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Travel time reliability (TTR) is widely used to evaluate transportation system performance. Adverse weather condition is an
important factor for affecting TTR, which can cause traffic congestions and crashes. Considering the traffic characteristics under
different traffic conditions, it is necessary to explore the impact of adverse weather on TTR under different conditions. )is study
conducted an empirical travel time analysis using traffic data and weather data collected on Yanan corridor in Shanghai.)e travel
time distributions were analysed under different roadway types, weather, and time of day. Four typical scenarios (i.e., peak hours
and off-peak hours on elevated expressway, peak hours and off-peak hours on arterial road) were considered in the TTR analysis.
Four measures were calculated to evaluate the impact of adverse weather on TTR. )e results indicated that the lognormal
distribution is preferred for describing the travel time data. Compared with off-peak hours, the impact of adverse weather is more
significant for peak hours.)e travel time variability, buffer time index, misery index, and frequency of congestion increased by an
average of 29%, 19%, 22%, and 63%, respectively, under the adverse weather condition. )e findings in this study are useful for
transportation management agencies to design traffic control strategies when adverse weather occurs.

1. Introduction

Travel time reliability (TTR) is an important measure of
traffic condition and is widely used to evaluate trans-
portation system performance. )e Federal Highway Ad-
ministration (FHWA) [1] formally defined the TTR as “the
consistency or dependability in travel times, as measured
from day-to-day and/or across different times of the day.”
)e TTR can be used to represent the probability of on-time
arrival; thus, it is a key factor for roadway users to make
decisions on travel routes and departure time. A survey
conducted by Abdel-Aty et al. [2] shows that about 54%
respondents consider TTR as an important factor for
choosing commute routes. Unreliable travel times can cause
significant inconvenience to roadway users and result in
high time and monetary losses. )us, some studies analysed
the monetary value of TTR [3–5]. For instance, Lam [5]
conducted a study in California and found that the value of
travel time is $22.47 per hour (as 68 percentile of average

salary at that time), while the value of TTR is $31.16 per hour
(as 95 percentile of average salary at that time). Meanwhile,
there are several studies focusing on the relationship be-
tween TTR and traffic safety, and it is confirmed that the
reduction of travel time reliability would lead to severe traffic
collisions and crashes [6–10]. In recent years, some studies
have found that improving travel time reliability can help
reduce fuel consumption and emissions by avoiding stop-
and-go movements of vehicles [11, 12]. )us, improving the
TTR on the entire road network can be essential and
valuable.

To accurately evaluate the travel time reliability on
transportation facilities, substantial studies focus on de-
veloping appropriate TTR measures. Lomax et al. [13]
comprehensively summarized the common TTR measures
and categorized them into four types: statistical range
methods, buffer time methods, tardy-trips measures, and
probabilistic measures. Table 1 provides a summary of the
widely used TTR measures in recent years. Gao et al. [18]
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investigated the value of several TTR measures under dif-
ferent traffic conditions, and they found that the volatility
trends of them were similar, while the magnitude of change
values of Frequency of Congestion was significant. However,
TTR measures demonstrate various characteristics. For
example, the probabilistic measures can be used to calculate
the probability of arrival before a certain time, which are
user-friendly and can help travelers to plan trips. In recent
years, TTR has been widely used to evaluate traffic condi-
tions and help optimize transportation management based
on these TTR measures [19–23]. For instance, Cedillo-
Campos et al. [23] conducted a study to assess freight fluidity
of transportation systems with the help of TTR measures
(i.e., percentiles of travel time, planning time index, buffer
time index, and skew and range of travel).

Knowledge about which factors affect TTR and how they
influence TTR can help improve the travel time reliability.
Based on previous studies, the factors affecting TTR can be
classified into two categories [24], factors causing demand
variation (such as season, time of day, and weather), and
factors causing supply variation (such as traffic incident,
road geometry, road work, and weather). It can be seen that
weather influences the TTR on two ways. Several studies
evaluated the impact of adverse weather on travel time
reliability, and it is demonstrated that the adverse weather
has negative effects on TTR above a certain critical inflow
[15, 25–27]. However, most studies among them focus on
freeways, and very few studies comprehensively evaluate the
impact of adverse weather on urban corridor (especially
arterial roadway) travel time reliability. Travel time and
travel time reliability of different highway types are supposed
to exhibit diverse patterns due to the difference of traffic
characteristics. )us, there is a need to explore the difference
of adverse weather’s impacts on TTR of urban corridor. In
addition, the analysis of the impact of adverse weather on
TTR of urban corridor under different traffic conditions can
be useful for traffic management. )e study has two primary
objectives. )e first objective is to explore the characteristics
of urban corridor travel time. )e second objective is to
quantitatively estimate the impact of adverse weather on
TTR under different conditions.

)e rest of this paper is organized as follows. )e second
section introduces the single-mode distributions and travel
time reliability measures used in this study to explore the

travel time characteristics of the urban corridor. In Section 3,
the data preparation procedures are introduced. Section 4
illustrates the results and compares the impact of adverse
weather on TTR under different conditions. Finally, Section
5 provides conclusions and identifies future directions for
this research.

2. Methodology

2.1. Travel TimeDistribution. Travel time distribution (TTD)
describes the shape of travel time under different travel
conditions. It provides a straightforward and visualized tool
for modelling the average travel time and travel time vari-
ability. In this study, five commonly used single-mode dis-
tribution types are considered to fit travel time data, including
Weibull distribution, Gamma distribution, Normal distri-
bution, Lognormal distribution, and Log-logistic distribution.
)e details of five distributions are given in Table 2.

Based on the travel time data, the parameters of each
distribution are estimated using software R. In order to
compare the goodness-of-fit results of different distribu-
tions, the information criteria are adopted to select the better
fit one. Information criteria mainly refer to Akaike infor-
mation criterion (AIC) and Bayesian information criterion
(BIC) [28].

AIC is a measure to compare relative quality of different
models. Based on the principle of asymptotically unbiased
estimation, Akaike proposed an exact estimation algorithm,
as shown in

AIC � 2k − 2 ln(L), (1)

where k= the number of parameters and L= the value of
likelihood function.

Analogous to AIC, BIC introduces a penalty term as-
sociated with the parameter number to avoid the occurrence
of over fitting problem. )us, only AIC is calculated to
evaluate the performance of five distributions. A smaller AIC
value indicates better fitting performance.

2.2. Travel Time Reliability Measures. As aforementioned,
there are several measures to describe travel time reliability.
In this study, four widely used measures are adopted to
evaluate the TTR, and they are travel time variability (TTV),

Table 1: Summary of widely used TTR measures.

Category Measure Equation

Statistical range methods

Coefficient of deviation [14] Standard deviation/average travel time
Travel time variability [15] TT90 − TT10

Skew of travel time distribution [16] TT90 − TT50/TT50 − TT10
Width of travel time distribution [16] TT90 − TT10/TT50

Buffer time methods
Planning time index [1] 95th percentile travel time/free flow travel time
Buffer time index [13] (95th percentile travel rate/free flow travel rate) − 1
Travel time index [17] Average travel time/free flow travel time

Tardy-trip measures
Misery index [17] (Average travel rate (top 20% trips)/average travel rate) − 1

On-time arrival [17] Percent of trips with travel time less than 110% or 125% of the
median travel time

Probabilistic measures Frequency of congestion [1] Frequency of trips experiencing traffic congestion
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buffer time index (BTI), misery index (MI), and frequency of
congestion (FOC).

Travel time variability (TTV) is a statistical range
method, representing the difference between the 90th and
10th percentile travel time, as shown in (2). Some previous
studies found that the statistical properties of TTV can be
more robust than moment-based measures (such as mean
and deviation) [29, 30]:

TTV � TT90 − TT10, (2)

where TT90= 90th percentile travel time (min) and
TT10 = 10th percentile travel time (min).

Buffer time index (BTI) is a typical buffer time method,
proposed by Lomax et al. [13]. It is calculated by (3), which
reflects the percentage of extra travel time that most travelers
need to add to the mean travel time in order to arrive on
time. )is index depends on the travel rate, which is cal-
culated as the travel time divided by the distance:

BTI �
95th percentile travel rate − average travel rate

average travel rate
,

(3)

where the 95th percentile travel rate and average travel rate
are in minutes per km.

Misery index (MI) proposed by Lomax is a tardy-trip
measure. Similar to BTI, it is related to travel rate as well as
the worst trips. )is TTR measure can represent the traffic
conditions and identify the roadway segments experiencing
congestion. MI is defined as the ratio of the difference be-
tween the average travel rate for the longest 20% of trips and
average travel rate to the average travel rate, and the
equation is provided as follows:

MI �
average travel rate of the top 20% trips − average travel rate

average travel rate
,

(4)
where two average travel rates are in minutes per km.

Frequency of congestion (FOC) represents the frequency
of trips exceeding a threshold value, which is a probabilistic
measure. )is research assumed that the traffic congestion
occurs when the travel time is higher than twice the free-flow
travel time. )e free-flow speed of each route is obtained as
the 85th percentile speed during overnight hours (10 p.m. to
5 a.m.) [9, 31, 32]. Note that the free-flow travel time of each
route is inversely proportional to free-flow speed; thus, the
free-flow travel time is defined as the 15th percentile travel
time during overnight hours. )e FOC can be calculated by
using the following:

G(p) � 2G(0.15), (5)

FOC � 1 − p, (6)

where p is the frequency of travel time higher than twice the
free-flow travel time.

3. Data Description

Two datasets are adopted in this study to investigate the
impact of adverse weather on TTR of urban corridor. )e
traffic data collected from the GaodeMap website are used to
generate travel times, while the weather data associated with
the travel times are collected from China Meteorological
Administration.

3.1. Description of Study Site. Four routes along Yanan el-
evated expressway and arterial road are selected for this
study. )e Yanan elevated expressway has six lanes and
connects the Hongqiao International Airport to the Bund of
Shanghai, as shown in Figure 1. )e selected study section of
the elevated expressway is 14.32 km long and covers the
eastbound and westbound directions. )e Yanan elevated
expressway is basically constructed along Yanan West Road,
Yanan Middle Road, and Yanan East Road. )us, the cor-
responding arterial road is around 14.32 km long as well, and
traffic data for both directions are collected.

)e main reasons for choosing these four routes are
summarized as follows. Previous studies suggest that adverse
weather has minor effect on TTR for free flow traffic con-
dition but can significantly affect TTR at high traffic flow
level [15, 30]. In addition, the Yanan elevated expressway is a
main corridor in Shanghai and experiences heavy traffic
during the peak hours.

3.2.Description of Travel TimeData. )eGaode Map divides
one route into fixed consecutive sections of the specified
length and sets five congestion levels. From the end of the
road, it records the congestion levels of road sections.
Adjacent road sections with the same congestion level
converge on one piece of data, recording starting point,
ending point, direction, and average speed. )e raw traffic
data are collected every 4 minutes. Traffic data from October
2019 to February 2020 are used in this study, which contain
the following information: road ID, driving direction,
congestion level, speed, timestamp and so on. )is study
aims to analyse the differences of adverse weather’s impact
on TTR during peak and off-peak hours. )us, the traffic
data collected from 6 : 00 a.m. to 22 : 00 p.m. on weekdays are
utilized.

Table 2: Description of five distributions.

Function Parameters
Weibull distribution f(y|c, β) � (c/β)yc− 1e− yc/β c, β
Gamma distribution f(x|α, β) � (1/Γ(α)βα)xα− 1e− x/β α, β
Normal distribution f(x|μ, σ2) � (1/

����
2πσ

√
)e− (x− μ)2/2σ2 μ, σ2

Lognormal distribution f(x|μ, σ2) � (1/
����
2πσ

√
x)e− (logx− μ)2/2σ2 μ, σ2

Log-logistic distribution f(x|μ, σ) � (1/σ)e(x− μ/σ)/(1 + e(x− μ/σ))2 μ, σ
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After excluding the traffic data with invalid or missing
essential information, route-level travel times are obtained
through several steps. First, calculate single section travel
time based on each piece of data. Based on the starting and
ending points, the length of section is determined. )en, the
single section travel time is calculated by dividing the length
of section by average speed. Second, route-level travel times
are taken by summing all sections’ travel time.

3.3. Description of Weather Data. )e historical weather
data of four districts (Huangpu, Changning, Jing’an, and
Baoshan districts) within the study time period are ob-
tained. )e raw weather data classify weather conditions
into four groups, including normal, overcast, mostly
cloudy, and rain. According to previous studies, it is
demonstrated that only adverse weather can cause a sig-
nificant impact on traffic conditions [15]. )us, “overcast”
and “mostly cloudy” are classified into “normal” in this
study due to no obvious influence on travel times.
Meanwhile, this study tried to classify “rain” into more
types (e.g., snow, ice, and fog) based on detailed weather
information such as temperature, visibility, and humidity.
In order to ensure the acceptable sample size, this study
combined the adverse weather together as “rain” due to the
rarity of other adverse weather types. )erefore, the
weather variables are categorized as “normal weather” and
“adverse weather.”

Two datasets are matched based on timestamp. How-
ever, the weather data are collected every 20 minutes, while
the travel time data are aggregated into 4-minute intervals.
In order to merge the link travel time data with weather data,
the weather data are expanded by filling the absence as the
weather condition of the most recent timestamp. )e Yanan
elevated expressway covers four districts. To improve the

accuracy of analysis, this study only selects the data when the
weather conditions of four districts are the same for
research.

)e average travel time (in 15-minute period) of each
route under different weather conditions were calculated
and shown in Figure 2. Note that in Figure 2, the horizontal
axis denotes the day from 6:00 to 22:00 with 15 minutes as a
time interval, and the vertical axis represents the mean of the
travel times during desired time period. Previous studies
[15, 33] concluded that time intervals between 10 and 15
minutes are suitable for analysing traffic conditions. For a
better visual effect, this paper adopted a 15-minute time
interval to draw scatter plots.

According to Figure 2, there are several points worth
mentioning. First, the difference of the travel time between
normal weather condition and adverse weather condition is
remarkable during the peak time. )is finding indicates that
the adverse weather has significant impact on travel time
only when traffic volume is above a certain value. Second,
there is no a.m. peak hour characteristic of travel time in
Figure 2(b). )is can be probably explained by the influence
of commuting resulting in the difference of traffic volume
between driving directions at the same time period. )us, it
is also worth exploring the difference of TTR with respect to
driving direction. )ird, the travel times of elevated ex-
pressway are high at noon (13:00–15:00). )e main reason
for this could be that only vehicles with Shanghai license
plate are permitted to enter Yanan elevated expressway after
15:00. )erefore, before that time, a majority of cars without
a Shanghai license plate leave the city centre through the
elevated expressway.

For analysing the impact of adverse weather on TTR
under different traffic conditions, two typical time periods
are selected as peak hours, that is, AM peak hours (7:30–9:
00) and PM peak hours (16:30–18:30).

Figure 1: Map of Yanan corridor in Shanghai, China.
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4. Results and Discussion

4.1. Travel Time Distribution Analysis. Five distribution
types were fitted with the observed travel time data for each
route. In this paper, the best-fit distribution is defined as
the one with the minimum AIC value. Figure 3 shows the
probability density of the best-fit distribution and the
observed travel time data for each route. )e legend dis-
plays the distribution type and parameters of the best-fit
distribution. It can be found that the lognormal distribu-
tion provides the best model fit for all routes. According to
the density curves of observed travel time data, the average
travel time on arterial road is higher than that of
expressway.

To illustrate the travel time distribution under different
weather conditions, the travel time data are divided into four
categories: elevated expressway data under adverse weather
and normal weather conditions, arterial road data under
adverse weather and normal weather conditions. )en, five
distribution types are fitted with the travel time data.

Figure 4 shows the probability density of the best fitting
distribution and the observed travel time data under dif-
ferent weather conditions. Based on Figure 4, it can be found
that the lognormal distribution fits better than other
distributions.

To illustrate the travel time distribution under different
time periods, the travel time data are divided into four
categories. )en, five distribution types are fitted with the
travel time data for each dataset. Figure 5 shows the
probability density of the best-fit distribution and the ob-
served travel time data during different time periods. )e
results show that the lognormal distribution fits best for
most scenarios, except the arterial road data observed during
peak hours.

4.2. TTR Analysis Results for Different Traffic Directions.
To investigate the travel time reliability of four studied
routes, the TTR measures of each route are calculated, as
shown in Figure 6. )e travel time on westbound Yanan
arterial road is less reliable. )e BTI and MI of westbound
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Figure 2: Travel time of each route under different weather conditions. (a) Yanan arterial road Eastbound. (b) Yanan arterial road
Westbound. (c) Yanan elevated expressway Eastbound and (d) Yanan elevated expressway Westbound.
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Yanan arterial road have obviously higher values than those
of eastbound. )e BTIs (and MIs) of these two routes are
0.56 (0.50) and 0.34 (0.32), respectively. )e possible reason
for this is that tidal traffic phenomenon on Yanan arterial
road westbound can result in more frequent traffic con-
gestions during afternoon peak hours.

4.3. Impact of Adverse Weather on TTR. )e analysis results
in Section 4.1 indicate that the travel time distribution
characteristics can be different with the consideration of
time period and highway type. In order to investigate the
impacts of adverse weather on TTR under different con-
ditions, four scenarios are studied in this paper:

(i) Scenario 1: the traffic on elevated expressway during
off-peak hours

(ii) Scenario 2: the traffic on elevated expressway during
peak hours

(iii) Scenario 3: the traffic on urban arterial road during
off-peak hours

(iv) Scenario 4: the traffic on urban arterial road during
peak hours

For each scenario, the data are divided into two categories
(adverse weather and normal weather) and four TTRmeasures
are calculated. )e results are shown in Figure 7, and there are
threemain findings. First, adverse weather has negative impacts
on the TTR. For all scenarios, the values of four TTR measures
all increase to some extent under adverse weather conditions.
Second, travel times are less reliable during peak hours than that
during off-peak hours. )ird, the results suggest that the travel
times are more reliable on elevated expressway.
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Figure 3: Selected distributions for the observed travel time data of four routes. (a) Yanan elevated expressway Eastbound, (b) Yanan
elevated expressway Westbound. (c) Yanan arterial road Eastbound, and (d) Yanan arterial road Westbound.
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)en, compared with the normal weather condition, the
increase of TTR measures under adverse weather condition
is calculated for each scenario. It is computed as the dif-
ference of TTR measure between two weather conditions
divided by the TTR measure under normal weather con-
ditions. )e results on Table 3 show that, compared with off-
peak hours, adverse weather has larger influences on TTR
during peak hours. In the latter case, travel time variability
under adverse conditions increased by an average of 29%
when compared with normal conditions, while the buffer
time index, misery index, and frequency of congestion in-
creased by an average of 19%, 22%, and 63%, respectively.
)e possible reason is that the volume of traffic during peak
hours is high, and, therefore, traffic collisions and conges-
tions are more likely to occur during adverse weather.

4.4. Impact of AdverseWeather on Travel Delay. )is section
calculates the travel time delay under different conditions.
)e average delay was computed by subtracting the calcu-
lated travel time from the free-flow travel time for each four
minutes period. As mentioned before, the free-flow travel
time is defined as the 15th percentile of travel time during
overnight hours.)e results are displayed in Figure 8(a). It is
apparent that the adverse weather causes an overall larger
travel delay. )e possible explanation is that the adverse
weather can result in traffic congestion. Note that the dif-
ference of the average travel delay between adverse weather
and normal weather during off-peak period is not very
noticeable but is remarkable during peak period. )is can be
explained by the fact that adverse weather may result in
higher rates of the traffic congestion at higher inflow levels.
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Figure 4: Selected distributions for the observed travel time data under different weather conditions. (a) Adverse weather of elevated
expressway, (b) normal weather of elevated expressway, (c) adverse weather of urban arterial road, and (d) normal weather of urban arterial
road.
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Figure 5: Selected distributions for the observed travel time data during different time periods. (a) Peak hours of elevated expressway,
(b) off-peak hours of elevated expressway, (c) peak hours of urban arterial road, and (d) off-peak hours of urban arterial road.
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Figure 6: Buffer time index, misery index, and frequency of congestion of four routes. (a) Elevated expressway and (b) urban arterial road.
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)e average delay time rate is defined as the ratio of the
average delay to free-flow travel time in this paper. )e
results are summarized in Figure 8(b) and show that, during
off-peak hours, the average delay for adverse weather in-
creases by 6–9% compared to normal weather. )e average

delay increases by 18–30% during peak hours. Meanwhile,
the average delay time rate of elevated expressway is larger
than that of the arterial road under the same traffic and
weather condition. Due to the speed limit and intersections,
the free-flow travel time of arterial road is higher.

Table 3: )e increase of TTR measures under adverse weather condition.

Roadway type Time TTV (%) BTI (%) MI (%) FOC (%)

Elevated expressway Peak hours 33 8 12 61
Off-peak hours 21 8 4 49

Urban arterial road Peak hours 24 30 31 65
Off-peak hours 22 17 9 31
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Figure 7: TTV, BTI, MI, and FOC under different scenarios. (a) TTV, (b) buffer time index, (c) misery index, and (d) frequency of
congestion.
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5. Conclusions

In order to investigate the impact of adverse weather on
travel time reliability of urban corridor under different
conditions, this paper conducted an empirical study by using
traffic data and weather data collected on Yanan corridor.
Four typical scenarios with different highway types and time
periods were studied in this paper, and the impact of adverse
weather on urban corridor TTR under each scenario was
evaluated against normal weather conditions. In addition,
this study explored the distribution characteristics of travel
time on urban roads with respect to the roadway type, time
of day, and weather. Hence, the findings in this study are
useful for determining traffic control strategies to address
the adverse weather-related traffic congestions. And the
distribution fitting results are useful for predicting travel
time. )e main findings can be summarized as follows.

(1) Among five widely used single-mode distribution
types (i.e., Weibull, Gamma, Normal, Lognormal, and
Log-logistic), the Lognormal distribution outper-
forms other models for most conditions, except the
urban arterial road data observed during peak hours.

(2) Adverse weather clearly shows negative impacts on
the travel time reliability of urban corridor, and the
magnitude of the effects can be different under
different scenarios. Compared to off-peak hours,
adverse weather has larger influences on TTR during
peak hours.

(3) During peak hours, travel time variability under
adverse weather conditions increased by an average
of 29% when compared to normal conditions, while
the buffer time index, misery index and frequency of
congestion increased by an average of 19%, 22%, and
63%, respectively.

For future work, the choice of distribution types can be
expanded when analysing the travel time distribution, since
the multimode distribution can provide a better fitting
performance under some traffic conditions [34–37]. )is

paper mainly examined the difference of rainy weather’s
impact on TTR under different conditions; thus, the dif-
ference of other adverse weather should also be investigated
if the sample size for each category is sufficient. In addition,
the traffic composition and traffic flow rate should also be
further considered in the future study.
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