy and
stability of the predicted trajectory.

2. Related Work

At present, in the aspect of vehicle trajectory prediction, the
main methods are trajectory prediction based on physical
motion model, trajectory prediction based on driving be-
havior, and trajectory prediction based on intention rec-
ognition. Gambs et al. [18] put forward the trajectory
prediction method of high-order Markov model, which has
high accuracy, but high computational overhead, so it is
difficult to meet the real-time requirements of intelligent
vehicles. Chandra et al. [10] proposed a new method based
on the combination of graph analysis and deep learning to
predict vehicle trajectories in urban traffic scenes, and they
learned how to predict future trajectories and behaviors
from the extracted vehicle trajectories. In order to reduce the
error of long-term prediction (3–5 seconds) and improve the
accuracy of prediction, spectral clustering regularization
method was introduced and experiments were carried out
on Argoverse, LYFT, and Apolloscape data sets. Deo and
Trivedi [19] proposed an LSTM encoder-decoder model,
which uses a convolutional social pool as an improvement to
the social pool level to learn the interdependence in vehicle
motion stably. In addition, based on the variability of tra-
jectories, the model also outputs the multimodal prediction
distribution of future trajectories and uses US-101 and I-80
sections of NGSIM data sets to evaluate the model. Chang
et al. [20] proposed the Argoverse data set, which is designed
to support self-driving vehicle perception data including 3D
tracking and motion prediction. Argoverse data set includes
sensor data collected by self-driving teams in Pittsburgh and
Miami, as well as 3D tracking notes, extracting 300000
vehicle tracks and rich semantic maps. Using this data set
can greatly reduce trajectory prediction errors. Chandra
et al. [21] proposed an end-to-end vehicle trajectory pre-
diction algorithm-RobustTP, which uses a tracking algo-
rithm to obtain noise sensor input tracks from RGB cameras
(whether stationary or moving) to predict vehicle trajec-
tories in dense traffic and regards noise as a deviation from
the real track. Firstly, the online motion model and the case
segmentation algorithm based on deep learning are com-
bined to calculate the trajectory. /ese noise tracks are
trained by LSTM-CNN neural network structure, which
simulates the interaction between different traffic objects in
dense and nonuniform traffic. Chandra et al. [22] used a new
LSTM-CNN hybrid network to model the interaction be-
tween different traffic objects for trajectory prediction, in-
cluding buses, cars, scooters, bicycles, or pedestrians. Giuliar
et al. [23] proposed a transformer network for pedestrian
trajectory prediction and achieved good prediction results.
Monti et al. [24] proposed a new recursive generation model
to predict the trajectory of obstacles, which takes into ac-
count not only the future target of a single obstacle but also
the interaction between different obstacles, and in this

2 Journal of Advanced Transportation



model, a graph neural network based on double attention is
used to collect the interactive information between different
obstacles, which is combined with the possible future tra-
jectory of the obstacles, and a good prediction effect is
obtained in the urban scene. Mohamed [25] proposed the
social space-time graph convolution neural network (Social-
STGCNN), which uses the method of modeling interaction
as a graph instead of the aggregation method. /e experi-
mental results show that the final displacement error (FDE)
is 20% higher than the existing methods, the average dis-
placement error (ADE) is 8.5 times higher, and the reasoning
speed is 48 times faster. Li et al. [26] proposed a universal
generative neural system (Social-WaGDAT) for trajectory
prediction of various obstacles and evaluated the system on
three common trajectory prediction data sets, and the ex-
perimental results show that themodel has a good prediction
effect in terms of prediction accuracy, in which the types of
obstacles include pedestrians, bicycles, and vehicles. Hao
et al. [27] proposed an end-to-end generative model called
attention map encoder network (AMENet), which can ac-
curately and truly realize multipath trajectory prediction and
achieve good prediction results.

In order to make an accurate prediction of moving
vehicle trajectory, a UB-LSTM vehicle trajectory prediction
model combined with vehicle behavior recognition is pro-
posed to obtain a smaller prediction error. Finally, based on
the predicted horizontal and vertical velocity, an accelera-
tion trajectory optimization algorithm is proposed.

3. Methods

Long short-term memory (LSTM) network [28] is a re-
current neural network (RNN) structure proposed by
Hochreitrer and Schmidhuber in 1997. LSTM mainly solves
the problems of gradient explosion and gradient vanishing
of RNN [29]. LSTM mainly adds forgetting gate, input gate,
and output gate on the basis of RNN to realize selective
forgetting and memory of information, thus realizing the
function of long-term memory. LSTM realizes the function
of long-term memory through long-term memory. Because
there is only simple multiplication and addition on the track
of long-term memory, and there is no nonlinear operation,
information flows more smoothly at different times, which
can effectively restrain the problem of gradient dissipation of
long-term memory.

/e process of this method is to first establish a vehicle
behavior recognition model to realize vehicle behavior
recognition and finally input the behavior identified by the
vehicle behavior recognition model and vehicle information
into the established trajectory prediction model to predict
the horizontal and vertical speed and coordinates in the next
3 seconds. /e overall flow chart is shown in Figure 1. /e
concrete realization is to establish a separate vehicle behavior
recognition model and a vehicle trajectory prediction model
and train them separately, in which the training data of the
vehicle trajectory model contains the marked vehicle be-
havior information. /en, the vehicle behavior recognition
model and the trajectory prediction model are tested to-
gether, and finally, the acceleration trajectory optimization

algorithm is used to generate a more accurate prediction
trajectory.

/e following will introduce in detail the vehicle be-
havior recognition model, trajectory prediction model, and
acceleration trajectory optimization algorithm in turn.

3.1. Vehicle Behavior Recognition Model. /e behavior rec-
ognition model proposed in this section is mainly used to
identify the five behaviors of each vehicle trajectory, in-
cluding going straight, turning left and right, and changing
lanes. Not only the state of the vehicle can affect vehicle
behavior but also the surrounding vehicles, pedestrians,
bicycles and so on. For example, avoiding pedestrians and
bicycles will obviously affect the vehicle behavior. /erefore,
the input features of each trajectory point include the vehicle
state (i.e., coordinates, velocity, and acceleration, etc.) and
interactive information features. Before predicting the tra-
jectory, the input characteristics of each trajectory point are
input into the vehicle behavior recognition model to get the
behavior characteristics of the vehicle. /en, the behavior
characteristics, vehicle state characteristics, and interactive
information characteristics are input into the trajectory
prediction model together.

In this paper, a vehicle behavior recognition model is
established based on a many-to-one LSTM classifier, as
shown in Figure 2, where the seq_length is the number of
features of the input data (i.e., the number of LSTM units);
batch training is used to load data, and the batch_size is the
load size; the embedding is the corresponding vector length
of the input LSTM unit, where embedding� 1; the hid-
den_size is the number of LSTM hidden layer nodes; the
output_size is the output category size; the n_layers is the
number of hidden layers of LSTM. Finally, a full connection
layer FC is used to make the classification, and only the last
node yseq_length is taken as the classification result./e output
layer does not use activation functions. /e Adam is used to
update weights. /e loss function is CrossEntropyLoss
Function L, as defined in

L � − 􏽘
N

i

y
(i)log 􏽢y

(i)
+ 1 − y

(i)
􏼐 􏼑log 1 − 􏽢y

(i)
􏼐 􏼑, (1)

where y(i) is the actual value and 􏽢y(i) is the predicted value.

3.2. Vehicle Trajectory Prediction Model. /e vehicle be-
havior recognition model is shown in Figure 3, which is
mainly used to predict the vehicle trajectory. It can be seen
that not only the state of the vehicle but also the surrounding
vehicles, pedestrians, and bicycles can affect the trajectory of
the vehicle and that the current behavior of the vehicle can
also determine the future trajectory. For example, the tra-
jectories of straight lines and turns are obviously different.
/e behavior characteristics can be marked in advance in the
dataset, or they can be identified by the trained vehicle
behavior recognition model. In this paper, the trajectory
point of the output trajectory includes the characteristics of
horizontal and longitudinal velocity and horizontal and
longitudinal coordinates, that is, to predict the future
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horizontal and longitudinal speed and coordinates of the
vehicle.

Compared with the traditional Unidirectional or Bidi-
rectional LSTM trajectory prediction model, this paper uses
UB-LSTM to establish the trajectory prediction model.

Bidirectional LSTM can make use of not only the previous
information but also some of the latter information to make
the prediction results more accurate. /en, combining the
prediction results of the two LSTM can further improve the
overall prediction accuracy of the model. /e results of the
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Figure 2: Vehicle behavior recognition model.
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Figure 1: /e basic flow of trajectory prediction.
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addition of the two LSTM output layers are input into the
two full connection layers in turn. Because the value range of
the Tanh function is from −1 to 1, the range of the output value
is limited, so the input data is directly input into a full con-
nection layer to get an output data and then process the output

value by the Tanh activation function. Finally, a full connection
layer is used to get the output result. /e pseudo-code of the
trajectory prediction model is as follows: (Algorithm 1).

/e bemodel is the vehicle behavior recognition model
mentioned in Part A of Section 3. /e seq_length is the
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Figure 4: Training process of behavior recognition model. (a) Loss change of behavior recognition model. (b) Accuracy change of behavior
recognition model.

(1) Input: x
(2) Output: out
(3) (batch_size, seq_length, n_feature-1)⟵ x.shape;
(4) behavior⟵ bemodel(x);
(5) x_tra⟵ torch.cat(x, behavior);
(6) (batch_size, seq_length, n_feature)⟵ x_tra.shape;
(7) Linear(n_feature, input_size)⟵ FC1;
(8) LSTM(input_size, hidden_size, n_layers, bidirectional� False, dropout)⟵ LSTM;
(9) Linear(n_feature, input_size)⟵ FC2;
(10) LSTM(input_size, hidden_size//2, n_layers, bidirectional�True, dropout)⟵BILSTM;
(11) LSTM_OUT, hidden⟵ LSTM(FC1(x_tra));
(12) BILSTM_OUT, hidden⟵BILSTM(FC2(x_tra));
(13) Linear(hidden_size, hidden_size∗ 2)⟵ FC3;
(14) Linear(hidden_size∗ 2, hidden_size//2)⟵ FC4;
(15) LSTM_FC_OUT⟵Tanh(FC3(LSTM_OUT+BILSTM_OUT));
(16) fc_out1⟵Tanh(FC4(LSTM_FC_OUT));
(17) Linear(n_feature, hidden_size//2)⟵ FC5;
(18) fc_out2⟵ FC5(x_tra);
(19) Linear(hidden_size//2, output_size)⟵FC6;
(20) out⟵FC6(fc_out1 + fc_out2);
(21) end;
(22) Return out;

ALGORITHM 1: Trajectory prediction model.

Table 1: Test results of the behavior recognition model.

Left_turn Left_change Right_turn Right_change Keep All Test_loss
Correct_n/ALL 9017/9042 8635/8691 1708/1720 1524/1552 152166/152195 173050/17320 0.0026
Accuracy (%) 99.72 99.36 99.30 98.20 99.98 99.91
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number of input trajectory points. /e n_feature is the
number of features contained in the input trajectory points.
/e input_size is the length of the vector input into LSTM
cells, the hidden_size is the number of hidden layer nodes of
LSTM, and the n_layers is the number of hidden layers.
Using dropout method to prevent overfitting, the dropout is
in the discarding rate. /e behavior is the vehicle behavior
identified by the vehicle behavior recognition model, and
bidirectional indicates whether the LSTM is a bidirectional
LSTM./e Tanh is a hyperbolic tangent activation function.
/e loss function uses the mean square error loss function
(MSELoss), as shown in

MSELoss �
1
2n

􏽘

n

i�1
yi − 􏽢yi( 􏼁

2
, (2)

where n represents the total number of variables,yi repre-
sents the actual value, and 􏽢yi represents the predicted value.

3.3. Acceleration Optimization Trajectory Algorithm.
Based on the trajectory prediction model, an acceleration
trajectory optimization algorithm is proposed in this paper.
/is algorithm refers to the acceleration and displacement
formula in physics, as shown in

s �
v2 − v20( 􏼁

2a
, (3)

where s is the displacement, v is the final velocity, v0 is the
initial velocity, and a is the acceleration at v0. /e transverse
and longitudinal acceleration is calculated according to

axt−1
�

vxt
− vxt−1

􏼐 􏼑

Δt
,

ayt−1
�

vyt
− vyt−1

􏼐 􏼑

Δt
,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(4)

where Δt represents the interval time between two points, vx

and vy represent the horizontal and longitudinal speeds of
the vehicle predicted by the trajectory prediction model, and
t represents the time of the trajectory point. /e horizontal
and longitudinal displacements are calculated according to

sxt−1
�

v2xt
− v2xt−1

2axt−1

,

syt−1
�

v2yt
− v2yt−1

2ayt−1

.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(5)

/e coordinate values are calculated according to

xt � xt−1 + sxt−1
,

yt � yt−1 + syt−1
,

⎧⎨

⎩ (6)

where xt−1 and yt−1 represent the coordinates of the previous
trajectory point, and xt and yt represent the coordinates of
the trajectory point. In this paper, the last point of the
historical trajectory point is taken as the starting trajectory
point and then calculated in turn until the coordinates of all
the predicted trajectory points are calculated. In this paper,
the time interval of trajectory points is 0.1 s.

4. Experimental Validation

4.1. Experiment Platform. In this paper, the experiment is
carried out on the ubuntu16.04 system, the GPU is Tesla
V100-PCIE-32GB, and the model is built on Jupyter
Notebook based on PyTorch.

4.2. Data Sources and Preprocessing. /is paper uses the
NGSIM data set for experiments. /e NGSIM data set is
derived from the Next Generation Simulation (NGSIM)
program initiated by the Federal Highway Administration of
the United States. /e sampling frequency is 10Hz and
records information including vehicle coordinates, speed,
acceleration, vehicle type, and lane number [30].

4.2.1. Calculate Angle, VEL_X, VEL_Y, and Behavior.
/e vehicle heading angle θ is calculated using

θ � arctan
xi − xi− 1

yi − yi−1􏼠 􏼡, (7)

where (xi, yi) represents the coordinates of the vehicle at i
time, and (xi−1, yi−1) indicates the coordinates of the vehicle
at i−1 time.

According to the change rate of heading angle θ between
the two trajectory points of the vehicle,ω marks the vehicle
behavior Label, as in formula (8). A total of five behaviors are
marked, including going straight, turning left and right, and
changing left and right lanes, which are represented by 0, 1,
2, 3, and 4, respectively:
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Figure 5: Training process of trajectory prediction model without
vehicle behavior.
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ω �
θi − θi−1

Δt
, (8)

where Δt represents the interval time between two points.
/e transverse and longitudinal velocities Vel_x and

Vel_y of the vehicle are calculated according to

vxt
�

xt − xt−1( 􏼁

Δt
,

vavgxt
�

vxt
+ vxt+1

􏼐 􏼑

2
,

vbegin � 2vx0
− vavgx0

,

vend � 2vxend
− vavgxend

,

vx0
� vbegin,

vx1
� vavgx0

,

vx2
� vavgx1

,

⋮

vxend
� vend,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(9)

vyt
�

yt − yt−1( 􏼁

Δt
,

vavgyt
�

vyt
+ vyt+1

􏼐 􏼑

2
,

vbegin � 2vy0
− vavgy0

,

vend � 2vyend
− vavgyend

,

vy0
� vbegin,

vy1
� vavgy0

,

vy2
� vavgy1

,

⋮

vyend
� vend,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(10)

where Δt denotes the interval time between two points, (x, y)
represents the coordinate of the trajectory point, t represents
the time of the occurrence of the trajectory point, and end
represents the last trajectory point of the vehicle.

4.2.2. Acquisition of Interactive Information. /e main
purpose is to obtain the vehicles that may exist in the left-
top, left-bottom, middle-top, middle-bottom, right-top, and

right-bottom positions around the vehicle, which are rep-
resented as L_Top, L_Bot, C_Top, C_Bot, R_Top, and R_Bot,
respectively. Firstly, the lateral coordinate difference dis_x
and the longitudinal coordinate difference dis_y between the
surrounding vehicle and the predicted trajectory vehicle at a
certain time are calculated, and then the position of the
surrounding vehicle relative to the predicted trajectory ve-
hicle is judged according to

relative position �

L Top − 5 < dis x< − 1, 0 < dis y < 5,

L Bot − 5 < dis x< − 1, −5 < dis y < 0,

C Top − 1 < dis x < 1, 0 < dis y < 5,

C Bot − 1 < dis x < 1, −5 < dis y < 0,

R Top 1 < dis x < 5, 0 < dis y < 5,

R Bot 1 < dis x < 5, −5 < dis y < 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(11)

/en, we record the id, relative distance, speed, accel-
eration, heading angle, and behavior of the vehicle that
meets the conditions. If there is no vehicle in a certain
position, the above information is all set to 0, so the in-
teractive information of the vehicle is obtained.

4.2.3. Generate Trajectory and Behavior Dataset. In the
experiment, the Savizkg-Golag smoothing algorithm is
firstly used to smooth the coordinates of vehicle trajectory
points to eliminate the noise, then remove the vehicles with
less than 130 trajectory points or two trajectory points with a
distance of more than 5 meters, and at the same time, limit
the maximum number of trajectories of each vehicle to 61.
By doing so, the number of trajectories of each vehicle will
keep consistent. Finally, a total of 17,320 trajectory data are
generated, and each trajectory contains 100 trajectory
points, including a total of 321 vehicles. /e trajectory is
standardized using

x �
x
⌢

− mean
std

, (12)

where x
⌢ represents a single value in each column, x rep-

resents the changed value, mean represents the average of
each column, and std represents the standard deviation.

In the experiment, a total of 26 features are selected as
the input trajectory points. At the same time, a total of four
features including the vehicle horizontal and longitudinal
velocity and coordinates of the trajectory point 3 seconds
behind the input trajectory point are selected as the output
trajectory point.

/e vehicle behavior data is first restored according to
equation (13), then the vehicle behavior feature of each input
trajectory point is separated as a tag, and the rest of 25
features are used as input features:

x � x
⌢∗ std + mean. (13)

In order to better observe the training process, the ve-
hicle trajectory data is divided into a training set, verification
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set, and test set according to the proportion of 8 :1 :1. /e
training set is used to train the model, the verification set is
used to monitor the training process in real time, and the test
set is used to evaluate the effect of the model after the
training.

4.3. Vehicle Behavior Recognition Model Experiment. Set
batch_size� 100, seq_length� 25, embedding� 1,
hidden_size� 256, n_layers� 2, output_size� 5, and learn-
ing rate� 0.0001. Only the model with minimum validation
loss is saved with a total of 100 iterations. /e training
process is shown in Figure 4.

/e training time is 3.943 hours, and the minimum
verification loss is 0.0066. /e accuracy of vehicle behavior
recognition is the ratio of the correct recognition number of
each vehicle behavior to the total number of each vehicle
behavior. /e test results are shown in Table 1. As can be
seen from the test results, the recognition accuracy of each
behavior of the vehicle is higher than 98%.

4.4. Trajectory Prediction Model Experiment. In order to
verify the influence of vehicle behavior, the trajectory pre-
diction accuracy is compared with and without considering
the vehicle behavior in this study. In the experiments, the
trajectory data is restored using equation (13). In order to
reflect the superiority of the acceleration trajectory opti-
mization algorithm proposed in this paper, the trajectory
generated by the coordinate of the predicted trajectory point
is compared with that generated by the trajectory optimi-
zation algorithm.

4.4.1. Trajectory Prediction Model Experiment without Ve-
hicle Behavior. Set batch_size� 128, seq_length� 100,
n_feature� 25, input_size� 256, hidden_size� 256,
n_layers� 2, output_size� 4, dropout� 0.5, and we used the

ReduceLROnPlateau method to adjust the learning rate. /e
initial learning_rate is 0.001. When the verification loss does
not decrease for 20 iterations, the learning rate is adjusted to
10% of the existing rate. Only the model with minimum
validation loss is saved, within a total of 1,000 iterations. /e
training process is shown in Figure 5, where vehicle behavior
is not considered here.

/e training time is 3.944 hours, and the minimum
verification loss is 0.0114. It can be seen from Figure 5 that
the loss decreases slowly during the training. In the testing
process, the test loss is 0.0115, the MSE between the pre-
dicted trajectory and the actual trajectory is 4.3, and theMSE
produced by the optimization algorithm is 2.4. Figure 6
shows the predicted results, where the axis x represents the
lateral coordinates of the predicted trajectory point, and the
axis Y represents the longitudinal coordinates of the pre-
dicted trajectory point. As can be seen from Figure 6, the
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Figure 6: Trajectory prediction results without vehicle behavior. (a) Prediction trajectory 1. (b) Prediction trajectory 2.
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Figure 7: Training process of the trajectory prediction model
considering behavior.
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trajectory generated by the optimization algorithm is very
close to the actual trajectory; but the prediction performance
without the optimization algorithm is far away from
satisfactory.

4.4.2. Trajectory Prediction Model Experiment Combined
with Vehicle Behavior. Set batch_size� 128, seq_length� 100,
n_feature� 26, input_size� 256, hidden_size� 256,
n_layers� 2, output_size� 4, dropout� 0.5, and initial
Learning_rate� 0.001. Figure 7 depicts the training result.

/e training time is 7.12 hours, and the minimum
verification loss is 0.00041732. In order to test the fusion
effect of the vehicle behavior model and the trajectory
prediction model, first of all, the trajectory prediction model

is used alone after the behavior recognition model, and then
two models are used in parallel.

/e vehicle trajectory prediction model predicts the
horizontal and longitudinal speed and coordinates of the
vehicle and uses the transverse and longitudinal velocity and
the last trajectory point of the historical trajectory to realize
the acceleration trajectory optimization. First of all, the
experiment is carried out without using the vehicle behavior
recognition model. /e test loss is 0.000486. /e MSE be-
tween the predicted trajectory and the actual trajectory is
1.361. /e MSE generated by the optimization algorithm is
0.122. Figure 8 shows the predicted results, where the axis x
represents the lateral coordinates of the predicted trajectory
point, and the axis Y represents the longitudinal coordinates
of the predicted trajectory point.
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Figure 8: Trajectory prediction results using the two models in the series. (a) Prediction trajectory 1. (b) Prediction trajectory 2.
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Figure 9: Trajectory prediction results using the two models in parallel. (a) Prediction trajectory 1. (b) Prediction trajectory 2.
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Comparing Figures 6 and 8, one can find that the
prediction effect is obviously improved; thus, it is very
necessary to consider vehicle behavior in the prediction
model. /e prediction trajectory obtained by the optimi-
zation algorithm is more consistent with the actual trajec-
tory, which indicates that the usage of the optimization
algorithm makes the prediction performance stable.

When the behavior recognition model and the trajectory
prediction model are integrated, the test loss is 0.000497, the
recognition accuracy of the behavior recognition model is
99.9%, the MSE without the optimization algorithm is 1.36,
and the MSE with the optimization algorithm is 0.124. It can
be found that the MSE and test losses after fusion are slightly
higher than those of the individual use of the prediction
model in Figure 8. Figure 9 shows the predicted results,
where the axis x represents the lateral coordinates of the
predicted trajectory point, and the axis Y represents the
longitudinal coordinates of the predicted trajectory point. It
can be seen from Figure 9 that the trajectory prediction effect
of the proposedmethod is good, which is basically consistent
with the actual trajectory, and is stable, without large
fluctuations, and basically achieves the expected effect. It
shows that the trajectory prediction method proposed in this
paper has high prediction accuracy and good stability.

4.5. Discussion. As can be seen from Figures 5, 7, and 8, the
trajectory generated by the optimization algorithm is much
better, more reasonable, and more consistent with the actual
trajectory than the trajectory directly predicted in this paper.
It shows that the trajectory optimization algorithm proposed
in this paper contributes a very good improvement effect.

In order to examine the behavior recognition effect, the
following comparisons are further conducted. Herein, the
test without considering behavior recognition is abbreviated
as NCB; the test with considering behavior recognition is
abbreviated as CB; the alone test model considering vehicle
behavior is abbreviated as CB_A; the fusion test model
considering vehicle behavior is abbreviated as CB_F; the test
based on the coordinate method without considering be-
havior recognition is abbreviated as NCB_CB; the test based
on optimization algorithm without considering behavior
recognition is abbreviated as NCB_OB; the alone test based
on coordinate method considering vehicle behavior recog-
nition is abbreviated as CB_A_CB; the alone test based on
optimization algorithm considering vehicle behavior rec-
ognition is abbreviated as CB_A_OB; the fusion test based

on coordinate method considering vehicle behavior recog-
nition is abbreviated as CB_F_CB; the fusion test based on
optimization algorithm considering vehicle behavior rec-
ognition is abbreviated as CB_F_OB./e comparison results
are demonstrated as follows.

4.5.1. Minimum Verification Loss. /e minimum verifica-
tion loss is shown in Figure 10 and Table 2. As can be seen,
the minimum verification loss with consideration of be-
havior recognition is much smaller than that without
considering it, which indicates that it is necessary to consider
vehicle behavior.

4.5.2. Test Loss. /e test losses are shown in Figure 11 and
Table 3. It can be seen that the test loss of the model without
considering the behavior recognition is the largest and the
test loss of the individual test model is the smallest when
considering the behavior, which shows the importance of
vehicle behavior recognition. Hence, it suggests that in the
real world application, it is very important to use a vehicle
behavior recognition model to identify vehicle behavior
before predicting the trajectory.

Table 2: Comparison of minimum verification loss.

NCB CB
Min_valid_loss 0.0114 0.000417

0

0.01

0.02

Test_loss

Test_loss

NCB
CB_A
CB_F

Figure 11: Comparison of test losses.

Table 3: Comparison of test losses.

NCB CB_A CB_F
Test_loss 0.0115 0.000486 0.000497
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MSE

MSE
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Figure 12: MSE comparison.
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Figure 10: Comparison of minimum verification loss.
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4.5.3. MSE Comparison. /eMSE size under each method is
shown in Figure 12 and Table 4. It can be seen from the
results that the MSE generated by the optimization algo-
rithm is much lower than that of the coordinate method,
which means that the optimization algorithm can greatly
improve the accuracy of trajectory prediction. It can be also
seen that the MSE of the model considering behavior rec-
ognition is always lower than that not considering vehicle
behavior. In addition, by considering vehicle behavior, the
MSE produced by the series configuration of the recognition
model and prediction model is very close to that of the
parallel configuration of the two models, which shows that
combining the two models is feasible.

To sum up, the UB-LSTM based trajectory prediction
model, which combines the vehicle behavior recognition and
acceleration trajectory optimization algorithm, is able to
predict the trajectory accurately and stably.

5. Conclusions and Future Plan

/is paper proposes a UB-LSTM trajectory prediction
model, which inputs vehicle state information, vehicle be-
havior information, and interactive information into the
trajectory prediction model to predict the vehicle transverse
and longitudinal speed and coordinates. A vehicle behavior
recognition model is trained to make a prediction combined
with the vehicle trajectory prediction model. An acceleration
trajectory optimization algorithm is proposed to improve
the trajectory prediction accuracy. Experimental results
show that the model test loss obtained by the proposed UB-
LSTM is 0.000497, and the prediction MSE is 0.124, which is
97.2% lower than that without considering the vehicle be-
havior information. As a result, the proposed UB-LSTM
method is suitable for practical usage.

In the next step, we will consider predicting the tra-
jectory for a longer time and collect more experimental data
to improve the model training effect. Although a real car is
not available at this moment, the real vehicle experiment will
be considered in the near future. /e NGSIM dataset used in
this experiment records the time stamp, id, coordinates,
speed, and acceleration of the vehicles. However, a LIDAR
can also provide the time stamp, id, coordinates, velocity,
and acceleration of the surrounding obstacles, and the types
of obstacles include vehicles, pedestrians, and bicycles. /us,
the interactive information provided by a LIDAR is more
comprehensive. Moreover, environmental information can
be obtained through high-precision maps, so more input
information can be used in the process of real cars. Based on
the above characteristics, the real vehicle dataset, similar to
NGSIM dataset, can be collected by a LIDAR to carry out
real car experiments. /e intelligent car uses the C++ lan-
guage to realize automatic driving, while the training model
in this paper is realized by Python language based on
PyTorch, so we will consider using LibTorch to migrate the

model to the intelligent vehicle. /e basic process is as
follows: the LIDAR is firstly used to collect the vehicle
trajectory dataset, then train the UB-LSTM model, and
lastly, transfer the trained model to the intelligent vehicle for
real vehicle experiments. However, the difference between
the real vehicle experiment and the simulation is that the
data processing should be carried out in real time. /is will
be carried out in the future.

Compared with the physical model method, the disad-
vantage of the proposed method is that the calculation speed
is slower due to a large number of calculations, and it is
basically necessary to use GPU to meet the real-time re-
quirements. In the next work, we will try our best to improve
the real-time performance of the model.
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