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Gate assignment problem (GAP) is the core issue of airport operation management. However, the limited resources of airport
gates and the increase of flight scale result in serious problems for gate allocation. In this paper, to provide decision-making
support for large-scale GAPs, a model based on gate assignment rules (e.g., flight type constraints, safe time interval constraints,
and adjacency conflict constraints) is built to formulate the problem. An improved adaptive parallel genetic algorithm (APGA) is
then designed to solve the model. (e algorithm is effective because it introduces the idea of elite strategy and parallel design and
can adaptively adjust the crossover probability. Moreover, different instances are presented to demonstrate the proposed al-
gorithm.(e calculation results of this algorithm are compared with those of standard genetic algorithm and CPLEX, which show
that the proposed algorithm has better performance and takes a shorter computational time. In addition, we verify the stability and
practicability of the algorithm by repeated experiments on large-scale flight data.

1. Introduction

During the past twenty years, the number of flights in China
has increased significantly. (e limited resources of airports
have gradually become a bottleneck that limits the devel-
opment of the aviation industry. (erefore, how to dispatch
various resources reasonably has become an intractable
problem to be solved. Specifically, one of the most critical
problems is gate assignment problem (GAP), which deals
with the optimal assignment of flights to gates.

With the rapid growth of the number of flights, limited
airport resources have been overwhelmed. Among them, the
resource shortage of contact stands (an area adjacent to a
terminal building where an aircraft can easily be loaded and
unloaded) is particularly prominent. According to the In-
ternational Air Transport Association (IATA) regulations,
90%–95% of all departing passengers should be boarded via
jet bridges [1]. However, in China, only about 70–75% of all
departing passengers board through the jet bridges.

(erefore, in view of the current flight volume, airport
contact stands are very scarce in China.

(ere are two traditional ways to solve the shortage of
airport gate resources. First, directly increase the infra-
structure and equipment resources, such as expanding the
airport apron. However, the airport’s infrastructure cannot
be expanded indefinitely; moreover, the expansion of the
airport and the investment in hardware equipment require a
large amount of capital, time, manpower, land, etc., which
are restricted by various factors. Second, optimize flight-gate
allocation (i.e., improve the utilization efficiency of airport
gates and reduce airport operation costs). At present, the
gate assignment of large- and medium-sized airports in
China mainly relies on manual allocation, supplemented by
a computer system. However, in large hub airports, the flight
takeoff and landing processes have the characteristics of
short time and high density. According to statistics, more
than 70% of all flight delays are caused by improper
scheduling of airport resources; 15.45% of flight delays are
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caused by ground operation delays and departure delays [2].
(e quality of gate assignment depends on the experience of
operators, and it is difficult to ensure the optimal allocation
of flights to gates. Moreover, manual allocation of airport
gates contributes to low efficiency and high cost. With the
development of airports, the complexity of GAP has in-
creased exponentially. (erefore, an intelligent allocation
method is urgently needed.

Based on the above problems, the contributions of this
study are as follows. First, an optimization model is
established for large-scale gate assignment problems, which
comprehensively considers the factors of the remote stand
penalty, the travel distance of passengers, and the fuel
consumption of taxiing. (e airport allocation personnel
can adjust the weight of the corresponding objective
according to their own preferences or the airport’s allo-
cation strategy so that the allocation plan is more in line
with the actual allocation needs. Although there are some
literatures that consider multiobjective optimization, there
are few literatures considering these three aspects com-
prehensively. And the objective function of the model is
quantified as a cost index, which is beneficial for the airport
to compare and evaluate the allocation results from an
economic point of view. Second, it is clearly noted that
GAP is an NP-hard problem. (erefore, an improved
adaptive parallel genetic algorithm is proposed to solve the
model. (e proposed algorithm fully considers how to
obtain more initial feasible solutions. In the iterative
process, the optimal solution is retained by using elite
strategy, and the computational speed of the algorithm is
accelerated by using parallel design. Moreover, a case study
is presented to demonstrate the proposed algorithm. With
the data from Kunming Changshui International Airport,
the results of the proposed algorithm are compared with
those of traditional genetic algorithm and CPLEX. It in-
dicates that the computational time of the proposed al-
gorithm is shorter than that of traditional genetic
algorithm. And the proposed algorithm is still applicable
when CPLEX cannot find the exact solution as the scale of
the problem increases.

(is paper is organized in the following manner. (e
literature review of GAPs is presented in Section 2. In
Section 3, we formally define the problem and build an
optimization model of gate assignment problem based on
airport gate allocation rules. In Section 4, we propose an
improved adaptive parallel genetic algorithm to solve the
large-scale GAPs. Section 5 presents different instances to
demonstrate and verify the effectiveness and practicability of
the proposed algorithm, and Section 6 gives the conclusion.

2. Literature Review

In recent years, as taking off and landing sorties and pas-
senger flows increase rapidly, to solve the shortage of airport
gate resources, GAP has attracted a lot of attention. (e
methods for solving the GAP can be roughly divided into
three categories: mathematical programming methods,
computer simulation, and heuristic algorithms. (e fol-
lowing is an overview of these three types of methods.

(e first is the mathematical programming method.
Babić et al. [3] solved the gate assignment model by branch
and bound method to minimize the travel distance of
passengers. Bihr [4] tried to convert the GAP to a 0-1 linear
programming problem with the objective of minimizing
passenger travel distance. Although the solution is ideal, it
also provides some ideas for practical application in the
dynamic airport environment. Yan and Huo [5] proposed a
multiobjective model to help airport authorities solve the
GAP efficiently and quickly. In order to verify the effec-
tiveness of the model, they used the weighted method,
column generation method, simplex method, and branch
and bound method to solve the model with the actual data
from Chiang Kai-Shek (CKS) Airport. Jaehn [6] considered
a special case in which the largest flight/gate departure
preference score is the only goal. He proposed a dynamic
programming method and used actual data from a Euro-
pean airport to verify the effectiveness of the method.
Maharjan and Matis [7] proposed a binary integer mul-
ticommodity flow network model to balance the trans-
portation efficiency of shuttle bus and passenger
satisfaction, which has been applied in Continental Airlines
at George W. Bush Intercontinental Airport in Houston
(IAH). Jiang et al. [8] proposed a gate assignment model to
minimize the total passenger walking distance and balance
the passenger walking distance between different routes. Yu
et al. [9] converted the robust GAP to a mixed-integer
programming problem, which mainly considers three
factors: the robustness of flight schedules, facilities and
personnel costs during towing, and passenger satisfaction.
However, the number of flights to be allocated in the above
literature is less than 50, which is far from the actual
number of flights that airports need to allocate. When the
number of flights that need to be allocated increases, the
mathematical programming method often cannot obtain
satisfactory results due to the sharp increase of the problem
complexity.

(e second common method is computer simulation.
Baker [10] introduced a rule-based simulation system and
evaluated the impact of different rules on gate utilization.
Srihari and Muthukrishnan [11] introduced a knowledge-
based expert system to GAPs and performed a sensitivity
analysis. Cheng [12] proposed a knowledge-based airport
gate assignment system to provide a solution that satisfied
static and dynamic conditions in a reasonable computational
time. Yan et al. [13] proposed a simulation framework,
which analyzed the effects of random flight delays on static
gate allocation and evaluated fuel consumption time. Finally,
simulation experiments were performed at Chiang Kai-Shek
airport to evaluate the effectiveness of the framework. Yan
and Tang [14] integrated the disturbance of random factors
on gate assignment into the framework. (e framework
includes three components, a random gate allocation model,
a real-time allocation rule, and two penalty adjustment
methods. However, computer simulation requires re-
searchers to be proficient in computer programming.
Moreover, due to the different influencing factors of each
airport, it is difficult to directly migrate the simulation
system designed for a specific airport to other airports. If
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migration is necessary, the simulation system needs to be
redesigned, which leads to a high cost.

(ere are also various studies using heuristic methods to
solve GAPs. Mangoubi and Mathaisel [15] used a greedy
algorithm to find the initial feasible solution of the gate
assignment model, the objective of which is to minimize the
total travel distance of passengers. Ding et al. [16] studied the
overconstrained GAP, intending to minimize the number of
flights at remote stands and the total walking time of pas-
sengers. (ey proposed a hybrid algorithm of simulated
annealing and tabu search to solve the model. Dorndorf et al.
[17, 18] reviewed the development of the GAPs，and for
disruption management in flight-gate scheduling, they
proposed two methods to incorporate robustness into a
flight-gate assignment problem. Dorndorf et al. [19] con-
sidered the general case in which an aircraft may be assigned
to different gates. (ey presented a simple transformation of
the flight-gate scheduling (FGS) problem to a graph prob-
lem, i.e., the clique partitioning problem (CPP). A heuristic
based on the ejection chain algorithm by Dorndorf and
Pesch [20] was designed to solve this model. (ey extended
their model to minimize the deviations from a reference
schedule.(ey proposed a heuristic with two variants, which
iteratively solve subproblems in order to find a solution for
the multiple period problem [21]. (ey also extended their
model to focus on the stochastic objectives, which aim at
minimizing the expected number of violations of any kind of
constraints. An online decision support system was pre-
sented to propose recovery actions for resolving constraint
violations. Finally, they compared this model to other ap-
proaches and different robustness measures based on real-
life test data [22]. Şeker and Noyan [23] and Zhao and Cheng
[24] considered that the uncertainty inherent in airport
traffic might lead to the occupation of gates allocated to
specific flights, which may cause flight conflicts and other
problems. (erefore, they set up a mixed-integer pro-
gramming model and introduced random factors into the
model. Tabu search and ant colony algorithms were used to
obtain a reasonable allocation scheme with better robust-
ness. Liu et al. [25] proposed an optimization model con-
sidering operational security, the objective of which was to
minimize the deviation of the gate idle time, and a genetic
algorithm was used to solve the model. Dell’Orco et al. [26]
proposed a new metaheuristic algorithm which was called
fuzzy bee colony algorithm that combines bee colony al-
gorithm and fuzzy inference system to minimize the total
passenger travel time and the number of remote stands used.
Deng et al. [27] proposed an improved adaptive particle
swarm optimization algorithm, which takes full advantage of
alpha stable distribution and dynamic score calculation. In
order to stably escape the local minima and improve the
global search ability, the alpha stable distribution theory is
used instead of the uniform distribution. Yu et al. [28]
designed an adaptive large neighborhood search algorithm
(ALNS) to solve the gate assignment model considering
traditional cost and robustness. Liu et al. [29] proposed an
optimization model for the GAP considering operational
safety constraints, the main objective of which is to minimize
the dispersion of gate idle time periods. (ey adopted

genetic algorithm to solve this model, and the effectiveness
and efficiency of the algorithm were verified via an illus-
trative example. Mokhtarimousavi et al. [30] mathematically
formulated GAP as a three-objective (total passenger
walking distance, taxiway conflicts, and costs) problem,
which was solved by NSGA-II. Xu and Cai [31] developed an
improved GA considering structural properties to avoid
GA’s prematurity. (ey compared the results of the pro-
posed algorithm with those of CPLEX to illustrate the ef-
fectiveness of the algorithm. However, heuristic algorithms
often cannot obtain optimal solutions, and the convergence
speed is closely related to the design of the algorithm.

Although several works have investigated GAPs, few
studies have given attention to large-scale GAP. GAP is a
complex problem, which is affected by a variety of factors. In
order to simplify the problem, various studies only con-
sidered the basic constraints and omitted some important
constraints (e.g., aircraft type constraints, nation constraints,
and adjacency conflict constraints), which cannot meet the
actual requirements of airport authorities. Moreover, in the
case study of most research works, the number of flights used
is less than 50, which is far from the actual number of flights
in airports. (erefore, this paper proposes an adaptive
parallel genetic algorithm to solve the large-scale GAP. In the
beginning, the algorithm increases the search speed to ex-
pand the search scope and decreases the search speed when it
is close to the optimal solution to improve the accuracy of
the solution. (en, on this basis, elite strategy and parallel
design are introduced to further improve the accuracy and
convergence speed. Finally, based on the data from
Kunming Changshui International Airport, we present
different instances to verify the stability and effectiveness of
the algorithm.

3. Problem Formulation and
Model Development

(e process of airport gate allocation is restricted by various
conditions. In this section, we first briefly introduce the basic
prerequisites of the GAP. (en, we describe the model’s
objective function and constraints.

3.1. Basic Prerequisites. Due to the complexity of the
practical problems, almost all gate assignment models need
to meet certain preconditions. (is paper studies the gate
assignment model based on the following assumptions.

Prerequisite 1: data information. (e relevant data
required for the gate assignment include the following:

(i) Flight Information. It includes the planned arrival
and departure time of flights, the number of
passengers, the aircraft type of the flight, etc.

(ii) Gate Information. It includes the topological
structure of airport gates, the attributes of each
gate (e.g., the type of gate, nation attributes, and
default boarding gates), the utilization of current
gates, etc.
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(iii) Relevant Parameters of Gate Allocation. It includes
the minimum safe time interval of the same gate,
the restriction information of adjacent gates, etc.

Prerequisite 2: gate assignment time window. In the
actual operation of the airport, the takeoff and landing
of a flight is a continuous and dynamic process.
Considering the actual requirement of airports, we use
the time window to divide the assignment task in the
time dimension (i.e., the allocation of gates is optimal
within the current time window). (is article sets the
length of time window to one day.
Prerequisite 3: airport capacity. We assume that the
airport’s gate capacity can meet the requirements for
gate allocation. (at is, for a given flight and gate data,
there is at least one feasible solution for the GAP.

3.2. Notations. Before setting up the model, we list the
definitions of the parameters and variables to be used in the
objective function and constraints, as shown below.

(i) Parameters

F: set of flight pairs to be assigned each day,
F � 1, 2, 3, . . . , nf .
G: set of airport gates, G � 1, 2, 3, . . . , ng .
nf: total number of flight pairs to be allocated per
day, nf � |F|.
ng: number of airport gates, ng � |G|.
f
type
i : the type of aircraft for flight i, i ∈ F.

fnation
i : international and domestic attributes of

flight i. If flight i is a domestic flight, then
fnation

i � 1; otherwise, fnation
i � 0, i ∈ F.

gnation
j : international and domestic attributes of gate

j. If gate j is a domestic flight, then gnation
j � 1;

otherwise, gnation
j � 0, j ∈ G.

g
type
j : set of flight type that can be accommodated by

gate j, j ∈ G.
pa

i : number of arriving passengers of arrival flight
in flight pair i.
pd

i : number of departing passengers of departure
flight in flight pair i.
ETAi: estimated arrival time of flight i, i ∈ F.
ETDi: estimated departure time of flight i, i ∈ F.
Tbuffer: minimum safe time interval of the same
stand.
Tneighbor: minimum safe time interval between
aircraft sliding in and pushing out in adjacent
aircraft stands.
g
bridge
j : if there is a jet bridge in gate j, then

g
bridge
j � 1; otherwise, g

bridge
j � 0, j ∈ G.

Njk: if gate j is adjacent to gate k, then Njk � 1;
otherwise, Njk � 0, j, k ∈ G, j≠ k.
Qjk: if gate j and gate k are adjacent, then Qjk � 1;
otherwise, Qjk � 0.
S1: according to ETAi, ETDi, and Tbuffer, find the
flights that will cause conflict when assigned to the

same gate and then traverse all flights and save the
result in the conflict dictionary S1.
S2: according to ETAi, ETDi, and Tneighbor, find the
flights that will cause conflict when assigned to
adjacent gates and then traverse all flights and save
the result in the conflict dictionary S2.
sp: average travel speed of passengers.
sf: average taxi speed of the aircraft.
da

j : passenger travel distance from gate j to baggage
claim area, j ∈ G.
dd

j : passenger travel distance from check-in counter
to gate j, j ∈ G.
Dj: average distance from the landing runway to
the gate j, j ∈ G.
fueli: fuel consumption per taxi unit time of flight i

(fuel consumption is related to the type of flight i).
C1: unit penalty cost of a flight parked at a remote
stand.
C2: unit travel time cost of passengers.
C3: unit cost of aircraft fuel.

(ii) Decision variables

(e decision variable xij � 1 if and only if flight i is
assigned to gate j; otherwise, xij � 0.

Given the decision variable xij, the solution of the gate
assignment problem could be transformed as a 0-1 binary
matrix, as shown in Table 1. A row of the matrix represents a
gate, a column of the matrix represents a flight, and the
elements in the matrix denote the values of the decision
variables.

3.3. Objective Functions. From the actual operation of air-
port gate assignment, the assignment process involves the
interests of many parties. In this paper, we mainly consider
three objectives, including the penalty cost of remote stands,
the travel time cost of passengers, and the fuel consumption
cost of taxiing [17, 32]:

(i) Generally, when an aircraft is parked at a remote
stand, it is necessary to coordinate ground service
personnel, apron vehicles, platform lift trucks,
passenger elevator vehicles, etc. When the aircraft is
parked at a contact stand, it only needs a jet bridge.
(e use of the jet bridge is very convenient for
aircraft, crews, and passengers. (ere is a ground
well near the bridge, which is convenient for
refueling. It can also save the APU and fuel con-
sumption of the aircraft, and the passengers and
crews do not have to struggle. Based on a flight,
according to the type of aircraft, the number of
passengers, the time of use, and the related costs of
supporting equipment, it is estimated that the air-
craft needs at least 400–455 yuan to stop at the
remote stand and only 200–300 yuan to stop at the
contact stand. (erefore, based on such consider-
ations, we will impose penalties on flights allocated
to remote stands, as shown in equation (1).
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(ii) Whether for inbound or outbound flights, the
convenience and speed of boarding or baggage
retrieval is one of the important indicators for
passengers to measure the airport service level.
(erefore, in order to improve passengers’ satis-
faction with airport services, airports should assign
flights to the nearby stands to reduce passenger
travel distance as far as possible. As shown in
equation (2), since there are no data of transit
passengers, we do not consider the travel distance of
transit passengers here.

(iii) As the aviation transport industry is a capital-in-
tensive industry with an average profit margin of
only 3%∼6%, reducing production costs is of great
significance for maintaining the survival and de-
velopment of enterprises. (e cost of aircraft fuel
usually accounts for about 30% of all operating costs
of airlines. In recent years, due to the continuous
rise of international oil prices, airlines are facing
increasing pressure on fuel consumption costs year
by year. (erefore, reducing fuel consumption as
much as possible and saving transportation costs
have always been the issues that airlines are most
concerned about and strive to solve. In the GAPs,
the selection of gates directly determines the ground
taxiing distance of the aircraft from the quick exit to
the parking gate, which determines the ground
taxiing cost of the aircraft. (erefore, the gate as-
signment scheme has a direct impact on the ground
taxiing cost of aircrafts.

Considering the processing of the follow-up algorithm
and the different preferences of different personnel, we make
a weighted summation of these three objectives. As shown in
equation (4), α1, α2, and α3 are the preference coefficients of
allocation personnel, which are used to indicate the im-
portance of different objectives.

minZ1 � C1 

ng

j�1


nf

i�1
xij 1 − g

bridge
j , (1)

minZ2 � C2


ng

j�1 
nf

i�1 xijp
a
i d

a
j + xijp

d
i d

d
j 

sp

, (2)

minZ3 � C3


ng

j�1 
nf

i�1 xijfueliDj

sf

, (3)

minZ � α1Z1 + α2Z2 + α3Z3. (4)

3.4. Constraints. Due to the differences in airport posi-
tioning, service area, and scheduling rules, there are certain
differences in the constraints of different airports. However,
there are a lot of allocation rules that almost all airports need
to follow when allocating gates, only slightly different in
specific details. According to the actual business rules of
large hub airports, the aircraft stand allocationmodel has the
following constraints:

(i) Uniqueness constraint: an aircraft must and can only
park at one stand.



ng

j�1
xij � 1, ∀i ∈ F. (5)

(ii) Conflict constraint of the same gate: there shall be a
safe time interval between two consecutive aircraft
assigned to the same gate to guarantee the safe
departure of the former aircraft and the safe entry of
the latter.

xij + xlj ≤ 1, ∀i, l ∈ S1, ∀j ∈ G. (6)

(iii) Conflict constraint of adjacent gates: the aircraft
parked on the adjacent aircraft stand cannot enter
and leave the aircraft stand at the same time. (ere
should be a certain time interval when the aircraft
slides in and out.

xij + xlk ≤ 1, ∀i, l ∈ S2, ∀Qjk � 1. (7)

(iv) Aircraft type restriction: large aircraft stands can
park all types of aircraft, while small aircraft stands
can only park corresponding small aircraft.

f
type
i ∈ g

type
j , ∀xij � 1, ∀i ∈ F, ∀j ∈ G. (8)

(v) International and domestic attribute constraints: as
flights are divided into international flights and
domestic flights, gates are also divided into corre-
sponding attributes. According to the relevant reg-
ulations of the airport, international flights can only
park in international gates, while domestic flights
need to stop in domestic gates.

f
nation
i � g

nation
j , ∀xij � 1, ∀i ∈ F, ∀j ∈ G. (9)

4. Design of Improved Adaptive Parallel
Genetic Algorithm

(e model established in this paper is a mixed-integer
programming model, and the large-scale GAP involves
hundreds of flights, which is difficult to be solved by the
traditional optimization algorithm in polynomial time.
(erefore, we consider using the genetic algorithm to solve

Table 1: (e solution form of the gate assignment problem.

Gate
Flight

1 2 3 . . . nf

1 0 1 0 . . . 0
2 0 0 1 0
3 1 0 0 0
. . . . . .

ng 0 0 0 1
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the model. (rough an in-depth analysis of the model, the
traditional genetic algorithm is improved in this section. We
design an improved adaptive parallel genetic algorithm
(APGA) that considers global and local search capabilities.

4.1. Encoding Approach. Chromosomes are encoded by
digital code. In order to explain the encoding mode of
chromosomes better, sample data are used for illustration.
Sort the flight pair data according to the estimated departure
time, as shown in Table 2.

Each flight pair is then assigned to a gate, as shown in
Table 3. Gate no. in the table is only used to explain the
design of chromosome encoding and does not represent the
actual allocation.

According to the above encoding principles, the chro-
mosome encoding sequence is shown in Figure 1.(e length
of the chromosome is the number of flights, that is, the
length of the chromosome is determined by the number of
paired flights. (e gene loci on the chromosome represent
the flights to be assigned, and the numbers on the loci in-
dicate the gate no. For example, paired flight no. 0 is assigned
to gate no. 0; paired flight no. 1 is allocated to gate no. 2, and
so on.

4.2. Generation of Initial Population Based on CSP. In the
process of gate assignment, flights are mutually restricted.
Whether a flight can be parked is restricted by the idle status
of the gate, and the availability of the gate is determined by
the assigned flights before and after.(erefore, in the process
of chromosome encoding, the value of a gene is affected by
the value of the gene before it. In addition, the set of possible
gate allocations for each flight is subject to other restrictions
such as aircraft type and the international/domestic attri-
butes of gates, and so on.(ese effects are determined by the
constraints in the gate assignment model. Only when the
genetic code of the chromosome meets the constraints can
the chromosome represent a feasible solution.

In the process of generating the initial population and
each generation of population, if a chromosome is generated
randomly, the probability of the chromosome being a fea-
sible solution is very small, which leads to a sharp reduction
in the efficiency of the algorithm.(erefore, how to generate
a feasible solution to the GAP is crucial.

4.2.1. CSP Problem. Constraint satisfaction problem (CSP)
is an important branch of artificial intelligence research for
many years. Many problems can be modeled as CSP, such as
vision and resource allocation, temporal reasoning, and so
on.

(e CSP can be defined as a tuple X, D, C, where X �

x1, x2, . . . , xn  is a set of variables, D � D1, D2, . . . , Dn  is a
nonempty set of definition fields for each variable, and C �

C1, C2, . . . , Cn  is a set of constraints. xi can choose a
suitable value from the nonempty Di. (e solution of CSP is
to find a set of values that satisfy the constraints to solve a
given problem.

4.2.2. Initial Population. (e generation of the initial
population is based on the idea of CSP. In the GAP, X
represents a daily flight set, xi represents the gate that flight i

assigned to (i represents the flight number in the model,
i ∈ F), Di represents a gate set that flight i can be assigned to,
and C � C1, C2, . . . , Cn are the constraints of allocation. (e
main steps are as follows:

Step 1. Initialization of paired flights and stands:
according to the departure time of the paired flights,
all flights are sorted from morning to night, and nf

pairs are numbered as 0, 1, 2, . . ., nf − 1. Similarly, the
ng stands are also numbered, with the contact stands
first and the remote stands next. According to the
arrival time and departure time of each flight pair, for
flight pair i:

(i) In the case of the same gate, we need to find the set
of flight pairs that conflict with flight pair i and save
it to the dictionary of the same gate conflict.

(ii) In the case of adjacent gates, we need to find the set
of all flight pairs that conflict with flight pair i and
save it to the dictionary of adjacent gates conflict.
By traversing all flight pairs, we can get two conflict
dictionaries: one is the dictionary of the same gate
conflict and the other is the dictionary of adjacent
gates conflict. (e form of the dictionary is like
{flight pair i: the set of flight pairs that conflict with
flight pair i, such as {j, k, . . .}, . . .}.

Step 2. Since the optional gate set Di of the flight i to be
assigned is affected by the assigned flight pairs, the
optional gate set Di is constantly changing according to
the assigned flights. We need to judge the flight pairs
allocated before:

Table 2: Flight pair information sorted by estimated departure
time.

Paired
flight no.

Flight
no.

Estimated
time of arrival

Estimated time
of departure

Aircraft
type

0 B1378 00:00 00:10 C
1 B2835 00:00 00:15 C
2 B6832 00:05 01:10 C
3 XU997 01:15 2:15 C
4 9MAGD 01:25 02:30 D
5 HSCBA 02:00 02:55 C
6 B7992 00:00 06:20 C
. . . . . . . . . . . . . . .

Table 3: An example of flight pair assignment.

Paired flight no. Gate no.
0 0
1 2
2 6
3 4
4 7
5 3
6 4
. . . . . .
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(i) We find flight pairs that conflict with flight i which
is numbered less than i in the dictionary of the same
gate conflict. According to the conflict flight
number, we get the number of the gate where the
conflict flight is assigned. (en, we delete the
corresponding gate number in the set Di.

(ii) We find flight pairs that conflict with flight i which is
numbered less than i in the dictionary of adjacent
gates conflict. According to the conflict flight number,
we get the number of the stand where the conflict
flight is assigned. (en, we delete the corresponding
gate and its adjacent gates in the set Di.

Step 3. Randomly select a gate j from the optional gate
set Di and assign flight i to the gate j. If the set Di is an
empty set, then discard the chromosome and repeat
Steps 2 and 3.
Step 4. If the population size is M, we repeat the above
process until the number of chromosomes generated
reaches M.

4.3. Fitness Calculation. In order to ensure the convergence
speed of the algorithm, the fitness is calculated according to
the following rules:

(i) Constraint conflict: if the allocation scheme conflicts
with the constraints during the calculation, the fit-
ness is 0.

(ii) No constraint conflicts: in general, fitness function
is transformed from objective function. Since the
objective function is to find the minimum value,
we use the bound construction method to con-
struct its upper bound. As shown in equation (10),
the function value is always greater than 0 and
increases with the decrease of the objective
function, which meets the requirements of the
fitness function.

fitness � Cmax − Z, (10)

where Cmax is the maximum estimate of the objective
function Z.

4.4. SelectionMethod. Roulette wheel selection strategy is one
of the most basic selection strategies, which is used in this
study. (e probability that everyone in the population being
selected is proportional to the value of the corresponding
fitness function of the individual. (e fitness values of all in-
dividuals in the population are accumulated and normalized,
and finally random numbers are generated to select the

individuals corresponding to the region where the random
numbers are located, like a rotating roulette in a casino. (e
basic idea is that the higher the fitness, the greater the prob-
ability that the individual will be selected. Since the roulette
wheel selection strategy is simple and easy to use, it is a selection
operation often used in genetic algorithms [33].

4.5. Crossover Operator

4.5.1. Adaptive Cross Probability Design. (e selection of the
crossover probability Pc has a direct impact on the con-
vergence speed of the algorithm. (e larger Pc is, the faster
the new individuals are generated. However, when Pc is too
large, the structure of the chromosome with greater fitness is
more likely to be destroyed. Too small Pc will lead to a slow
search process and reduce the search efficiency of the al-
gorithm. (erefore, this paper uses an adaptive crossover
probability. (e calculation formula of Pc is as follows:

Pc �

Pc1 −
Pc1 − Pc2(  f′ − favg 

fmax − favg
, f′ ≥favg,

Pc1, f′ <favg,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(11)

where f′ is the larger fitness value of the two individuals to
be crossed and favg is the average fitness value of each
generation. When f′ <favg, a fixed crossover probability
is used; when f′ ≥favg, an adaptive crossover probability is
used. According to formula (11), the individuals whose
fitness is lower than the average fitness of the population
belong to the poor individuals in the population.(erefore, a
large crossover probability is adopted to carry out a
crossover operation to promote gene recombination and
gene variation. Individuals whose fitness is higher than the
average fitness of the population belong to the better in-
dividuals in the population, and the corresponding crossover
probability is calculated according to equation (11). (e
larger the individual fitness value, the smaller the crossover
probability value. When the individual fitness value is the
largest, the crossover probability is the smallest. However,
due to the initial stage of population evolution, the better
individuals in the population are not definitely the global
optimal solution. If this adaptive crossover probability ad-
justment method is used, it is easy for the algorithm to fall
into a local optimum and mature prematurely.

(erefore, in the first n generations of the genetic al-
gorithm, a large fixed cross probability is used to perform the
crossover operation to expand the search range and
maintain the population diversity. However, due to the slow

0 2 6 4 7 3 4

Chromosome representation

Flight number sorted by departure time

… … … … …

Figure 1: Schematic diagram of chromosome encoding.
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convergence speed of the simple genetic algorithm, in order
to increase the convergence speed of the algorithm, this
paper adopts an adaptive strategy to adjust the crossover
probability in the later iteration of the algorithm.

4.5.2. Design of Chromosome Crossover Method. (is paper
uses a two-point crossover operator. First, pairwise opera-
tions are performed on individuals in the population. (en,
according to the contemporary individual crossover prob-
ability, we determine whether to perform crossover oper-
ations. For the two parent chromosomes that need to be
crossed, the two crossing points of the crossing operation are
randomly generated. It is assumed that the selected crossing
points are points 1 and 2. Finally, the two random crossing
points (point 1 and point 2) exchanged their gate number.
(e specific steps are shown in Figure 2.

4.6. Mutation. Since the crossover operations on the parent
chromosomes in the population are randomly selected, the
offspring individuals generated after crossover are likely to
become infeasible solutions because they do not meet the
constraints of the model established in this paper. (erefore,
these chromosomes aremutated bymutation operation tomake
them feasible solutions. (e operation process is as follows: for
the crossed offspring chromosomes, all the genes are checked
sequentially. If the gene satisfies the constraints in the model in
this paper, the value of the gene at that position does not change.
If it is not satisfied, the flight corresponding to the position gene
is reassigned according to the method of single chromosome
generation in the initial population generation, and the allo-
cation result is reflected in the chromosome code.

Take the offspring 1 in Figure 2 after the crossover as an
example. As shown in Figure 3, the crossover starting point is 3,
and the coding of the third and subsequent genes is checked in
order. (e third flight is assigned to gate no. 4. Since no other
flight has been assigned to stop at gate no. 4 before, the gene
location meets the constraint conditions and retains the gene
value of the location. Next, check the fifth flight, which also
meets the constraint conditions in the model, until the seventh
flight. Judging from the conflict dictionary of the same gate in
the initial population generation, there is a conflict with the fifth
flight stopped at gate no. 3, so the flight needs to be reassigned.
According to the conflict dictionary of the same gate and
adjacent gate, the set of optional gates can be obtained, and then
a gate is randomly selected from the set of optional gates to the
flight. (e randomly selected gate in Figure 3 is gate no. 9.

4.7. Elite Strategy. In order to prevent the loss of the optimal
individuals of the current population in the next generation,
which leads to the failure of the genetic algorithm to converge
to the global optimal solution, de Jong [34] proposed the elitism
strategy, also known as the elitist reservation strategy, in his
doctoral dissertation. (e best individuals that have appeared
in the population so far in the evolution process are copied
directly to the next generation without genetic manipulation,
and they will generally replace the worst individuals in the next

generation. Elite retention strategy improves the global con-
vergence ability of the standard genetic algorithm.

4.8. Parallel Design. (e general genetic algorithm is a single
population design. In the early stage of population evolution, it
tends to the direction of objective function optimization.
However, when the algorithm is iterated to the later stage, the
algorithm’s optimal individual in the population hardly
changes, resulting in the poor global search ability. Moreover,
the traditional genetic algorithm tends to suffer from pre-
mature convergence for many problems and easily falls into a
local optimum. Based on the analysis of the causes of these
phenomena, we adopt a multipopulation design similar to the
multi-island genetic algorithm. Multi-island genetic algorithm
is a parallel genetic algorithm based on population grouping,
which is developed from traditional genetic algorithm. (e
difference between this algorithm and traditional genetic al-
gorithm is that the multi-island genetic algorithm divides the
entire population into several subgroups and isolates the
subgroups from each other on different “islands.” (e “mi-
gration” operation is carried out at a certain time interval to
enable the exchange of information among the “islands.” In
response to these shortcomings, the introduction of multiple
swarm strategies can not only maintain population diversity
but also reduce the possibility of immature, which is conducive
to the quality of solutions.

(e difference from the traditional parallel island-based
genetic algorithm is that we havemeticulously divided the role of
each population, and each subpopulation has its own specific
role. Furthermore, the idea of adaptive parameter adjustment is
integrated, which not only maintains the stability of the evo-
lutionary process but also maintains the diversity of individuals.
As shown in Figure 4, the characteristics of development sub-
populations are that their crossover probability is relatively
small, so it is easier for GA to maintain the stability of indi-
viduals, and it is easier to find excellent individuals in a local
range (in a certain hyperplane). (e development subpopula-
tions play a prominent role in protecting good individuals. On
the contrary, large cross probability of the probe subpopulation
make it easier for APGA to detect new hyperplanes, thereby
increasing the probability of detecting the optimal individuals.
(e role of this subpopulation is to continuously provide new
hyperplanes to overcome premature convergence.(e crossover
probability of the probe and development subpopulation is
between the two groups. Itsmain function is to take into account
the local and global and make up for the deficiency of the
development subpopulation and probe subpopulation. (e last
subpopulation is the reserved subpopulation, which has no
individuals at first, and is composed of excellent individuals
selected in the evolution of the first three types of populations. Its
function is to preserve the outstanding individuals that evolve in
the first three types of populations, and at the same time, it is also
evolving, and its crossover probability is relatively small, whose
purpose is to maintain the stability and diversity of individuals.
(e first three types of populations evolve in parallel according
to their own evolutionary strategies. At the same time, in order
to maintain the diversity of individual distribution, individuals
must migrate between these three types of populations so that
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they can absorb the advantages of other populations and
overcome individual trends. It is also necessary to regularly select
the best individuals from the first three types of subpopulations
and classify them into the fourth type of subpopulations so as to
protect excellent individuals from damage and to absorb the
advantages of the first three types of subpopulations and
maintain the diversity of individuals.

4.9. Algorithm Flow. (e main flow of the algorithm is as
follows:

Step 1. Chromosome encoding: flights are encoded
according to the departure time. (e gene positions on

chromosomes represent flights, and the gene values
represent the assigned airport gates.
Step 2. Parallel design: relevant parameters of the
subpopulation were set, and each subpopulation car-
ried out migration between the populations after m
times of isolation, and the optimal individuals were
copied to the reserved subpopulation. (e maximum
number of migrations is set to n.
Step 3. Generation of initial populations: the idea of
constraint satisfaction problem is introduced, and a
feasible solution that satisfies the constraints is gen-
erated based on the flight conflict dictionary of the
same gate conflict and the adjacent gate conflict.

Development
subpopulation

Probe and
development

subpopulation

Probe
subpopulation

Reserved
subpopulation

Migrate

Figure 4: Schematic diagram of the parallel design.
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13 67 4 7 3 23 3 … 12 78 34 97
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Before mutation

After mutation 67 4 7 3 23 9 … 12 78 34 97

Figure 3: Schematic diagram of chromosome mutation operation.
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Figure 2: Schematic diagram of the chromosome crossover process.
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Step 4. Fitness calculation: calculate the fitness of each
individual based on equation (10).
Step 5. Selection operator: roulette is adopted and elite
strategy is introduced to retain the best individuals.
Step 6. Crossover operator: two different crossing
points are randomly generated to cross-pair segments
between chromosomes.
Step 7. Mutation operator: because the random
crossover produces the infeasible solution, the muta-
tion is used to turn it back into a feasible solution.
Step 8. Evolution: repeat Steps 4–7 so that the pop-
ulation keeps evolving.
Step 9. Termination condition: the iteration reaches the
maximum number of migrations n or the population
will automatically jump out of the loop if it does not
evolve for k consecutive times.
Step 10. Output: output the optimal population and
fitness of the allocation scheme.

5. Case Study

5.1. Background. In this section, to verify the effectiveness
and practicability of the model and algorithm proposed in
this paper, the actual data from Kunming Changshui In-
ternational Airport, one of China’s top ten airports, are used
for the case study. Its basic information is shown in Table 4.

5.2. RawDataOverview. In this section, we briefly introduce
the raw data. (e data used in the instances of the following
sections are all a subset of the raw data. (e raw data used in
the case study are from Kunming Changshui International
Airport on November 23, 2019. Table 5 presents the basic
information of airport gates. (e first column “Gate_no”
represents the number of the gate, and “Mdl” represents the
largest aircraft type that the gate can accommodate. (e
value of nation is “I,” indicating that the gate can stop in-
ternational flights, and “D,” indicating that the gate can stop
domestic flights. (e column “Bridge” indicates whether
there is a jet bridge in the gate. If the value is 1, it means there
is a jet bridge, and if the value is 0, it means there is no jet
bridge. (e number of contact stands equals 65, and the
number of remote stands equals 133. About one-third of the
stands are contact stands, including 13 international stands.

According to the flight data of Kunming Changshui
International Airport on November 23, the total number of
flights is 381. (e data samples are shown in Table 6. As the
flight no. of inbound and outbound flights may change, the
aircraft number is used to represent the paired flight in the
table, and the nation represents the international and do-
mestic attributes of inbound and outbound flights. “Atime”
indicates the arrival time of the flight, and “Dtime” indicates
the departure time. Mdl represents the type of flight. (e last
two columns “Apassenger” and “Dpassenger” indicate the
number of passengers arriving and departing from the air-
port. According to the different types of aircrafts, the fuel
consumption per unit time of taxiing is also different [32], as
shown in Table 7. Table 8 shows the value of parameter da

j

corresponding to different gates, indicating the distance from
different gates to baggage claim area. (e first column
“Gate_no” indicates the gate number, and the second column
“da

j(m)” indicates the distance. Table 9 shows the value of
parameter dd

j corresponding to different gates, indicating the
distance from check-in counter to different gates. (e first
column “Gate_no” indicates the gate number, and the second
column “dd

j (m)” indicates the distance. Table 10 shows the
value of parameter Dj(m) corresponding to different gates,
indicating the distance from landing runway to different
gates. (e first column “Gate_no” indicates the gate number,
and the second column “Dj(m)” indicates the distance.

(e statistics of the selected flights are divided into
different periods below, and the distribution of inbound and
outbound flights in each period is calculated. As shown in

Table 4: Basic information of Kunming Changshui International
Airport.

Attribute name Content

Name Kunming Changshui International
Airport

Airport code ICAO:ZPPP; IATA:KMG
Navigation date June 28, 2012
Airport type 4F civil transportation airport
Terminal area 548,300 square meters
Number of gates 110
Passenger throughput 44.73 million person-times (2017)
Cargo throughput 419,000 tons (2017)
Takeoff and landing
flights 305,300 sorties (2017)

Test environment: Intel (R) Core (TM) i7-8750H CPU 2.20GHz 2.21GHz
computer.

Table 5: Basic information of airport gates.

Gate_no Mdl Nation Bridge
0 C I 1
1 C I 1
2 C I 1
3 D I 1
4 D I 1
5 D I 1
6 D I 1
7 D I 1
8 F I 1
9 E I 1
10 E I 1
11 D I 1
12 D I 1
13 C D 1
14 C D 1
15 C D 1
16 C D 1
17 C D 1
. . .

193 C D 0
194 E D 0
195 C D 0
196 C D 0
197 E D 0
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Figure 5, a great number of flights enter the airport from 0:00
to 1:00, and there are almost no flights leaving the airport
from 5:00 to 10:00. (e remaining flights are distributed
between 10:00 and 19:00.

5.3. Parameters. (e quality of the parameter setting is
closely related to the reliability and efficiency of the pro-
posed algorithm.(e traditional genetic algorithm has four
parameters that need to be set in advance, including
population size, termination evolution algebra, crossover
probability, and mutation probability. As for the adaptive

parallel genetic algorithm we proposed, we consider using a
response surface methodology (RSM) to adjust the pa-
rameters. (e experimental random error is considered in
the response surface analysis. RSM is an effective method to
solve practical problems by fitting complex unknown
functional relations in a small area with a simple poly-
nomial model. And the prediction model is continuous.

Table 6: Flight pair data samples of Kunming Changshui International Airport on November 23, 2019.

Flight no. Nation Mdl Atime Dtime Apassenger Dpassenger
XU997 I/I C 2019-11-23 1:15 2019-11-23 2:15 79 167
9MRAG I/I C 2019-11-23 1:25 2019-11-23 2:30 120 120
HSBBB I/I C 2019-11-23 2:00 2019-11-23 2:55 120 120
PKLAM I/I C 2019-11-23 2:10 2019-11-23 3:10 120 140
PKGTF I/I C 2019-11-23 2:45 2019-11-23 3:45 120 157
B6176 D/D C 2019-11-23 0:35 2019-11-23 6:25 127 112
B307U D/D C 2019-11-23 0:10 2019-11-23 6:30 150 89
B1330 D/D C 2019-11-23 0:10 2019-11-23 6:40 139 134
B1593 D/D C 2019-11-23 0:30 2019-11-23 7:00 174 189
B6943 D/D C 2019-11-23 0:05 2019-11-23 7:05 159 176
. . .

B6743 D/D C 2019-11-23 22:15 2019-11-23 23:20 152 164
B6956 D/D C 2019-11-23 22:15 2019-11-23 23:20 148 142
B5825 D/D C 2019-11-23 22:20 2019-11-23 23:20 142 138
B6016 D/D C 2019-11-23 22:15 2019-11-23 23:30 87 159
B6728 D/D C 2019-11-23 22:25 2019-11-23 23:30 163 173
B5475 D/D C 2019-11-23 22:25 2019-11-23 23:30 150 146
B5267 D/D C 2019-11-23 21:45 2019-11-23 23:40 91 121
B1459 D/I C 2019-11-23 21:20 2019-11-23 23:45 123 109
B5823 D/D C 2019-11-23 22:55 2019-11-23 23:50 132 126

Table 7: Fuel consumption per unit time of taxiing for different
types of aircraft.

Mdl Fuel consumption per unit time of taxiing (kg/min)
C 11.5
D 16
E 25
F 35

Table 8: Passenger travel distance from gate j to baggage claim
area.

Gate_no da
j (m)

0 550
1 704
2 575
3 690
. . . . . .

192 2607
193 2342
194 1497
195 2449
196 1407
197 2922

Table 9: Passenger travel distance from check-in counter to gate j.

Gate_no dd
j (m)

0 357
1 460
2 392
3 457
4 453
. . . . . .

193 2252
194 1422
195 2360
196 1309
197 2835

Table 10: Average distance from the landing runway to the gate j.

Gate_no Dj(m)

0 4062
1 3320
2 5290
3 2215
4 3206
. . . . . .

193 3744
194 4511
195 5260
196 2670
197 4925
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Compared with the orthogonal experiment, its advantage is
in the process of optimizing the experimental conditions, it
can continuously analyze all levels of the experiment, while
the orthogonal experiment can only analyze the isolated
experimental points. RSM is also used in parameter op-
timization of genetic algorithm, which can greatly reduce
the number of experiments required for parameter opti-
mization [35]. Before parameter adjustment, we consider
determining the parameters with less influence to reduce
the scale and improve the efficiency of parameter adjust-
ment. (e parameters to be adjusted are analyzed as
follows:

(i) According to the adaptive crossover probability
formula (11), the parameters include Pc1 and Pc2,
where Pc2 mainly plays an auxiliary role in adaptive
adjustment. To improve the efficiency of parameter
adjustment, we set it to 0.2 according to experience
and only adjust Pc1.

(ii) In the process of mutation after crossover, if an
individual is an infeasible solution, the mutation
operation is performed to change it into a feasible
solution; otherwise, no mutation is performed.
(erefore, there is no need to adjust the mutation
probability.

(iii) For the population size, it is difficult to set a good
value empirically, so we adjust the population size
from 20 to 200.

(iv) In Section 4.8, the parallel structure is designed as
three subpopulations, and their respective roles are
analyzed. (erefore, no parameter adjustment is
required.

(v) After the algorithm runs for a period, the optimal
solution is no longer improved. After that, the
number of iterations only affects the efficiency of the
algorithm. According to experiments, the number

of iterations to obtain the optimal solution is less
than 100. Just in case, we adjust the number of
termination iterations from 50 to 500.

Next, we need to determine the dataset for parameter
adjustment. We use equal probability sampling to ran-
domly select 100 flights from the raw data of Yunnan
Kunming Airport on November 23, 2019, for parameter
adjustment. Yunnan Kunming Airport has 198 gates, with
more than 300 flights passing through the airport every day.
Since the number of selected flights is 100, to simulate the
actual situation of the gate assignment, we limit the allo-
cation of flights to the first 65 gates and regard the 35
contact stands numbered 30–64 as remote stands. In ad-
dition, the parameters of the model need to be determined.
We set the passenger’s average travel speed sp as 1.25m/s
[36], the taxi speed of the aircraft sf as 20 km/h, C1 as
200 yuan per flight, C2 as 50 yuan/h, and C3 as 7000 yuan/
ton [32]. After that, we use the RSM to find the optimal
parameters.

Table 11 shows the low and high levels of population
size, crossover rate, and generation number. Table 12
shows the design of experiments, detailing the real
values of population size, crossover rate, and generation
number for each experiment and the sequence of each
experiment. (e last column “Result” represents the ob-
jective function value of the model, and the specific
calculation process is shown in equation (4). (is article
treats the three goals Z1, Z2, and Z3 as equally important,
that is, α1, α2, and α3 are all set to 1. In order to eliminate
the influence of accidental factors, we conducted five
repeated experiments under the same parameter setting
and finally filled the average value of the five results into
the table.

(e polynomial equation model is obtained by fitting the
experimental data through regression analysis, as shown in
the following equation:
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Figure 5: Schematic diagram of flight arrival and departure time.
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Fitness � 2.99625∗ 105 + 1.37153∗ 105 ∗Pc1

− 682.51075∗Ps − 293.53704∗GN

+ 32.24242∗Pc1 ∗Ps − 17.69378∗Pc1 ∗Gn

+ 0.30001∗Ps∗Gn

− 94926.94214∗Pc1
2

+ 1.65064∗Ps
2

+ 0.17380∗Gn
2
,

(12)

where Pc1 is the crossover rate, Ps is the population size, and
GN is the generation number.

As can be seen from Figure 6, the response surface is a
three-dimensional plane, so the interactions between pop-
ulation size, crossover probability, and generation number
have a negligible effect on fitness. According to the response
surface analysis, the minimum predicted value of fitness is
181470, which is taken when the population size, crossover
rate, and generation number are 126, 0.95, and 1000,
respectively.

Table 11: Levels and values of the proposed GA parameters.

Parameter Symbol Low level High level
Population size Ps 20 200
Crossover rate Pc1 0.4 0.95
Generation number GN 50 1000

Table 12: Experiment design.

Experiment no. Run order Pc1 Ps GN Result (yuan)

1 1 0.675 110 525 200524
2 2 0.675 110 525 202492
3 3 0.95 110 50 272876
4 4 0.675 20 50 332529
5 5 0.4 110 1000 198007
6 6 0.675 20 1000 207099
7 7 0.95 110 1000 197055
8 8 0.4 110 50 264583
9 9 0.95 20 525 215530
10 10 0.4 20 525 217211
11 11 0.675 110 525 201413
12 12 0.4 200 525 197447
13 13 0.675 200 1000 200480
14 14 0.675 110 525 200305
15 15 0.675 200 50 274609
16 16 0.95 200 525 198958
17 17 0.675 110 525 200742
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Figure 6:(e response surface plot and the corresponding contour plot showing the effects of crossover rate and population size on fitness.
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5.4. Multiscenario Design. In multiscenario design, we re-
moved 100 flights for parameter adjustment from the
original data, leaving 281 flights. (en, we use the equal
probability sampling method to randomly generate 10 sets
of data from the remaining flight sets as instances to verify
the performance of the algorithm. Each dataset contains
different amounts of flights and gates, which are used to
verify the performance of APGA, GA, and CPLEX on
different data scales. Based on the results in Section 5.3, the
parameters of the proposed algorithm are set as follows:
population size is 126, termination evolution algebra is
1000, Pc1 is 0.95, and Pc2 is 0.2. We compare it with the
traditional genetic algorithm and CPLEX. (e results are
shown in Table 13.

Table 13 shows the comparison results for 10 in-
stances. (e first column in the table indicates the serial
number of the instance, the second column indicates the
number of flights that need to be allocated, the third
column mainly indicates the number of contact stands
and remote stands used in the instances, and the
remaining columns represent the calculation results of
CPLEX, traditional genetic algorithm, and APGA, re-
spectively. (e “Gap” column of GA and APGA repre-
sents the gap percentage from CPLEX best value. Firstly,
we can see that the proposed algorithm has higher effi-
ciency and better results than the traditional genetic
algorithm. (e gap of GA is mostly above 5%, while the
gap of APGA is mostly below 3%. For different instances,
APGA performs better than GA. Secondly, compared
with the calculation results of CPLEX, the results ob-
tained by the proposed algorithm are remarkably close to
the optimal solution and can meet the actual demands of
the airport authorities. (irdly, when the number of
flights is small, we can see that the efficiency of CPLEX is
significantly higher. With the increase of the number of
flights to be allocated, the solution time of CPLEX in-
creases sharply. When the number of flights is 160, the
time required to solve the problem has reached 2765.36
seconds. When the number of flights reaches 180, CPLEX
can no longer get results in a limited time. However, the
APGA algorithm we designed can still get satisfactory
results in a limited time, so APGA has better performance
for large-scale GAPs.

We select the result of instance 10 with 200 flights for
further analysis. First, its convergence curve is shown in
Figure 7. It can be seen from the figure that as the iterative
process continues, the convergence rate of algorithm
gradually slows down, and the fitness of the optimal indi-
vidual of the population is continuously optimized. After
500 iterations, the curve tends to be stable, and the optimal
solution did not change significantly. Second, Figure 8 shows
the Gantt diagram of the result. (e horizontal axis of the
Gantt chart represents time, while the vertical axis of the
Gantt chart represents the number of aircraft stands. Each
rectangle in this figure represents an assigned flight pair
(aircraft). And the aircraft number which is marked on the
corresponding flight pair is used to indicate the allocated
aircraft. We can see that there are few planes parked on gates
numbered 0–12. (is is because these gates are all inter-
national gates where domestic flights cannot park. In ad-
dition, we find that there are some unused gates in the Gantt
chart. By looking at the data files, we find that the Dj values
corresponding to these gates are relatively large. For ex-
ample, the Dj values of gates 15–19 are 5939m, 5275m,
5503m, 5751m, and 5226m, respectively, so the algorithm is
not inclined to use these gates when there are other gates that
can stop flights.

From the experimental results of CPLEX, it can be seen
that the traditional mathematical programming method is
not suitable for more than 120 flights. Compared with
heuristic methods, the time consumption cost is too high,
and as the scale of the problem increases, the result cannot be
obtained. In order to further verify that the APGA algorithm
is applicable to large-scale GAPs and to demonstrate the
stability of the algorithm for different datasets with the same
number of flights, we randomly generated 10 different flight
datasets from the flight data on November 23, 2019, and each
set of data contains 200 flights. We determined that the
number of contact stands for testing is 40, and the number of
remote stands is 38. We conducted five repeated experi-
ments on different datasets to reduce the influence of
random factors.

(e results of repeated tests of different instances are
shown in Table 14.(e first column of the table indicates the
serial number of instances, and the column “Repeated ex-
periments” are the results of 5 repeated experiments. (e

Table 13: Comparison of results.

Instance Flight
Gate CPLEX GA APGA

Contact
stands

Remote
stands

Result
(yuan)

Computation
time (s)

Result
(yuan)

Computation
time (s)

Gap
(%)

Result
(yuan)

Computation
time (s)

Gap
(%)

1 20 7 5 42800 4.36 44334 52.28 3.58 43247 27.73 1.04
2 40 10 8 88666 10.14 92354 111.07 4.16 90116 47.42 1.64
3 60 13 11 137267 29.75 145291 171.76 5.85 141517 70.95 3.10
4 80 16 14 194862 70.42 205806 224.04 5.62 197295 91.43 1.25
5 100 21 19 232502 195.78 250419 271.98 7.71 234823 115.55 1.00
6 120 24 22 271627 522.24 311468 324.92 14.67 271859 138.72 0.09
7 140 28 26 328878 1225.16 348203 357.66 5.88 336940 141.20 2.45
8 160 32 30 354699 2765.36 378952 428.26 6.84 357426 163.64 0.77
9 180 36 34 None None 436359 464.89 None 422863 184.43 None
10 200 40 38 None None 483526 543.20 None 469921 204.65 None
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corresponding result value of each experiment is the value of
the objective function Z, and the specific calculation process
is shown in equation (4). (e remaining columns are sta-
tistical indicators of repeated experimental results, mainly
including maximum, mean, minimum, standard deviation,
and coefficient of variation. By observing the maximum,
minimum, and standard deviation in the table, we can find
that for different datasets, the final objective function values

are basically between 46000 and 47500, and the standard
deviations are all below 1000. Further analysis of CV (co-
efficient of variation) shows that for datasets with different
mean values, the CV values are all below 0.21%, which
indicates that the algorithm can maintain high stability. It
shows that in the case of large-scale GAPs, the proposed
algorithm can not only reduce computation time but also
have high stability and practicability.
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Figure 8: Gantt chart for the result of 200 flights.
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Figure 7: Schematic diagram of convergence process of 200 flights.
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6. Conclusions

Based on the analysis of the research status of GAPs, we
propose a gate assignment model based on the actual as-
signment rules of airports, which comprehensively considers
the factors of the remote stand penalty, the travel distance of
passengers, and the fuel consumption of taxiing. First, we
formulate actual allocation rules into model constraints,
such as flight type constraints, safe time interval constraints,
nation constraints, adjacency conflict constraints, and so on.
Next, an improved adaptive parallel genetic algorithm is
proposed to solve the large-scale GAPs. (en, we generate
different sample datasets from the real data of Kunming
Changshui International Airport. (e calculation results of
the proposed algorithm are compared with those of standard
genetic algorithm and CPLEX, which show that the pro-
posed algorithm has better performance and takes a shorter
computational time. In addition, we repeat tests on a large
dataset of 200 flights to show the stability and practicability
of the algorithm. Moreover, even if the size of the GAP
becomes larger and the required iteration cannot be com-
pleted within the required time, we can also stop the al-
gorithm and obtain an approximate solution.

Notably, compared with the actual process of gate
assignment, the factors considered in the model are rela-
tively simplified, and only the factors that are critical in the
actual process are considered. (is paper assumes that the
capacity of the airport can meet the requirements of gate
allocation. However, during the peak hours of airport
operation, airport resources are tight, and there may not be
an allocation result that allows all flights to be assigned.(e
algorithm still wants to allocate all flights, so it cannot get a
feasible solution. (erefore, built upon the proposed al-
gorithm, new assignment strategies will be introduced in
future research.
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