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Herein, we explored the impact of anticipation and asymmetric driving behavior on vehicle’s position, velocity, acceleration,
energy consumption, and exhaust emissions of CO, HC, and NOx in mixed traffic flow. We present an asymmetric-anticipation
car-following model (AAFVD) considering the motion information from two direct preceding vehicles (i.e., human-driving (HD)
and autonomous and connected (AC) vehicles platoon) via wireless data transmission. +e linear stability approach was used to
evaluate the properties of the AAFVD model. Our simulations revealed that the drivers’ anticipation factor using the motion
information from two direct preceding vehicles in connected vehicles environment can effectively improve traffic flow stability.
+e vehicle’s departure and arrival process while passing through a signal lane with a traffic light considering the anticipation and
asymmetric driving behavior, and the motion information from two direct preceding vehicles was explored. Our numerical results
demonstrated that the AAFVD model can decrease the velocity fluctuations, energy consumption, and exhaust emissions of
vehicles in mixed traffic flow system.

1. Introduction

Many existing human-driving car-following models have
introduced to capture the process of the drivers’ behavior
individually, traveling in various contexts on the road
without any overtaking.

Since the 1990s, they have become more important due
to using in design and evaluating different ITS (intelligent
transportation system) control strategies and technologies.
+e last decade has witnessed a rapid development of
communication and information technologies. +e wireless
communication systems have been advanced significantly,
which enables vehicle-to-vehicle (V2V) communication and
creates a vast opportunity to improve the vehicle’s operation
on the road [1–5].

With the goal of increasing the drivers’ comfort and
safety and reducing energy consumption and the exhaustion
of greenhouse emissions, many famous manufacturers like
BMW, Audi, and Ford aim to start testing automated ve-
hicles by 2020 [6, 7].

+e penetration rate of autonomous and connected (AC)
vehicles is currently low.

It is expected to increase gradually in the global market
for upcoming years. +us, there would be a long transition
time from human-driving (HD)vehicles to autonomous and
connected (AC) vehicles [8–12].

During the transition time, there would be amixed traffic
flow of human-driving and autonomous vehicles on the
roads. Several researchers acknowledged that the behavior of
traffic flow significantly will change, when the number of
autonomous vehicles increases.

+us, it is essential to study the effect of autonomous and
human-driving (mixed traffic flow) behavior on traffic flow
to reduce the costly mistakes before the widespread
implementation.

Over the past decades, most of the studies focused on the
dynamic evolutions of human-driving traffic flow, barely
considering the dynamic evolutions of human-driving ve-
hicles equipped with V2V communication technology in
mixed traffic flow [13–18].
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Human-driving car-following models can be categorized
into four groups: General Motors (GM) models, desired
measures models, safety distances or collision avoidance
models, and optimal velocity models. +e main features of
these models are summarized in Table 1.

+e first version of linear car-following models was
proposed by Chandler et al. [19] and Herman et al. [20]
based on stimulus-response. Gazis et al. [21] proposed the
first version of nonlinear models by including more
general sensitivity terms. Although the model has the
merit of being simple, it does so with some limitations.
+ese limitations include impractical acceleration for very
low traffic densities (S⟶∞), overestimation of the
human ability to perceive small alterations in various
circumstances, and ignoring the physical limitations of
the acceleration process.

+e acceleration/deceleration and the relative velocity
are linearly linked to each other in contrast to actual ex-
periments [29]; when the preceding vehicle’s velocity is very
high compared to the following vehicle’s velocity, the rel-
ative velocity approaches infinity (Δv⟶∞).

Treiber et al. [22] proposed an intelligent driver model
(IDM) by considering both the desired velocity and the
desired space headway. Most parameters in desired models
are unobservable in nature, so this makes their estimation
more challenging.+erefore, many of the desired models are
not estimated using real traffic data.

A nonlinear version of safety distances models was
proposed by Newell [23] to solve the deficiency of existing
car-following models in extremely low densities, by pre-
suming that the following vehicle’s velocity has a nonlinear
relationship with the vehicular gap.

However, Newell’s model fixed the deficiency of existing
car-following models in extremely low densities; there are
still some problems. +is model supposed that a driver
adopts his/her vehicle’s velocity by taking the vehicular gap
into account with the delay time τ.

Bando et al. [24] proposed a remarkable car-following
model called the OVM based on the assumption that the
optimal velocity of the following vehicle was determined by
his/her own vehicular gap to modify the shortcoming in
Newell’s model. +e OVM has a good ability to reveal many
complex dynamic phenomena of vehicular traffic such as
nonequilibrium vehicular flow, jam information, and stop-
and-go waves. But the OVM could not resolve the problem
of unrealistic acceleration and deceleration because the OV
function only depends on the vehicular gap and density
which affects the model heavily.

To overcome the dilemma of impractical deceleration in
OVM, Helbing and Tilch [25] extended the OVM by in-
corporating the relative velocity and created the generalized
force (GF) model.

Jiang et al. [26] presented the full velocity difference
(FVD) model by taking negative and positive relative ve-
locity into consideration to overcome incapability of the GM
model in the delay time and the velocity of the kinematic
wave at traffic jam.

According to the simulations, the deceleration and ac-
celeration of the FVD model do not fall into the empirical

region [− 3m/s2, 4m/s2] proposed by Helbing and Tilch [25],
and the deceleration of the FVD model is extremely high.

Ge et al. [27] have taken the relative velocities of two
direct preceding vehicles into account and obtained a novel
car-following model (two-velocity difference (TVD) model)
to improve the OV model:

dvn(t)

dt
� a Vo Sn(t)( 􏼁 − vn(t)􏼂 􏼃

+ λ pΔvn(t) +(1 − p)Δvn+1(t)( 􏼁,

(1)

where p is the weight coefficient and λ is the sensitive
constant. Numerical simulations indicate that the two-ve-
locity difference model provides a superior match with the
traffic trajectory data than the OVM and the GFM due to the
application of the ITS.

Zhao et al. [30] constructed a two-dimensional vehicular
movement model based on optimal control to study driving
behavior (i.e., turning the steering wheel and pushing the
brake or throttle pedals) of HD vehicles at intersections. +e
results provided a new insight for the future implementation
of signal control strategies.

Focusing on the application of the traffic flow model,
Zhao et al. [31] developed the FVD model considering the
interaction between vehicle yielding and pedestrian gap
acceptance (VY and PGA) at midblock crosswalks to explore
the impacts of the interaction on traffic flow.

Tang et al. [32] incorporated a speed guidance strategy in
the car-following model to investigate the driving behavior
and the fuel consumption in a single-lane road with multiple
signalized intersections. +e findings provided a new insight
supporting the eco-driving strategies near the signalized
intersections.

Although the aforementionedmodels usedmany specific
aspects in simulating the dynamics of human-driving traffic
flow, they did not consider that the driver’s reaction is slower
in acceleration than in deceleration in real traffic flow, which
is called asymmetric driving behavior.

Based on the asymmetric driving assumption, Gong et al.
[28] proposed the AFVD model by taking two different
sensitivity parameters into account, as shown in the fol-
lowing equation:

dvn(t)

dt
� a Vo Δxn(t)( 􏼁 − vn(t)􏼂 􏼃 + λ1 Δvn(t)( 􏼁

· H − Δvn(t)( 􏼁 + λ2 Δvn(t)( 􏼁 · H − Δvn(t)( 􏼁,

(2)

where H is a Heaviside step function. It is presumed that the
capability of vehicles in acceleration is lower than that in
deceleration.

Shamoto et al. [29] derived an asymmetric car-following
model based on the experiments:

dvn(t)

dt
� a − b

vn

hn − d( 􏼁
2 exp − cΔvn(t)( 􏼁 − cvn, (3)

where a, b, c, d, c are positive parameters.
With the development of ITS, the driver can acquire

information from the preceding vehicles which affects the

2 Journal of Advanced Transportation



Table 1: Car-following models.

Model
category Model name Distinctive features and advantages Limitations Reference

General
Motors
models

Linear model

Simplest model Too simple to model all realistic
traffic phenomena

[19, 20]
+e stability of the model is proved

Impractical acceleration for very
low traffic densities (S⟶∞)

Ignoring velocity differences
between vehicles

Ignoring the physical limitation of
the acceleration process

Ignoring anticipation driving
behavior

Ignoring asymmetric driving
behavior

Nonlinear model

Simple and well-established model
Use of identical reaction time for

all drivers does not capture
interdriver heterogeneity

[21]

Driver reaction time is considered Human ability is overestimated

Model parameter can be easily estimated from
either vehicle trajectory data or macroscopic

data

Ignoring acceleration and
deceleration

Very sensitive to velocity
differences

Ignoring velocity differences
between vehicles

Ignoring the physical limitation of
the acceleration process

Ignoring anticipation driving
behavior

Ignoring asymmetric driving
behavior

Desired
measures
models

Intelligent driver (ID)
model

Considering both desired velocity and desired
headway Ignoring reaction time

[22]
Considering traffic capacity

Ignoring the physical limitation of
the acceleration process

Ignoring anticipation driving
behavior

Ignoring asymmetric driving
behavior

Safety
distance
models

Newell model Follows stimulus-response type function

Produces unrealistic deceleration
and acceleration

[23]

Ignoring the physical limitation of
the acceleration process

Ignoring anticipation driving
behavior

Ignoring asymmetric driving
behavior

Journal of Advanced Transportation 3



driving behavior. In the last few years, several studies have
been done to enhance the realism of existing car-following
models by taking the vehicular gap of several preceding
vehicles, their relative velocities, or both parameters into
consideration in the ITS environment [33–39].

+ese studies described that taking the motion infor-
mation from several preceding vehicles into consideration
can make safe driving more possible.

Furthermore, real driving experience suggests that a
driver may be influenced by not only the motion status of
multiple preceding vehicles but also the anticipation driving

behavior according to his/her perception of downstream
traffic flow.

An extended car-following model with the consideration
of the estimation of the vehicular gap between the flowing
vehicle and the preceding vehicle was put forward by Zheng
et al. [40] to explore the impacts of anticipation driving
behavior on traffic flow.

+e aforementioned models were established to capture
the driving behavior of HD vehicles. +e deficiency of these
models lies in the fact that they are not suitable to study
mixed traffic flow including human-driving and AC vehicles

Table 1: Continued.

Model
category Model name Distinctive features and advantages Limitations Reference

Optimal
velocity
models

Optimal velocity (OV)
model Depends on distance from the preceding car

Produces unrealistic deceleration
and acceleration

[24]

Unrealistically sensitive to reaction
time

Ignoring the physical limitation of
the acceleration process

Ignoring anticipation driving
behavior

Ignoring asymmetric driving
behavior

Ignoring the velocity differences
between vehicles

GF model

Resolved unrealistic deceleration and
acceleration problem Driver reaction time is ignored

[25]
Parameters have been estimated from real data

+ere is still unrealistic
deceleration acceleration

Ignoring the physical limitation of
the acceleration process

Ignoring anticipation driving
behavior

Ignoring asymmetric driving
behavior

Full velocity
differences (FVD)

model

Velocity difference is explicitly included to
overcome unrealistic deceleration and
acceleration depicting many complex

phenomena in real traffic, such as shock waves,
rarefaction waves, stop-and-go waves, and local

cluster effects

Driver reaction time is ignored

[26]

Parameters have not been
estimated from real data

Ignoring the physical limitation of
the acceleration process

Ignoring anticipation driving
behaviour

Ignoring asymmetric driving
behavior

Two-velocity
difference (TVD)

model

Successful in describing the deceleration
process, congestion, instability, and stop-and-go

traffic

Ignoring the physical limitation of
the acceleration process

[27]Ignoring anticipation driving
behavior

Ignoring asymmetric driving
behavior

Asymmetric (FVD)
model Considered asymmetric driving behavior

Ignoring the physical limitation of
the acceleration process

[28]Ignoring anticipation driving
behavior

Ignoring reaction time

Asymmetric-
anticipation FVD
(AAFVD) model

Considered anticipation driving behavior

A brand-new model needs more
investigation of its characteristic

+is
paper

Considered asymmetric driving behavior
A model with more generalizability

Considered two preceding vehicles motion
information
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[41–43] due to the limitation of their accuracy and the
absence of essential parameters such as anticipation and
asymmetric driving behavior when applied to human-
driving and autonomous car-following planning.

During the last few years, some efforts have beenmade to
capture the driving behavior of HD and AC vehicles in
mixed traffic flow [44–47]. Some studies used the same car-
following model [44, 45] to explore the driving behavior of
HD and AC vehicles.

+e effect of AC vehicles on stability traffic flow has been
studied by Monteil et al. [45] to provide a new conception of
AC vehicles application in the future using OVM and in-
telligent driver model (IDM) [22, 48].

Zhu and Zhang [44] used OVM to study the funda-
mental diagrams and density waves in mixed traffic flow.
+ey established the bigger proportion of AC vehicles before
the critical point of density-volume curve probably leads to a
bigger volume in mixed traffic flow.

Some studies [46, 47] used different models to capture
the driving behavior of HD and AC vehicles.

Yuan et al. [46] used a constant time headway (CTH)
model and the modified comfortable driving (MCD) model
for investigating the driving behavior of HD and AC vehicles
on mixed traffic flow.

Yao et al. [47] conducted a developed full velocity dif-
ference (DFVD) model [49] and cooperative adaptive cruise
control (CACC) to study the driving behavior of HD and AC
vehicles in mixed traffic flow under different penetration
rates of AC vehicles.

Table 2 focuses on HD and AC models and their related
equations for mixed traffic flow within these studies [44–47].

+e current studies have some deficiencies considering
the HD and AC models and their impacts on mixed traffic
flow characteristics.

First, most HD and AC models in these studies did not
consider the motion information of several preceding ve-
hicles. To our knowledge, AC and HD vehicles can receive
motion information (e.g., velocity, position, and accelera-
tion) from several preceding vehicles using wireless com-
munication technology in automated highway systems.

Second, the impact of asymmetric and anticipation
driving behavior has not been considered neither in human-
driving traffic flow nor in mixed traffic flow as two main
parts of driving.

+ird, the environmental impacts (i.e., fuel consumption
and emotion rates) of HD and AC models have not been
investigated in these studies.

To overcome these deficiencies, we propose an asym-
metric-anticipation full velocity difference (AAFVD) model
to study the impacts of asymmetric characteristic and an-
ticipation driving behavior on mixed traffic flow dynamics.

+e remainder of the paper is organized as follows. We
present the AAFVD model in Section 2. In Section 3, the
linear stability analysis is conducted for the new model to

study the qualitative properties of the AAFVD model. In
Section 4, we analyze our model numerically under different
scenarios of traffic flow. In Section 5, we evaluate the fuel
consumption and exhaust emission rates of the AAFVD
model during different situations of traffic flow. Concluding
remarks are written in the last section.

2. The Car-following Model

2.1. Assumptions. We consider the operations of AC and
HD vehicles, which are basically moving forward on a single-
lane highway without any overtaking.+e dynamic of mixed
traffic flow is explained by the interactions between a small
group of AC and HD vehicles at which AC vehicles will be
controlled by the leader of the AC vehicles platoon. We
derive our new car-following model equation based on the
following assumptions [50]:

(i) +ere are two AC vehicles among two adjacent HD
vehicles as depicted in Figure 1

(ii) Two AC vehicles are arranged in a closely spaced
group denoted as platoon, which is moving along
the roadway with the same velocity as their platoon
leader

(iii) +e vehicle inside the platoon accelerates only to-
ward the optimal velocity of its leading vehicle

(iv) Each platoon is defined as a moving block according
to platoon-based traffic operation in intelligent
traffic systems (ITS)

(v) +e following HD vehicle receives the motion in-
formation from its preceding platoon leader and its
preceding HD vehicle in the communication range

(vi) Each platoon of AC vehicles follows a car-following
behavior as same as the HD vehicle

2.2. An Asymmetric-Anticipation Full Velocity Difference
Model. Among the existing car-following models, FVD
model established by Jiang et al. [26] is one of the efficient
car-following models. +e existing studies show that FVD
model enables to depict many complex phenomena in real
traffic, such as shock waves, rarefaction waves, stop-and-go
waves, and local cluster effects.

+e FVD model can be formulated as follows:

dvn(t)

dt
� a Vo Sn(t)( 􏼁 − vn(t)􏼂 􏼃 + λΔvn(t), (5)

where Sn(t) is vehicular gap, Vo(Sn(t)) represents the op-
timal velocity function, Δvn(t) is relative velocity, and λ and
a are sensitivity parameters.

+e optimal velocity function is specified by Vo(sn(t)) �

V1 + V2 tan h(C1(sn(t) − lc) − C2) with the following opti-
mal parameter values:
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V1 � 6.75
m

s
,

V2 � 7.91
m

s
,

C1 � 0.13m− 1
,

C2 � 1.57,

Lc � 5m.

(5a)

In real-world traffic, the engine of vehicles has technical
limitations during the acceleration process, which needs to
be considered in a car-following model. In other words,
when the relative velocity between two following and pre-
ceding vehicles enhances (Δvn⟶∞ ), the following ve-
hicle cannot accelerate to infinity.

+erefore, the relation between acceleration and relative
velocity is nonlinear in real traffic flow according to the
actual experiments [29].

Building this observation and according to the actual
experimental data [29], we add the exponential function to
the FVD model as follows:

dvn(t)

dt
� a Vo Sn(t)( 􏼁 − vn(t)􏼂 􏼃 + exp(− μ )Δvn(t)). (5b)

Considering anticipation driving behavior, the motion
information of preceding vehicles in connected vehicles
environment, and the asymmetric characteristic of driving
behavior due to the stimuli of relative velocities between the
following HD vehicle and its two direct preceding vehicles
(i.e., HD vehicle and AC vehicles platoon), we propose the
dynamic equation of the AAFVD model as follows:

dvn(t)

dt
� a VE Sn, Sn+1,Δvn,Δvn+1( 􏼁 − vn(t)􏼂

+ exp − μ (1 − p)Δvn(t) + pΔvn+1(t)( 􏼁( 􏼁

(1 − p)Δvn(t) + pΔvn+1(t)( 􏼁􏼃,

(6)

VE Sn, Sn+1,Δvn,Δvn+1( 􏼁 � (1 − p)VA Sn(t) + TΔvn(t)( 􏼁

+ pVA Sn+1(t) + TΔvn+1(t)( 􏼁,

(7)

where VE is the expected optimal velocity of the following
HD vehicle motion information of its direct preceding HD
vehicle and AC platoon leader, T is forecast time, T(Δvn(t))

reflects the estimation of vehicular gap between the fol-
lowing HD vehicle (n) and its preceding platoon leader

(n+ 1), TΔvn+1(t) is the estimation of vehicular gap between
the preceding platoon leader (n+ 1) and the preceding HD
vehicle (n+ 2), p represents the weight effects of OV an-
ticipation functions on the HD vehicle’s reaction and is
taken as p ∈ [0, 0.3] since the influence of the first preceding
vehicle is more important than the second preceding vehicle.
a � 0.6 is the driver sensitivity parameter and μ � 0.2 de-
notes an asymmetric constant [29].+e exponential function
is the asymmetrical term that shows the driver’s asym-
metrical reaction regarding the relative velocities
(Δvn andΔvn+1), also considering the realistic physical
limitation of vehicle’s acceleration when the relative velocity
between the preceding and following vehicle is too big
(Δvn⟶∞ ,Δvn+1⟶∞).

+at is, when the velocity of the preceding vehicle is
much bigger than the velocity of the following vehicle,
therefore the vehicle cannot accelerate as much as the rel-
ative velocity increases considering engine technical limi-
tations. It is in accordance with the empirical traffic data
[29]; Sn(t) � xn+1 − xn denotes the vehicular gap between
the following HD vehicle (n) and its preceding platoon
leader (n + 1) at time step t; Sn+1(t) � xn+2 − xn+1 represents
the vehicular gap between the preceding HD vehicle (n + 2)

and the preceding platoon leader (n + 1) at time step t;Δvn �

vn+1 − vn represents the relative velocity between the fol-
lowing HD vehicle (n) and the preceding platoon leader
(n + 1) at time t; Δvn+1 � vn+2 − vn+1 is the relative velocity
between the preceding HD vehicle (n + 2) and the preceding
platoon leader (n + 1) at time step t.

From equation (6), we can see that the OV anticipation
functions of the following HD vehicle (n) and AC platoon
leader (n + 1) are integrated into one synthesized OV an-
ticipation function, and we can split it into two different OV
anticipation functions using a linear combination method
[51].

For later convenience of numerical simulations and
linear analysis, we take the Taylor series expansion of
equation (7) to the second order and ignore the higher
orders, yielding the following equation:

VA Sn(t) + TΔvn(t)( 􏼁 � Vo Sn(t)( 􏼁 + TVo
′ Sn(t)( 􏼁Δvn,

VA Sn+1(t) + TΔvn+1(t)( 􏼁 � Vo Sn+1(t)( 􏼁 + TVo
′ Sn+1(t)( 􏼁Δvn+1.

(8)

+us, equation (7) can be written as follows:

VA Sn, Sn+1,Δvn,Δvn+1( 􏼁 � (1 − p)Vo Sn(t)( 􏼁 + pVo Sn+1(t)( 􏼁

+ TΔvn (1 − p)Vo
′ Sn(t)( 􏼁 + pVo

′ Sn+1(t)( 􏼁( 􏼁.

(9)

Human-driving (HD)
vehicle

Autonomous and
connected (CA) vehicle

n n + 1 n + 2

Sn+1 (t)Sn (t)

Figure 1: +e mixed traffic flow including AC vehicles platoon and HD vehicles behavior.
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Putting equation (9) into equation (6), we will obtain

dvn(t)

dt
� a (1 − p)Vo Sn(t)( 􏼁 + pVo Sn+1(t)( 􏼁􏼂

+ TΔvn (1 − p)Vo
′ Sn(t)( 􏼁 + pVo

′ Sn+1(t)( 􏼁( 􏼁

− vn(t) + exp − μ (1 − p)Δvn(t) + pΔvn+1(t)( 􏼁( 􏼁

(1 − p)Δvn(t) + pΔvn+1(t)( 􏼁􏼃,

(10)

where Vo
′(Sn(t)) � (dV(Sn(t))/dSn(t)) is the optimal ve-

locity changing rate with vehicular gap and
Vo(Sn(t)), Vo(Sn+1(t)) are OV functions, which are adopted
as follows [25]:

Vo Sn(t)( 􏼁 � V1 + V2 tan h C1 Sn(t)( 􏼁 − lc( 􏼁 − C2( 􏼁,

Vo Sn+1(t)( 􏼁 � V1 + V2 tan h C1 Sn+1(t)( 􏼁 − lc( 􏼁 − C2( 􏼁,

(11)

where the parameters are set as follows:

V1 � 6.75
m

s
,

V2 � 7.91
m

s
,

C1 � .13m− 1
,

C1 � 1.57,

Lc � 5m.

(12)

3. Linear Stability Analysis

+emethod of linear stability was first employed in the GHR
model [48] by Chow [52]. Liu and Li [53] have evaluated the

stability of a multiregime car following (CF) [54] via nu-
merical simulation. Wilson and Ward [55] focused on
classifying the analytical stability criterion of CFmodels with
more details within a generalized frame.

To consider the impacts of anticipation and motion
information from two direct preceding vehicles on mixed
traffic flow stability, the method of linear stability is carried
out to derive the stability and instability criteria for the
AAFVD model.

We assume AC vehicles platoons and HD vehicles are
distributed with the same vehicular gap (b) and are moving
uniformly. Note that AC vehicles are moving much closer
together because of the intelligent driving assistant system.

+e optimal velocity of HD vehicles and AC vehicles
platoon is V(b, b). +e position of each HD vehicle n in the
stable traffic flow condition is as follows:

x
0
n(t) � bn + Vo(b, b)t, n � 1, 2, . . . , N, (13)

where b is the vehicular gap denoted by b � (D/N), N is the
total number including platoons and HD vehicles, and D is
the path distance.

By assuming that yn(t) stands for a slight deflection from
the steady-status x0

n(t), i.e.,

xn(t) � x
0
n (t) + yn(t). (14)

Equation (14) can be rewritten as follows:

yn(t) � xn(t) − x
0
n (t). (15)

Equations (13) and (14) are replaced with a linear
form of equation (10). +e derived form of the asymmet-
rical function is (1 − exp(− μ ((1 − p)Δvn(t) + pΔvn+1
(t))))exp(− μ ((1 − p)Δvn(t) + pΔvn+1(t))), and the state of
linear stability is autonomous from μ. +e resulting equation
yields

yn
″(t) � a (1 − p) Vo

′(b, b)Δyn(t) + TVo
′(b, b)Δyn

′(t)( 􏼁 + p Vo
′(b, b)Δyn+1(t) + TVo

′(b, b)Δyn+1′(t)( 􏼁 − yn
′(t)􏼈 􏼉

+ λ (1 − p)Δyn
′(t) + pΔyn+1′(t)( 􏼁,

(16)

where Vo
′(b) � (dV(Δxn)/dΔxn

����Δxn�(1+p)b
) ; Δyn(t) � Δxn

(t) − b; yn
′(t) � xn

′(t) − Vo(b, b) ; yn
″(t) � xn

″(t),Δyn+1(t) �

Δxn+1(t) − b;Δyn
′(t) � Δxn

′(t);Δyn+1′(t) � Δxn+1′(t) ; and β
and λ are constants.

Expanding yn(t) into a Fourier series as an orthonormal
set where yn(t) � e(iαkn+zt), equation (10) can be defined by z
as follows:

z
2

+ a − λ (1 − p) exp iαk( 􏼁 − 1( 􏼁 + p exp 2iαk( 􏼁 − 1( 􏼁( 􏼁 − TaVo
′(b, 2b) (1 − p) exp iαk( 􏼁 − 1( 􏼁 + p exp 2iαk( 􏼁 − 1( 􏼁( 􏼁􏼂 􏼃z

− aVo
′(b, 2b) (1 − p) exp iαk( 􏼁 − 1( 􏼁 + p exp 2iαk( 􏼁 − 1( 􏼁􏼂 􏼃 � 0.

(17)
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Inserting the expansion of z � z1(ik) + z2(ik)2 + · · · into
the above equation, the expressions of z1and z2 are obtained
as follows:

z1 � Vo
′(b, b)(1 + p),

z2 �
2λ(1 + p) + a

2a
􏼠 􏼡(1 + p)Vo

′(b, b) +
Ta − 1

a
􏼒 􏼓(1 + p)

2
Vo
′(b, b)( 􏼁

2
.

(18)

+e uniform flow will remain stable provided if z2 > 0
and unstable if z2 < 0. So, the critical stable curve is given as

ac �
2(1 + p) Vo

′(b, b) − λ( 􏼁

1 + 2T(1 + p)Vo
′(b, b)

. (19)

+erefore, the stable and unstable regions are, respec-
tively, as follows:

ac >
2(1 + p) Vo

′(b, b) − λ( 􏼁

1 + 2T(1 + p)Vo
′(b, b)

,

ac <
2(1 + p) Vo

′(b, b) − λ( 􏼁

1 + 2T(1 + p)Vo
′(b, b)

.

(20)

If the first condition is satisfied, the AAFVD model is
stable; otherwise, a collision or traffic congestion will happen
as it propagates to upstream of traffic flow.

When T � 0, p � 0, the stable regions of the AAFVD
model degrade to the stable regions of the FVD model [26].

Figure 2 illustrates the critical stability curves of the
AAFVD and the FVDmodels in the parameter space (Δx, a)

under various amounts of T and p. In Figure 2, the solid red
lines and the dashed blue lines represent the stability curves
of AAFVD and the FVD models, respectively, and the apex
of every curve defines the critical point (hc, ac) for various
amounts of T and p, where hc and ac are, respectively, the
safety distance and the critical sensitivity. +e regions below
the critical lines show the unstable regions where density
waves appear in traffic flow, and the regions above the
critical lines indicate the stable regions of traffic flow.

Figure 2 depicts that by incorporating the driving an-
ticipation effect considering downstream motion informa-
tion into the FVD model, the stable region gradually
increases.

From Figure 2, it is clear that the stable region obtained
from the AAFVD model is bigger than that obtained from
the FVDmodel, and the critical points are significantly lower
than the FVD model which means with increasing the
impact of the driving anticipation the critical vehicular gap
hc will be smaller than that in the FVD model and the
capacity of the road in the steady state will enhance.

4. Simulations

In this section, we perform the numerical simulations of the
AAFVD model to support our new model by exploring the
impacts of driving anticipation and asymmetric behavior

and motion information from two preceding vehicles
through V2V environment on velocity, acceleration, de-
celeration, energy consumption, exhaust emotions of HD
vehicles and AC vehicles platoons, and the stability of mixed
traffic flow under different traffic scenarios.

4.1. 5e Star-Up Process. Emulating the same scenario used
by Jiang et al. [26], we analyze the departure process of HD
and AC vehicles at a signalized intersection (Figure 3) to
figure out the motion characteristics of each HD vehicle and
AC vehicle platoon simulated by the AAFVD model.

We assume eleven vehicles (i.e., HD vehicles and AC
vehicles platoons) stop in a queue during the red period of a
traffic signal with identical vehicular gaps of 7.4m at time
t< 0. At time t� 0, the traffic signal shifts from its red period
to its green period and the first preceding HD vehicle of
mixed platoon instantly starts up, and the other vehicles
gradually move and follow their direct preceding vehicle
based on the AAFVD model in a connected system. +e
velocity of the first preceding HD vehicle and the AC ve-
hicles platoon leader is defined by vn+1 � vn+2 � v0(t).

Figures 4(a)–4(d) depict how the following HD vehicle
and the AC platoon duplicate fundamentally the velocity of
preceding vehicles with a delay time, that is, vn � v0(t − δt),
in which δt is the delay time of each vehicle’s motion. From
the delay time of each vehicle’s motion, we can further
predict the velocity of kinematic waves (i.e., disturbance
propagation velocity) at traffic jam with density cj, which is
defined by cj � 7.4/δt.

Based on empirical observation, Bando et al. [24] found
that the order of the delay time δt is 1 s; the range of the
kinematic wave velocity was derived by Del Castillo and
Benitez [56] to be between 17 and 23 km/h.

Comparing Figures 4(a) and 4(b), results revealed that
the starting delay time of the following vehicles increases
gradually when only the impact of asymmetric driving
behavior is considered (i.e., anticipation and motion in-
formation from preceding vehicles are not considered)
(T� 0, p � 0). In this case, the AAFVDmodel degrades to an
asymmetric FVD model called AFVD model in our paper.

From Figures 4(c) and 4(d) and Table 3, it is clear that the
following vehicles quickly respond to the change of the
preceding vehicles, so the starting process of the following
vehicles is getting faster because of receiving the motion
information (i.e., position and velocity) from two preceding
vehicles (p � 0.3), and anticipating the next moment of
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Figure 4: Motion of eleven vehicles during the departure process. (a) FVD model, (b) AFVD model (T� 0, p � 0), (c) AFVD model (T� 0,
p � 0.3), and (d) AFVD model (T� 0.1, p � 0.3).

n1 2 3 n + 1 n + 2

Sn (t) Sn+1 (t)

Figure 3: A mixed traffic flow platoon of eleven vehicles including AC vehicles platoon and HD vehicles proceeds as the traffic signal shifts
from red to green.
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Figure 2: Phase diagram space of the AAFVD model in the parameter space (Δx, a) according to various amounts of parameter (T) in p � 0.3.

10 Journal of Advanced Transportation



downstream traffic situation (T� 0.1), the delay δt is getting
shorter, and the velocity of kinematic wave cj falls into in the
defined boundary of observed data (17 km/h and 23 km/h).
Such time-saving is critical for safety and operation.

To explore further how considering the anticipation and
asymmetric driving behavior can affect the velocity and
acceleration of the following vehicles in the V2V commu-
nication environment, we choose the 3rd vehicle and the 9th
vehicle which both are HD vehicles to carry out a com-
parative analysis between the AAFVD, AFVD, and FVD
models.

Figures 5(a), 5(b), 6(a), and 6(b), respectively, illustrate
the velocity and acceleration evolution of the 3rd vehicle and
9th vehicle simulated by the FVD, AFVD, and AAFVD
models with the value of T� 0.1, p � 0.3 and p � 0, T� 0.

In Figures 5(a) and 5(b), we can split the velocity of each
target vehicle into two phases. During the first phase, the
vehicle simulated by the AAFVD model accelerates faster
than those simulated by the FVD and AFVD models.

In the second phase, the vehicle simulated by the
AAFVD model accelerates slower than those simulated by
the AFVD and FVD models.

Considering the above information, we can draw the
conclusion that the vehicles simulated by the AAFVDmodel
can accelerate faster due to the drivers’ anticipation
according to the received motion information from two
preceding vehicles in connected vehicles environment and
then accelerate smoothly until they reach the stable velocity.

During the second stage, drivers are relaxed in accel-
eration situation. However, those vehicles simulated by the
AFVD and FVDmodels cannot behave in the same way. As a
result, drivers can start moving forward instantly when the
traffic signal shifts to green, higher acceleration can be
avoided, and the vehicle’s energy consumption can be
reduced.

Figures 6(a) and 6(b) indicate that acceleration process
can be split into two phases. In the first phase, the vehicle
simulated by the AAFVD model applies the throttle pedal
faster than one simulated by the AFVD and FVD models.

In the second phase, the vehicle simulated by the AFVD
model and FVD model applies the throttle pedal faster than
one simulated by the AAFVD model to reach the steady
velocity.+is benefits the following vehicles because they are
interested to start applying the throttle pedal earlier to move
forward faster when the traffic signal shifts to green to avoid
a higher level of acceleration and then release the throttle
pedal a little to feel safe until they reach a steady velocity.

Furthermore, from Figures 6(a) and 6(b), it is clear that
the curves of the AAFVD model are lower than those of the
AFVD and FVD models. +e results demonstrate that the

acceleration of vehicles simulated by the AAFVD model is
within the limited range of empirical accelerations (0, 4)m/
s2 observed by Helbing and Tilch [25]. It means that the
AAFVD model does not generate unrealistic high acceler-
ation like the OV model [24].

By considering the impact of anticipation driving be-
havior, a driver can enhance his/her vehicle velocity more
quickly and more gently. +erefore, efficiency and safety are
improved in the starting process.

4.2. Braking Process. Here, the braking process of eleven
vehicles is simulated numerically at a signalized intersection
by using the AAFVD model under the initial conditions.

When t< 0, the traffic signal is green and eleven vehicles
are moving forward with the same velocity of 4.66 (m/s); all
vehicles are distributed uniformly with the same vehicular
gap of 7.4m on the road; the vehicular gap between the first
preceding HD vehicle and the stopping line is supposed to be
10m; the red light assumed to be a virtual vehicle with the
velocity of zero at the stop line as noted in this literature [57].

At time t� 0, the traffic signal changes to red phase and
the first preceding HD vehicle of the mixed platoon im-
mediately brakes, and the following vehicles copy the first
preceding HD vehicle’s behavior with a delay time and begin
to slow down gradually and all vehicles eventually will reach
the velocity of zero before reaching the crosswalk.

+e result of numerical simulation revealed that the
following vehicles copy the velocity of the preceding vehicles
with a delay time and eventually reach the velocity of zero in
a queue before reaching the crosswalk, and the delay time of
vehicles’ motion simulated by the AAFVD, AFVD, and FVD
models are 1.39 s, 1.5 s, and 1.43 s, respectively. It is clear that
the AAFVDmodel has a shorter delay time than those of the
AFVD and FVD models.

To investigate the impacts of anticipation and asym-
metric driving behavior on the following vehicle’s velocity
during the braking process more clearly, we choose the 6th

vehicle (i.e., platoon leader) and 9th vehicle (i.e., vehicle) as
target vehicles.

+e velocity evolution of two vehicles during the arrival
process when vehicles start applying the brake pedal (t� 0)
until that time both vehicles reach the velocity of zero in a
queue before reaching the crosswalk is displayed in Figure 7
using the FVD, AFVD, and AAFVD models.

We can split the velocity of the 6th vehicle and 9th vehicle
into two different phases in Figure 7; in the first phase, the
following vehicles simulated by the AAFVD model start re-
leasing the throttle pedal earlier and applying the brake pedal
faster than those simulated by the AFVD and FVD models.

Table 3: Delay time δt (s) of vehicle motions in a signalized intersection and the velocity of kinematic wave (cj) at traffic jam simulated by
FDV and AAFVD models.

Model a (1/s) T(s) p δt (s) cj (km/h)

FVD 0.6 0 0 1.45 18.37
AFVD 0.6 0 0 1.5 17.8
AAFVD 0.6 0 0.3 1.39 19.16
AAFVD 0.6 0.1 0.3 1.30 20.49

Journal of Advanced Transportation 11



In the second phase, the following vehicles simulated by
the AAFVD model reach the required amount of deceler-
ation faster than those by the AFVD and FVD models until
the vehicles stop completely.

In accordance with the above information, vehicles will
be brought comfortably, gently, and safely to a standstill
using the AAFVD model.

Figures 8(a)–8(c) depict the simulation of acceleration’s
evolution of eleven vehicles due to traffic signals using the
FVD, AFVD, and AAFVD models, respectively. In this
figure, the required level of deceleration in the AAFVD
model is lower than that in the AFVD and FVD models and
is not beyond the limited range of empirical deceleration
(− 3, 4) (m/s2) [25] observed from real driving behaviors.
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Figure 5: Velocities of two HD vehicles during the departure process simulated by the FVD, AFVD, and AAFVDmodels: (a) 3rd vehicle and
(b) 9th vehicle.

0

2

4

Ve
lo

ci
ty

 (m
/S

)

Time (s)
0 5 10 15 20 25 30

FVD model
AFVD model
AAFVD model

(a)

0

2

4

Ve
lo

ci
ty

 (m
/S

)

Time (s)
0 5 10 15 20 25 30

FVD model
AFVD model
AAFVD model

(b)

Figure 6: Acceleration of four HD vehicles during the departure process simulated by the FVD, AFVD, and AAFVDmodels: (a) 3rd vehicle
and (b) 9th vehicle.
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To study more how receiving the motion information
of two preceding vehicles can affect each vehicle’s ac-
celeration in a mixed platoon of vehicles during the
arrival process, we select the 6th vehicle and the 9th
vehicle to compare the AAFVD model with the above
models. Figure 9 shows that the curve of the AAFVD
model is in front of those of the AFVD and FVD models
and is lower than those models.

Based on the above analysis, we can draw the conclusion
that taking the motion information of two preceding ve-
hicles into account in connected vehicles indeed has sig-
nificant impacts on the evolution of each vehicle’s
acceleration. It enhances the capacity of signalized
intersections.

4.3. EvolutionProcesswith a SmallDeflection. In this section,
we investigate the effect of anticipation and asymmetric
driving behavior on the stability of mixed traffic flow under
an initial small deflection.

We will assume the mixed platoon of vehicles including
HD vehicles and AC vehicles with the total number N� 100
which are moving forward uniformly along a circuit road
with the path distance of D� 1700m, under a periodic
boundary condition (Figure 10). +e initial state is set forth
in the following equation:

x1(0) � 1m; xn(0) �
n − 1

N
n≠ 1, n � 2, 3, 4, . . . . . . , 100,

vn(0) � V
D

N
􏼒 􏼓.

(21)

Figure 11 illustrates the snapshots of 100 vehicles’ ve-
locities simulated by the AAFVD model (T� 0.1, p � 0.3)
and AFVD model (T� 0, p � 0) at t� 300 s, t� 800 s, and
t� 5000 s.

It can be found from Figures 11(a)–11(c) that when
anticipation of driving behavior considering two preceding
vehicles motion information is taken into account, the
amplitude of vehicles’ velocity disappears after a short time.

All of these vehicles simulated by the AAFVD model
move forward with a constant velocity v0 � 6.499(m/s)
during 5000 s and the small initial deflection does not have a
large effect on the stability of traffic flow. While we add a
small initial deflection on vehicular traffic flow simulated by
the AFVD model, it generates fluctuations around the
constant velocity v0 and the amplitude of vehicles’ velocity
fluctuates more by increasing time.

Jiang et al. [26] noted that the motion of the vehicles
eventually begins to transit from a homogeneous phase to
stop-and-go phase, which form into hysteresis loops after
sufficient time.

In order to do further investigation, we show the hys-
teresis loop gained from the AAFVD model in three various
scenarios. +e first scenario is ignoring the anticipation
driving behavior T� 0 and the effect of V2V communication
theology on vehicles behavior p � 0 (i.e., AFVD model).

+e second scenario is considering anticipation driving
behavior without taking two preceding vehicles dynamic
information into account in the V2V communication en-
vironment (i.e., p � 0, T� 0.1).

+e third scenario is anticipating driving behavior with
considering two preceding vehicles dynamic information in
V2V environment which can be shown by T� 0.1 and p �

0.3 in the AAFVD model.
Figure 12 depicts that the traffic congestion stays unchanged

after sufficient period of time. +e motion of vehicles begins to
form a loop of hysteresis phenomenon when drivers do not
receive the motion information of two preceding vehicles p � 0
(i.e., AFVDmodel) and just anticipate the nextmoment of traffic
flow based on their observation of next preceding vehicle’s
motion which is shown with T� 0.1 and p � 0.

From Figure 12, it is clear that the loop of the hysteresis
phenomenon is getting smaller when the efficacy of anticipation
ondriving behavior increases. Furthermore,whenwe change the
value of T� 0 and p � 0 to T� 0.1 and p � 0.3, we can see that
the loop of hysteresis phenomenon does not form, and in the
state space, there is only a point G on the OV line instead.

From Figure 12, two points can be noted as follows: first
when T� 0.1 and p � 0.3, criterion (20) is held and the mixed
traffic flow is stable and all vehicles run along the road with
minimum gap which is 17m. In other words, when p � 0 and
T� 0 (AFVDmodel), a small part of the loop (pointH) stands in
the area, where the vehicular gap and velocity are less than the
minimum amount of vehicular gap and velocity.

In summary, the above analysis of hysteresis loops and
stop-go plots reveal that the AAFVD model provided su-
perior results compared to the AFVD model. It clearly
demonstrates that considering two preceding vehicles mo-
tion information using V2V communication technology can
mitigate the appearance of traffic jams and enhance traffic
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Figure 7: Comparison of two vehicles’ velocity during the arrival
process simulated by the FVD, AFVD, and AAFVD models.
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flow stability, which means that the velocity of vehicles
changes sharply and the stop-and-go waves fluctuate
smoothly. Driving smoothly means a low risk of traffic
accidents. +erefore, we can draw the conclusion that
driving safety is improved by considering the asymmetric-
anticipation driving behavior.

5. Energy Consumption and Exhaust
Emission Rates

+e impacts of driving behavior on environment can be
evaluated by vehicle energy consumption and exhaust
emissions. Based on Ahn’s model [58], Tang et al. [59]
studied the energy consumption of each vehicle incorpo-
rating into three car-following models OVM [24], FVD [26],
and FVAD [60] under various scenarios of traffic flow.

Rakha et al. [61] provided a trip-based microscopic
traffic simulator INTEGRATION by incorporating VT-
Micro model [58] to investigate how the energy con-
sumption and exhaust emissions of vehicles are influenced
by the ITS application and traffic light. Shi et al. [62] noted
that the stability of the traffic flow has a significant effect on
reducing the energy consumption of vehicles. Tang et al. [63]
investigated the impacts of the real-time road state on
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Figure 8: Acceleration evolution of eleven vehicles during the arrival process simulated by (a) FVD model, (b) AFVD model, and
(c) AAFVD model.
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driving behavior, emissions (CO, HC, and NOx), and energy
consumption of vehicles in a new car-following model and
confirmed that the stability of traffic flow affects vehicles’
emissions and energy consumption.

Wu et al. [64] presented a new optimization system
based on the idea of reducing vehicle’s energy consumption
and exhaust emission with modifying driving behavior. +is
system can help experienced and new drivers to adjust their
acceleration/deceleration in accordance with traffic and
environmental conditions as well as without violating any
traffic rules.

+e aforementioned studies showed how wise driving
behavior can lead to lower exhaust emissions (CO, HC, and
NOx) and energy consumption. It is important to analyze the
effects of anticipation driving behavior considering two
leading vehicles motion information on exhaust emissions
(CO, HC, and NOx) and energy consumption of vehicles

individually into our newmodel under different situations of
traffic flow.

To evaluate the exhaust emissions (CO, HC, and NOx)
and energy consumption of an individual vehicle, we use the
VT-Micro model (the Virginia TechMicroscopic energy and
emission model) proposed by Ahn et al. [58] which reads

ln(MOEe) � 􏽘
i�3

i�0
􏽘

3

j�0
k

e
i,j ∗ s

i ∗ a
j
, (22)

where MOEe is the energy consumption rate (ml/s) or
emission rate (mg/s) of an individual vehicle; ke

i,j is the
coefficient of the regression model for MOE ‘‘e’’ at velocity
power ‘‘i’’ and acceleration power ‘‘j’’ for negative ac-
celerations which can be found in Appendix E in [65]; s is
the instantaneous velocity; a is the instantaneous
acceleration.
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Figure 10: A mixed platoon of one hundred vehicles including CA vehicles platoon and HD driving vehicles moving forward on a circuit
road with the path distance of D� 1700m.
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Figures 13–15 depict the instantaneous energy con-
sumption and emission rates (CO, HC, and NOx) of 10
vehicles by the AAFVD model during the departure and
arrival processes under the following situation.

Ten vehicles are waiting in a queue with an identical ve-
hicular gap of 7.4m for the red period of a traffic signal which is
situated at 74m from 10th vehicle; an obstacle is placed at 500m
from the last vehicle of the platoon. Other conditions are as
same as the starting process in Section 4.1. When the obstacle
appears, the first preceding vehicle of the platoon will start
applying the brakes and then other vehicles duplicate this
action. From Figures 13–17, we can observe the following
results.

In Figure 13, we can split the energy consumption of
each vehicle into four different phases during the departure
and arrival process. In the first phase, drivers start pressing
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Figure 11: Snapshots of 100 vehicles’ velocity simulated by the AFVD model (T� 0, p � 0) and the AAFVD model (T� 0.1, p � 0.3) at (a)
300 s, (b) 800 s, and (c) 5000 s.
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Figure 12: Hysteresis loops for the AAFVD model.
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the throttle pedal with high force to accelerate quickly and
pass through the intersection during the green period of
traffic signal, which leads to an enhancement of each ve-
hicle’s energy consumption.

In the second phase, drivers start releasing the throttle
pedal because of reaching the required level of acceleration
at the first phase, which reduces the acceleration and energy
consumption of each vehicle.

In the third phase, drivers release the throttle pedal, but
the velocity of each vehicle increases to its highest level and
its acceleration to zero, which keeps the level of each ve-
hicle’s energy consummation constant.

In the fourth phase, a driver starts applying the brake
pedal when finding out an obstacle in front; in this phase, the
energy consumption of each vehicle slowly reduces as same
as real traffic situation; however, the simulation process of
energy consumption for each vehicle is very complex and
irregular. It needs further exploration with some experi-
ments in the future.

We can clearly see from Figures 13(a) and 13(b), the
energy consumption of each vehicle reduces when the an-
ticipation driving behavior is taken into account and the
following vehicle receives the motion information of two
preceding vehicles in the V2V communication environment
(T� 0.1, p � 0.3).

From Figure 14, results revealed that the total fuel
consumption of vehicles simulated by the AAFVD model
reduced and HD drivers and CA platoon leaders can reply to
the possible disturbances of downstream traffic carefully and
unhurriedly.

From Figure 15, we can see that the total amount of CO
is much more than the total amount of HC and NOx, but the
total amount of CO, HC, and NOx decreases when T� 0.1

and p � 0.3 because the acceleration process will become
shorter in the AAFVD model. According to the vehicle’s
engine construction, during the acceleration process, an
excessive amount of fuel will be injected into the vehicle’s
engine to avoid leaning the mixture too much and ensuring
the engine runs without hitch. In other words, in the
AAFVD model, the driver does not need to apply for a
higher level of acceleration and release the throttle pedal to
reach the velocity limit. By considering two preceding ve-
hicles’ motion information, the vehicle consumes less energy
and reduces the emission rates.

Next, we determine the energy consumption rate and
total exhaust emissions of first 50 vehicles of Section 4.3
under periodic boundary condition with a small deflection at
the time step t� 500 s and t� 1000 s. All vehicles’ energy
consumption rate is illustrated in Figure 16.

From Figure 16, we can take the results as follows:

(i) When T� 0 and p � 0, vehicles’ energy consumption
produces oscillating phenomena because of the small
deflection, and the small deflection will not be dis-
sipated during 1000 s.

(ii) When T� 0.1 and p � 0.3, the energy consummation
of each vehicle is stable because CA and HD vehicles
can adjust their movement earlier by anticipating the
next moment of traffic situation and receiving
downstream traffic information in V2V environ-
ment, causing drivers to avoid applying for unnec-
essary brake or accelerator pedals.

Figures 17(a)–17(c) depict the total amount of CO, HC,
and NOx emission of 50 vehicles simulated by the AAFVD
model with different values of T� 0, p � 0, and T� 0.1, p �

0.3 at the time step of 1000 s.
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Figure 13: Fuel consumption of each vehicle during departure and arrival process simulated by the (a) AFVD model (T� 0, p � 0) and
(b) AAFVD model (T� 0.1, p � 0.3).
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Figure 15:+e total CO, HC, and NOx emission of 10 vehicles simulated by the AFVDmodel (T� 0, p � 0) and the AAFVDmodel (T� 0.1,
p � 0.3) during departure and arrival process: (a) CO, (b) HC, and (c) NOx.
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Figure 16: Snapshots of energy consumption rate of 50 vehicles simulated by the FVD model, AFVD model (T� 0, p � 0), and AAFVD
model (T� 0.1, p � 0.3) at time step (a) 500 s and (b) 1000 s.
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Figure 17: +e total CO, HC, and NOx emission of 50 vehicles simulated by simulated by the AFVD model (T� 0, p � 0) and the AAFVD
model (T� 0.1, p � 0.3) at time step 1000 s: (a) CO, (b) HC, and (c) NOx.
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From Figures 17(a)–17(c), we can see the total amount of
CO is much more than the total amount of HC and NOx, but
the total amount of CO, HC, and NOx under the value of
T� 0.1, p � 0.3 is lower than that under the value of T� 0,
p � 0.

6. Concluding Remarks

To contribute to the state of the art in traffic flow theory, we
proposed the AAFVDmodel based on the FVDmodel with an
anticipation optimal velocity function considering the reflec-
tion of vehicular gap and velocity changes of two preceding
vehicles using the V2V communication technology.

+e asymmetrical term was added to take the realistic
physical limitation of vehicle acceleration into account to
make the AAFVD model more realistic according to real
traffic situations in ITS systems.

Linear stability analysis was conducted to study on traffic
flow characteristics.

We experimented our numerical simulations for eval-
uating the efficiency of the AAFVD model in the starting
process, taking process, small deflections, and vehicle’s
emission and fuel consumption rate.

Our results revealed that high acceleration and decel-
eration will not appear, and considering the anticipation
driving behavior for designing the control strategy of mixed
traffic systems can increase positive traffic metrics (safety
and flow) and decrease energy consumption and CO, HC,
and NOx emissions.

Considering the anticipation driving behavior
according to the motion information of two preceding
vehicles enhances the stability of traffic flow by elimi-
nating unnecessary-dangerous interactions among vehi-
cles, achieves a better traffic flow in terms of safety, and
reaches a better condition for traffic flow to operate.

+e results depict that the AAFVD model can more
successfully anticipate the two important traffic pa-
rameters comparing with the FVD model: the delay time
of vehicle motion and the kinematic wave speed at jam
density. It means that efficiency and safety can be im-
proved in signalized intersection by considering the
effect of the asymmetric-anticipation driving behavior
according to motion information of two preceding
vehicles.

+e AAFVDM model enhances our capability to
analyze not only a single preceding vehicle but also the
entire ambient traffic conditions in the vicinity of the
subject vehicle. +is can be implemented accurately
through V2V wireless communication.

+e results showed that the degraded model, which
is derived from the AAFVD model (i.e., AFVD model),
exhibited good agreement with manual driving systems
compared to the FVD model. +is is due to considering
the asymmetric driving behavior.

We did not consider the memory of driving,
bounded rationality, and the downstream traffic con-
dition in our proposed model, which have significant
influences on car-following behavior.

Another limitation of our paper is that we do not use some
experimental real data to testify numerical results.

+e results obtained in this paper are qualitative.
+erefore, more efforts will be done in our future work to
combine many observed data to further study the inner
relationship between the AAFVD model and the stability of
traffic flow.

We are currently undertaking an ongoing investigation
which calibrates empirically our new model using real traffic
data. +e result of calibration can help us to realize quan-
titatively the impact of anticipation and asymmetric driving
behavior on microscopic traffic flow.

However, more studies are required to be conducted to
analyze the applicability of our new microscopic model to
real traffic systems, and it may be rational to result that it
affords an accurate description of traffic flow.

Abbreviations

CF: Car following
FVD: Full velocity difference model
IDM: Intelligent driver model
OVM: Optimal velocity model
OV: Optimal velocity
AC: Autonomous and connected
HD: Human driving
ITS: Intelligent transportation system
ICT: Information and communication technologies
V2V: Vehicle-to-vehicle
CA: Cellular automata
GFM: General Ford model
TVD: Two-velocity difference
MCD: Modified comfortable driving
CTH: Constant time headway
DFVD: Developed full velocity difference
CACC: Adaptive cruise control
AFVD: Asymmetric full velocity difference
AAFVD: Anticipation-asymmetric full velocity difference
xn(t): +e position of the nth HD vehicle at time t
vn(t): Velocity of the nth HD vehicle at time t
an(t): +e acceleration (deceleration) of nth HD

vehicle
Sn(t): +e vehicular gap between AC platoon leader

n + 1 and the following HD vehicle n at time t,
Sn(t) � Δxn(t) � xn+1(t) − xn(t)

Sn+1(t): +e vehicular gap between the preceding HD
vehicle n + 2 and the AC platoon leader n + 1 at
time step
t, Sn+1(t) � Δxn+1(t) � xn+2(t) − xn+1(t)

Δvn(t): +e relative velocity between the AC platoon
leader n + 1 and the following HD vehicle n at
time step t, Δvn(t) � vn+1(t) − vn(t)

Δvn+1(t): +e relative velocity between the preceding HD
vehicle n + 2 and the AC platoon leader n + 1 at
time step t, Δvn+1(t) � vn+2(t) − vn+1(t)

V
d

n : +e desired velocity
VE: +e following HD vehicle’s expected optimal

velocity
τn: +e reaction time

20 Journal of Advanced Transportation



TΔvn(t): +e following HD vehicle’s estimation of the
vehicular gap between AC platoon leader n+ 1
and following HD vehicle n at the next moment

TΔvn+1(t): +e following HD vehicle’s estimation of the
vehicular gap between vehicles n+ 2 and n+ 1 at
the next moment

VO: +e optimal velocity function
VE: +e expectation of optimal velocity
VA: +e anticipation function of optimal velocity
Ve(ρ): Equilibrium velocity
a: +e sensitivity of the driver given by the inverse

of the delay time of vehicle motion τ, namely,
a � 1/τ

λ: +e sensitive constant
p: +e weight parameter
an: +e considered vehicle’s acceleration at the time

step t
H: +e Heaviside step function
T: +e forecast time
δt: +e vehicle’s delay time during departure and

arrival process
cj: +e velocity of the kinematic wave at traffic jam,

equal to the quotient of the vehicular gap
divided by the vehicle’s delay time δt; cj � S/δt

μ: +e asymmetric factor
ac: +e stability function of the microscopic model
αk: Set of the eigenmodes
dn(effective): Effective distance
vanti(t): Anticipated velocity of preceding vehicle in next

moment
S

d

n : +e desired vehicular gap
V

d

n : +e desired velocity
L: +e vehicle length
vfree: Free flow velocity
kp, kd: Control parameters
S0: Minimum safe distance.
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Additional Points

An asymmetric-anticipation full velocity difference
(AAFVD) car-following model was proposed. +e AAFVD
model takes the effects of the anticipation and asymmetric
driving behavior and two preceding vehicles’ motion in-
formation into account. +e AAFVD model improves the
stability of mixed traffic flow. +e AAFVD model reduces
the vehicle’s energy consumption and exhaust emissions of
CO, NOx, and HC.
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