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Considering that uncertain dwell disturbances often occur at metro stations, researchers have proposed manymethods for solving
the train timetable rescheduling (TTR) problem.,is paper proposes a Modified Genetic Algorithm-Gate Recurrent Unit (MGA-
GRU) method, which is a real-time TTR method based on deep learning. ,e proposed method takes the Gate Recurrent Unit
(GRU) network as the decision network and uses the results produced by the Modified Genetic Algorithm (MGA) as the training
set of the decision network. A well-trained decision network can provide effective solutions in real time after random disturbances
occur, in order to optimize the net traction energy consumption of trains inmetro systems. Based on the ShanghaiMetro Line One
(SML1) pilot network, this paper establishes a comprehensive model of the metro system as a training and testing environment to
verify the energy-saving effect and real-time performance of the proposed method in solving the TTR problem. ,e experimental
results show that in the two-train metro system, the three-train metro system, and the five-train metro system, the MGA-GRU
method can save an average of energy by 4.45%, 6.16%, and 7.19%, while the average decision time is only 0.15 s, 0.27 s, and
0.33 s, respectively.

1. Introduction

Compared with ground transportation such as buses and
taxis, urban metro systems have achieved rapid development
worldwide due to the advantages of no traffic jams, large
capacity, and high safety [1]. Although metro systems are
energy-efficient compared with other ground vehicles, they
still consume a lot of energy [2, 3]. Due to problems such as
rising energy prices and environmental pollution, in recent
years, reducing the net traction energy consumption of
trains in metro systems by studying and optimizing the train
timetable has become an important research topic [4, 5].

In metro systems, when a train brakes, it can regenerate
braking energy to the system [6]. Regenerative braking
energy (RBE) can be reused by trains that are simultaneously
accelerating and can also be stored in energy storage devices
such as batteries [7], supercapacitors [8], and flywheels [9].

Otherwise, RBE must be consumed by resistors as thermal
energy to prevent the train voltage from surpassing the safety
threshold [10, 11]. ,e timetable of a metro system can be
either predetermined offline or dynamically changed in real
time. By designing a suitable timetable, the acceleration
trains and the braking trains can be better synchronized to
make better use of RBE [12].

Although researchers have conducted extensive research
on train timetable in the past few decades, trains in metro
systems are still often subject to unexpected disturbances,
such as a sudden increase in passenger flow, unexpected
accidents, and unplanned parking [13, 14]. To solve this kind
of problem, researchers have proposed many train timetable
rescheduling (TTR) methods [15–19].

Previous studies on the TTR problem have focused on
reducing the delay time caused by disturbances, which can
be divided into two categories: one is to minimize the total
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delay time of passengers [20]; the other is to minimize the
total delay time of all trains [21]. Šemrov et al. [22] intro-
duced a real-time TTR method based on Q-learning. ,e
proposed method has carried out a large number of ex-
periments on the real-world railway network in Slovenia.
,e experimental results show that the solutions of
Q-learning are at least equivalent and generally superior to
simple first-in-first-out (FIFO) and random walk methods
that do not rely on learning agents.

Different from these two types of traditional methods,
the TTR method studied in this paper aims to reschedule
train timetable after disturbances occur to reduce traction
energy consumption. Hou et al. [23] developed a mixed-
integer programming (MIP) model to solve a metro train
timetable rescheduling problem, which aims to jointly op-
timize the total train delay, the number of stranded pas-
sengers, and the energy consumption of trains. Zhao et al.
[24] implemented three search methods, namely, enhanced
brute force (EBF), ant colony optimization (ACO), and
Genetic Algorithm (GA), to minimize energy consumption
and delay after being disturbed. ,e results show that these
three methods can find close to the best or the best train
trajectories and driving styles to reduce the energy or im-
prove safety and passenger’s comfort. Gong et al. [25]
proposed a Compensational Driving Strategy Algorithm
(CDSA) to restore the disturbed train to the original optimal
timetable by reducing the travel time of the disturbed train in
the next section after a disturbance occurs. ,e results show
that compared with not using CDSA after a disturbance
occurs, using CDSA can save 1.86% of energy on average.

However, these optimization methods (EBF, ACO, and
GA) implemented by Zhao et al. are not suitable for solving
the TTR problem in real time due to the long calculation
time. And the CDSA proposed by Gong et al. only rearranges
the coasting speed of the disturbed trains, which does not
adjust other trains’ coasting speeds and all trains’ dwell time.
In response to these problems, this paper proposes a TTR
method based on deep learning, called Modified Genetic
Algorithm-Gate Recurrent Unit (MGA-GRU) by combining
the modified Genetic Algorithm (MGA) with the Gate
Recurrent Unit (GRU) network.

Up to now, many methods based on a general GA have
been proposed to solve scheduling and optimization
problems [26–29]. Corresponding experimental results
show that these methods can find high-quality solutions for
large-scale case. And GRU has been applied to solve
problems with time-series dimensions [30, 31]. ,ese ex-
perimental results show that GRU can extract more rich and
complex information from sequences and aspects.

Better than EBF, ACO, and GA, MGA-GRU can re-
schedule the timetable in real time after random distur-
bances occur. Unlike CDSA which only rearranges the
coasting speed of the disturbed train, MGA-GRU rearranges
the coasting speed and dwell time of all trains in the metro
network in real time after disturbances occur, so as to
achieve better energy-saving effect.

,e remainder of this paper is organized as follows.
Section 2 builds three models based on Shanghai Metro Line
One (SML1). Section 3 introduces the MGA-GRU method

to solve the TTR problem in real time after a disturbance
occurs. In Section 4, four experiments based on the SML1
pilot network are conducted to verify the energy-saving
effect and real-time performance of the proposed method.
Section 5 concludes this paper.

2. Modeling

In this section, three models are proposed to formulate the
metro system: time model, mechanical model, and power
model.

For a better understanding of this paper, the assump-
tions, decision variables, and parameters are first introduced.

2.1. Assumptions

(1) ,e distance between two adjacent stations of SML1
is relatively small. According to the actual operation
of trains on the SML1 and the description of Su et al.
[32], each train adopts a single-cycle acceleration-
coasting-braking strategy instead of repeated accel-
eration and braking.

(2) Dwell disturbances are small enough so as not to lead
to network disruption.

(3) From the first train’s departure to the last train’s
arrival, only one dwell disturbance occurs. But the
value of the disturbance is random.

2.2. Decision Variables

vm,n
c : coasting speed of train no. m from station no. n− 1 to

station no. n
tm,n
dw : dwell time of train no. m at station no. n

2.3. Parameters

m : index of train
n : index of station
M : total number of trains
N : total number of stations
tm,i
tr : travel time of train no. m from station no. i− 1 to

station no. i
tm,n
de : departure instant of train no. m at station no. n

tm,n
dw : dwell time of train no. m at station no. n

t1 : Headway
ε : Duration of a dwell disturbance
tM,N
total : total time

v : speed of the train
FT : traction force
FB : braking force
FR : running resistance
FG : gravity
θ : track slope
xm : position of train no. m
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Pm,n
T : traction power of train no.m from station no. n− 1 to

station no. n
Pm,n

R : regenerative braking power of train no. m from
station no. n− 1 to station no. n

Pm,n
F : feedback power of train no.m from station no. n− 1 to

station no. n
η1 : conversion efficiency of the train traction system (from

electrical energy to mechanical energy)
η2 : conversion efficiency of the train braking system (from

mechanical energy to electrical energy)
η3 : braking energy feedback coefficient
ET : traction energy consumption of acceleration trains
EF : regenerative braking feedback energy used by accel-

eration trains
E : net energy consumption

2.4. Time Model. ,e time model defines the departure
instant tde, travel time ttr, and dwell time tdw of each train at
each station [33].,e starting station is defined as station no.
1. ,e instant when train no. 1 leaves the starting station is
defined as time� 0. ,e interval between each adjacent train
leaving the starting station is equal.

If a disturbance occurs at station no. n of train no.m, the
corresponding dwell time will increase from tm,n

dw to tm,n
dw + ε.

,en the departure instant of train no. m at station no. n is

t
m,n
de � t

m,1
de + 􏽘

n

i�2
t
m,i
tr + t

m,i
dw􏼐 􏼑 + ε. (1)

According to the assumptions above, only one distur-
bance occurs during each entire test procedure. ,erefore,
the instant tM,N

total when the last train arrives at the terminal is
defined as

t
M,N
total � t

M,1
de + 􏽘

N−1

i�2
t
M,i
tr + t

M,i
dw􏼐 􏼑 + t

M,N
tr + ε. (2)

2.5. Mechanics Model. According to the assumption above,
each train adopts a single-cycle acceleration-coasting-
braking strategy instead of repeatedly acceleration and
braking [25]. ,e unit of FT, FR, FB, etc., is N.

In the acceleration phase, FB � 0; the relationship be-
tween FT and speed v is shown in the following equation:

FT �

550, 0< v≤ 10m/s,

19800
v

, v> 10m/s.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(3)

When the speed is lower than 10m/s, the train is in a
constant torque traction state, and the acceleration of the
train is a fixed value.When the speed increases beyond 10m/
s, the train switches to a constant power traction state. In this
state, the traction power is a fixed value, and the traction
force is inversely proportional to the speed.

In the coasting phase, FB � 0, FT � 0; the relationship
between FR and v conforms to the Davis equation [34]:

FR � 7.398 + 0.255v + 0.012v
2
. (4)

In the braking phase, FT � 0; the relationship between
FB and v is shown in the following equation:

FB �

550, 0< v≤ 18.056m/s,

35750
v

, v> 18.056m/s.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(5)

When the speed is higher than 18.056m/s, the braking
force is inversely proportional to the speed. When the speed
decreases within 18.056m/s, the deceleration is a fixed value.

2.6. Power Model. In the metro system, there are three
driving states of trains: acceleration, coasting, and braking.
Accelerating trains convert electrical energy into mechanical
energy, while braking trains can regenerate mechanical
energy into electrical energy. ,e electric energy generated
by the braking trains can be supplied to the acceleration
trains. ,is implies that if the trains can be arranged with an
appropriate strategy, a lot of energy can be saved by the use
of this part of RBE.

PB, the regenerative braking power, is defined as

PB � η1FBv. (6)

PT is the traction power and is defined as

PT �
FTv

η2
. (7)

If the braking power is less than the traction power, it can
be fully used; otherwise, resistors will kick in and consume
the overflowing braking power to maintain the train voltage
under a safe value. ,e minimum value of traction power
and braking conversion power is defined as PF [33]:

PF � min PT, η3PB( 􏼁 � min
FTv

η2
, η3η1FBv􏼠 􏼡. (8)

2.7. Relationship between Coasting Speed and Travel Time.
,e area enclosed by the speed curve and the time axis is the
distance between two adjacent metro stations. As shown in
Figure 1, if the acceleration and driving strategy is deter-
mined, the coasting speed and the travel time form a one-to-
one mapping between two adjacent stations. Higher coasting
speed corresponds to a shorter travel time. ,erefore, the
travel time can be controlled by controlling the coasting
speed. And the relation can be defined as tm,n

tr � f(vm,n
c ) [25].

3. Energy Optimization under Disturbances

In order to optimize the net traction energy consumption in
real time after a dwell disturbance occurs, this paper pro-
poses an MGA-GRU method based on deep learning. ,is
method combines the modified Genetic Algorithm (MGA)
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with the Gate Recurrent Unit (GRU) network. ,e MGA-
GRU method consists of four stages. Specifically, in the first
stage, the optimal energy timetable without a disturbance is

produced by MGA. In the second stage, the dwell time and
coasting speed of each train are used as decision variables.
AndMGA is used to provide effective actions under different
disturbances, which are used as the training set. In the third
stage, the outcomes of MGA are used to train the GRU
network. All the above three stages are offline. In the fourth
stage, the well-trained GRU network is used as a decision
network. ,e well-trained decision network can provide
effective solutions in real time after a disturbance occurs.
,is stage is real-time.

3.1.ModifiedGeneticAlgorithm. In the first stage, the energy
optimization objective function without a disturbance can
be expressed as

min E(t) � 􏽘
M

m�1
􏽘

N

n�2
􏽚

tm,n
tr

0
P

m,n
T (t) − P

m,n
F (t)( 􏼁dt

s.t.

m ∈ (1, 2, · · · , M), n ∈ (2, · · · , N),

t
m,n+1
de � t

m,n
de + t

m,n
tr + t

m,n
dw ,

t
m,n
tr � f v

m,n
c( 􏼁,

18m/s≤ v
m,n
c ≤ 22m/s.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(9)

In the second stage, if a disturbance occurs at station no.
n0 of train no. m0, the energy optimization objective
function under a disturbance can be expressed as

min E(t, ε) � 􏽘
M

m�1
􏽘

N

n�2
􏽚

tm,n
tr

0
P

m,n
T (t, ε) − P

m,n
F (t, ε)( 􏼁dt

s.t.

m ∈ (1, 2, · · · , M), n ∈ (2, · · · , N),

t
m,n+1
de �

t
m,n
de + t

m,n
tr + t

m,n
dw + ε, if m � m0, n � n0,

t
m,n
de + t

m,n
tr + t

m,n
dw , others,

⎧⎨

⎩

t
m,n
tr � f v

m,n
c( 􏼁,

18m/s≤ v
m,n
c ≤ 22m/s,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(10)

where ε is a nonzero random variable.
Equations (9) and (10) are single-objective optimization

problems that can be solved by Genetic Algorithm (GA).
However, using general GA to solve such complex opti-
mization problems, the solution is easy to fall into local
optimal rather than global optimal. In order to overcome the
problem of premature convergence of general GA, this paper
introduces a modified Genetic Algorithm (MGA) based on
Simulated Annealing (SA) algorithm to avoid falling into
local optimum and approach global optimum.

Pseudocode forMGA is provided in Algorithm 1. GEN is
the generation of MGA, and GEN_MAX is the maximum
generation of MGA. A is the number of initial individuals,
and B is the maximum number of local searches per indi-
vidual. kc(0≤ kc ≤ 1) and km(0≤ km ≤ 1) are random values.
FITind(α) is the fitness of the individual α, and FITnei(α) is
the fitness of the best neighborhood solution of the indi-
vidual α. Each individual α contains a series of coasting
speed (V) and dwell time (T). When adopting V and T, the
net energy consumption is equal to FIT(α). So, if no dwell

v (m/s) Increase coasting speed

Same area

Reduce travel time

18.056

10

o

vc
m,n

vc
m,n′

t (s)ttr
m,n′ ttr

m,n

Figure 1: Relationship between coasting speed and travel time.
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disturbance occurs, FIT(α) can be calculated based on
equation (9), which means that FIT(α) � E(t). And if a
dwell disturbance occurs, FIT(α) can be calculated based on
equation (10), which means that FIT(α) � E(t, ε).

3.2. Gate Recurrent Unit. ,e Gate Recurrent Unit (GRU)
network belongs to one of the Recurrent Neural Networks
(RNN). Like the Long Short-Term Memory (LSTM) net-
work, GRU is also proposed to solve the problems of long-
term memory and gradient in backpropagation. Better than
LSTM, because GRU has fewer parameters, the training
speed is faster, and less data is required to generalize. While
using GRU can achieve the same effect as LSTM, the GRU
network is easier to be trained and the training efficiency is
higher. ,e GRU network has a strong generalization ability
and has been successfully and widely used in voice recog-
nition, computer vision, and other fields. ,e structure and
application of GRU are introduced below.

3.2.1. Input and Output Structure of GRU. ,e input and
output structure of GRU is the same as the Näıve RNN, as
shown in Figure 2.,ere is a current input xt and the hidden
state ht−1 passed from the previous node. ,e hidden state
ht−1 contains information about the previous node. Com-
bining with xt and ht−1, GRU produces the output yt of the
current hidden node and the hidden state ht passed to the
next node.

3.2.2. Internal Structure of GRU. ,e states of the two gates
(rt and zt) are obtained by the hidden state ht−1 passed from
the previous node and the input xt of the current node. As
shown in equations (11) and (12), rt is a reset gate that
controls reset, and zt is an update gate that controls update.
And σ is the sigmoid function. With this function, rt and zt

can be transformed into the range [0, 1], which can be used
as a gating signal. Wxr, Wxz, Wxh and Whr, Whz, Whh

denote weight matrices of the reset gate, the update gate, and
the hidden layer, respectively. br, bz, bh are the bias matrices.

r
t

� σ W
xr

x
t

+ W
hr

h
t−1

+ b
r

􏼐 􏼑, (11)

z
t

� σ W
xz

x
t

+ W
hz

h
t−1

+ b
z

􏼐 􏼑. (12)

After obtaining the gating signal, the reset gate is the first
to be used to produce the reset data ht−1′ � ht−1 ⊙ rt. ,en
ht−1′ is stitched with the input xt. A tanh function is used to
shrink the data to the range [−1, 1], that is, ht′ , as shown in
equation (13). ht′ mainly contains the current input xt.
Adding ht′ to the current hidden state in a targeted manner
is equivalent to remembering the current state.

h
t′

� tanh W
xh

x
t

+ W
hh

h
t−1′

+ b
h

􏼒 􏼓. (13)

In the update memory stage, two steps of forgetting and
memorizing are performed at the same time. ,e expression
is as follows:

h
t

� 1 − z
t

􏼐 􏼑⊙ h
t−1

+ z
t ⊙ h

t′
, (14)

where ⊙ is the Hadamard product, which is to multiply the
corresponding elements in the matrix. ⊕ represents the
matrix addition operation. ,e range of the gating signal zt

is [0, 1]. ,e closer the gating signal is to 1, the more data is
remembered; the closer it is to 0, the more is forgotten. (1 −

zt)⊙ ht−1 means to selectively forget the previous hidden
state, that is, to forget some unimportant information in the
dimension of ht−1. zt ⊙ ht′ indicates selective memory of the
current node information ht′ . It can be seen from equation
(14) that the same update gate zt can be used for forgetting
and selectively memorizing, while LSTM needs to use
multiple gates. ,e model parameters including all
Wxr, Wxz, Wxh, Whr, Whz, Whh, br, bz, bh are shared by all
time steps and learned during model training.

In summary, the internal structure of GRU is shown in
Figure 3.

3.2.3. Application of GRU. Each decision under different
disturbances can be produced by MGA, which includes a
series of coasting speeds and dwell time. ,e outcomes of
MGA can be used to train the GRU network, that is, the
decision network. A well-trained decision network can
provide intelligent decisions in real time after a random
disturbance occurs. Figure 4 shows the structure of the
coasting speed and dwell time decision network. ,e de-
cision network consists of five parts: input layers, previous
hidden layer, current hidden layer, a decision network, and a
voter. After a disturbance occurs, at the departure instant,
the decision network determines the coasting speed of each
departing train and the dwell time at the next station. ,e
speed, position, and driving state of other trains, along with
the train number and station number of the departing train,
are put into the input layer. ,e train number and station
number of the departing train correspond to one GRU cell.
Finally, the voter gives the coasting speed and dwell time of
the departing train. Furthermore, for a metro system withM
trains, the input layer has 3M− 1 neurons, and the output
layer has 2 neurons.

,e dwell disturbance is used in the input layers of the
GRU network. After a dwell disturbance occurs at the
disturbed trains, the position, speed, and driving state of the
disturbed train are delayed as well. ,erefore, when a train
departs from a station, the position, speed, and driving state
of the disturbed train (as one of the other trains) are different
from the situation where no dwell disturbance occurs. In a
word, the dwell disturbance influences the disturbed train’s
the position, speed, and driving state at each departing
instant, which are used in the input layers of the GRU
network.

4. Experimental Verification

In order to verify the energy-saving effect and real-time
performance of the proposed MGA-GRU method for
solving the TTR problem, four numerical experiments are
conducted in this section. In experiment 1, MGA is used to
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produce the optimal timetable without a disturbance in the
two-train metro system. In experiment 2, the timetable is
rescheduled after a disturbance occurs, by using the MGA-
GRU method. In experiment 3, the MGA-GRU method is
applied for solving the TTR problem in a three-train metro
system. In experiment 4, the MGA-GRU method is applied
in a bidirectional metro systemwith five trains on two tracks.

,e information of the pilot metro system is shown in
Figure 5. ,e configuration of the numerical experiment is
shown in Table 1.

Some settings for the four experiments are listed in
Table 2. Based on the above settings, there are no traffic jam

Randomly generate the first generation. ,e population contains many individuals, and each individual contains a series of decision
variables: coasting speed (V), dwell time (T). Ω is used as a series of decision variables, which means Ω � V,T{ }. GEN⟵ 1.
while GEN ∈ 1, · · · ,GEN MAX{ } do
Initialize the neighborhood structures set Ω(α, β).
α⟵ 1, β⟵ 1.
while α ∈ 1, · · · , A{ } do

while β ∈ 1, · · · , B{ } do
Randomly generate a series of V and Twithin constraints to serve as a set of solutions Ω(α, β) in the neighborhood of Ω(α).
β⟵ β + 1.

end while
α⟵ α + 1, β⟵ 1.

end while
Equations (9) and (10) are used to evaluate the fitness FIT(α, β) of the solution Ω(α, β) without a disturbance and under a

disturbance, respectively.
if FITnei(α)< FITind(α) then

FITind(α) � FITnei(α).
else if e[FITind(α)− FITnei(α)]/Temper <Rand(0, 1) then

FITind(α) � FITnei(α).
end if
GEN⟵GEN + 1.
Decrease Temper.
if the probability of crossover Pc ≥ kc then

Crossover.
end if
if the probability of mutation Pm ≥ km then

Mutation.
end if

end while
Output the global optimum.

ALGORITHM 1: Modified Genetic Algorithm (MGA).

GRU

yt

xt
 

ht–1 ht

Figure 2: Input and output structure of GRU.

yt

ht–1

ht–1

ht

ht′

xtxt

rt zt

1–

⊕

Figure 3: ,e internal structure of GRU.
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Figure 5: Information of the pilot metro system.
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…
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Figure 4: Structure of decision network.

Table 1: Configuration of numerical experiment.

Items Configuration information
Operating system Windows 10

CPU Intel® Xeon® CPU
E5-2620 v4 @ 2.10GHz

RAM 32GB
Simulation environment TensorFlow
Locales Python

Table 2: Settings for the four experiments.

Items Range
,e headway 120 s
Dwell time [30, 35] s
Dwell disturbance [−5, 15] s
Coasting speed [18, 22]m/s
η1 0.8
η2 0.7
η3 0.7
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conflicts between trains. In experiments 2 and 3, the dwell
disturbance occurs at train no. 1 at Changshu Road Station,
while in experiment 4, the dwell disturbance can occur at
train no. 1 at Hengshan Road Station or at Changshu Road
Station or at South Shaanxi Road Station.

4.1. Experiment 1. ,e goal of experiment 1 is to validate
MGA for solving the energy optimization problem and
produce the optimal timetable without a disturbance. MGA
is used to solve the energy optimization problem based on
equation (7) and the optimal timetable as is shown in
Table 3.

Figure 6 shows the distribution of individuals of the 1st,
10th, and 15th generations produced by MGA. As shown in
Figure 6, the distribution of individuals in the 1st generation
is discrete. After 10 generations, the individuals’ distribution
gradually concentrates. Finally, after 15 generations, the
individuals converge with a fitness value of 256.02 kWh,
which is the optimal energy consumption without a
disturbance.

In order to prove the effectiveness of MGA, a general GA
is also applied to produce the offline timetable without a
disturbance under the same condition. Figure 7 shows the
distribution of individuals of the 1st, 10th, and 15th gen-
erations produced by a general GA. After 15 generations, the
individuals converge with a fitness value of 276.59 kWh. It
can be seen from Figure 7 that the individuals of a general
GA concentrate more quickly than those of MGA. What is
more, the fitness of a general GA (276.59 kWh) is bigger than
that of MGA (256.02 kWh). ,erefore, compared with a
general GA, the proposed MGA can avoid falling into local
optimum prematurely and provide a better solution.

4.2. Experiment 2. ,is experiment is to use the MGA-GUR
method to solve the TTR problem under random distur-
bances in the two-train metro system. ,e energy-saving
effect of the MGA-GRU method is reflected by the saved
energy during test compared with the no-action strategy.
,e real-time performance of the MGA-GRU method is
reflected by the time it takes to provide a pair of strategies
during testing.

4.2.1. Dataset. ,e outputs of MGA based on equation (8)
under the disturbance from (10 s, 10.2 s, 10.4 s, . . . , 14.8 s,
15.0 s) are selected as the dataset to train the MGA-GRU
network.

4.2.2. Baselines. ,e proposed MGA-GRU method is
compared against two baselines: (i) no action, where each
train does not take any measures after disturbances occur
and (ii)MGA, where MGA is used to give an offline strategy
to deal with the dwell disturbances. ,e two baselines are
representative of the worst and best possible strategies. It is
expected that MGA-GRU falls in between these two extreme
cases. It should be emphasized that MGA-GRU can re-
schedule the timetable in real time.

,e changes of the net energy consumption with these
three strategies are compared during testing. ,e dwell
disturbance which occurs at train no. 1 at Changshu Road
Station is 13.45 s. Figure 8 shows the net energy con-
sumption curve of the whole journey using the three
methods. It can be seen from Figure 8 that from the moment
when the disturbance occurs, the net energy consumption of
no action has always remained the highest. Although MGA
can achieve good results in saving energy, it takes a lot of
time to provide a decision, which does notmeet the real-time
requirements for solving the TTR problem. Compared with
the above two methods, MGA-GRU can reschedule the
timetable in real time and achieve saving energy.

,e rescheduled timetable with the MGA-GRU method
under a 13.45 s dwell disturbance in the two-train metro
system is shown in Table 4.

Table 5 shows the average calculation time and average
total energy consumption of the three strategies in 10 tests.
,e MGA-GRU strategy is energy efficient compared with
the no-action strategy and its average calculation time is only
0.15 s which meets the requirements of real-time effect.
,erefore, MGA-GRU can reschedule the timetable in real
time and achieve saving energy after a dwell disturbance
occurs. It should be noted that although the total energy
consumption of the MGA strategy is less than the MGA-
GRU strategy, it requires a greatly long calculation time
(8694.08 s in total) to reschedule the timetable, which ab-
solutely does not meet the real-time requirements of the
TTR problem. In terms of calculation time, MGA-GRU has
an absolute superiority.

4.3. Experiment 3. In the real case of SML1, there are at most
three trains between two substations. ,erefore, it is es-
sential to apply the MGA-GRU method to a three-train
metro system. What is more, according to the real case of
SML1 [35], the train departs early frequently, which means
that the value of a disturbance can be negative.,is situation
is also taken into consideration in experiment 3.

First, MGA produces the optimal timetable without a
disturbance based on equation (7), as shown in Table 6.

4.3.1. Dataset. ,e outputs of MGA under the disturbance
from (10 s, 10.2 s, 10.4 s, . . . , 14.8 s, 15.0 s) and
(−5.0 s, −4.8 s, . . . , −0.4 s, −0.2 s, 0.0 s) are selected as the
dataset to train the MGA-GRU network.

4.3.2. Baselines. Same as experiment 2, in the three-train
metro system, MGA-GRU is also compared against two
baselines: no action and MGA.

Figure 9 gives the net energy consumption curve of the
whole journey under a −2.37 s dwell disturbance (departing
early) in the three-train metro system. As can be seen from
Figure 9, the MGAmethod has the best energy-saving effect.
However, it also requires a long calculation time.

,e rescheduled timetable with the MGA-GRU method
under a −2.37 s dwell disturbance in the three-train metro
system is shown in Table 7.
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Table 8 shows the average calculation time and average
total energy consumption of the three strategies in 10 tests.
,e average calculation time of MGA-GRU to provide the
coasting speed and dwell time of each group is only 0.27 s,
which meets the real-time requirements of the TTR prob-
lem. Besides, the MGA-GRU strategy is energy efficient
compared with the no-action strategy. ,erefore, MGA-

GRU can reschedule the timetable in real time and achieve
energy saving after a random dwell disturbance occurs.

4.4. Experiment 4. According to the real case of SML1, there
exist at most 3 trains on one track between 2 substations.,e
goal of experiment 4 is to apply MGA-GRU to a real metro
system, which is a bidirectional metro line with five trains on

Table 3: ,e optimal timetable of the two-train system.

Section Spacing (m) Train no. Departure instant Arrival instant Dwell time (s) Coasting speed (m/s)

Xujiahui⟶Hengshan Road 1458.5 1 8:00:00 8:01:30 29.6 21.8
2 8:02:00 8:03:42 20.1 18

Hengshan Road⟶Changshu Road 1125.7 1 8:01:59 8:03:21 28.4 18
2 8:04:02 8:05:22 27.2 18.32

Changshu Road⟶ South Shaanxi Road 979.2 1 8:03:49 8:04:56 22.0 21.08
2 8:05:49 8:07:01 23.4 18.4

South Shaanxi Road⟶ South Huangpi Road 1377.4 1 8:05:18 8:06:45 23.1 21.44
2 8:07:25 8:09:01 20 18

South Huangpi Road⟶People’s Square 1526.8 1 8:07:08 8:08:54 20 18.04
2 8:09:21 8:11:06 26.5 18.32

People’s Square⟶Xinzha Road 961.2 1 8:09:14 8:10:25 — 18.04
2 8:11:32 8:12:44 — 18.04
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Figure 6: Individuals’ distribution of the 1st, 10th, and 15th generations produced by MGA.
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Figure 7: Individuals’ distribution of the 1st, 10th, and 15th generations produced by a general GA.
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two tracks. Different from experiments 2 and 3, in experi-
ment 4, the disturbances’ range is [−5, 15] s, and each dwell
disturbance can occur at Hengshan Road Station or at
Changshu Road Station or at South Shaanxi Road Station.

,e bidirectional metro line with five trains on two
tracks is shown in Figure 10. ,e fourteen stations are
numbered in sequence from 1 to 14. ,ere are three trains
departing from station no.1 and travels in sequence to
station no.7, which is called up direction. ,en, there is a
turning of 60 s in duration from station no.7 to station no.8.
After that, each train drives from station no.8 to station
no.14, which is called down direction. After that, there is also
a turning of 60 s in duration from station no.14 back to
station no.1. And there are other two trains departing from
station no.8 to station no.7 and then back to station no.8.,e
departure instant of train no.1 at station no.1 and train no.4

at station no.8 is the same. Besides, the headway time of
every two train is also 120 s.

First, MGA is also used to produce the optimal timetable
under no disturbance.

4.4.1. Dataset. ,e outputs of MGA under the disturbance
from (−5.0 s, −4.8 s, −4.6 s, . . . , 14.6 s, 14.8 s, 15.0 s) are se-
lected as the dataset to train the MGA-GRU network.

4.4.2. Baselines. In the five-train metro system, the proposed
MGA-GRU method is compared against three baselines: (i)
no action, where each train does not take any measures after
disturbances occur; (ii) general GA, where a general GA is
used to give an offline strategy to deal with the dwell dis-
turbances; and (iii) MGA, where MGA is used to give an
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Figure 8: Changes in net energy consumption with different strategies under a 13.45 s dwell disturbance.

Table 4: ,e rescheduled timetable with the MGA-GRU method in the two-train system.

Section Spacing (m) Train no. Departure instant Arrival instant Dwell time (s) Coasting speed (m/s)

Xujiahui⟶Hengshan Road 1458.5 1 8:00:00 8:01:30 29.6 21.8
2 8:02:00 8:03:35 21.2 18.04

Hengshan Road⟶Changshu Road 1125.7 1 8:01:59 8:02:21 41.9 18
2 8:03:56 8:05:12 22 18

Changshu Road⟶ South Shaanxi Road 979.2 1 8:04:03 8:05:11 29.6 18.28
2 8:05:34 8:06:43 20 18.2

South Shaanxi Road⟶ South Huangpi Road 1377.4 1 8:05:41 8:07:11 29.8 18
2 8:07:03 8:08:33 20 18.08

South Huangpi Road⟶People’s Square 1526.8 1 8:07:41 8:09:13 20 18
2 8:08:53 8:10:26 21.8 18.04

People’s Square⟶Xinzha Road 961.2 1 8:09:33 8:10:39 — 18.56
2 8:10:48 8:11:55 — 18

Table 5: Performances with three strategies in the two-train metro system.

Strategy Calculation time (s) Net traction energy consumption (kWh) Energy-saving percentage compared with no action
strategy (%)

No action 0 293.95 —
MGA 8694.08 274.58 6.59
MGA-GRU 0.15 280.88 4.45
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offline strategy to deal with the dwell disturbances. It is
expected that MGA-GRU can achieve better energy saving
effect than a general GA, which can prove the effectiveness of
MGA.

Table 9 shows the average calculation time and av-
erage total energy consumption of the four strategies in
20 tests. ,e average calculation time of MGA-GRU to
provide the coasting speed and dwell time of each group is
only 0.33 s, which meets the real-time requirements of the
TTR problem as well. And compared with no-action
strategy, the MGA-GRU strategy is energy efficient
compared with the no-action strategy and can save an
average of 7.19% energy. ,erefore, MGA-GRU can re-
schedule the timetable in real time and achieve energy

saving after a random dwell disturbance occurs. What is
more, MGA (8.73%) achieves better energy saving effect
than a general GA (6.15%), which also proves the ef-
fectiveness of MGA.

,e decision time of MGA-GRU with the onboard
computer’s configuration is also discussed. And the con-
figuration of the train’s onboard computer is shown in
Table 10.

,e configuration on the PC is restricted to the same as
the train’s onboard computer, and then experiment 4 is
performed again. ,e experimental results show that the
average calculation time is 0.35 s, which reflects that the
proposed MGA-GRUmethod can be applied to the onboard
computer.

Table 6: ,e optimal timetable of the three-train system.

Section Spacing (m) Train no. Departure instant Arrival instant Dwell time (s) Coasting speed (m/s)

Xujiahui⟶Hengshan Road 1458.5
1 8:00:00 8:01:41 20 18.12
2 8:02:00 8:03:29 20 21.96
3 8:04:00 8:05:42 25.3 18

Hengshan Road⟶Changshu Road 1125.7
1 8:02:01 8:03:18 20 19.88
2 8:03:49 8:05:05 20.2 20.52
3 8:06:07 8:07:25 29.5 19.16

Changshu Road⟶ South Shaanxi Road 979.2
1 8:03:38 8:04:51 26.3 18
2 8:05:25 8:06:32 27.5 21.32
3 8:07:55 8:09:07 26.8 18

South Shaanxi Road⟶ South Huangpi Road 1377.4
1 8:05:17 8:06:54 20 18
2 8:07:00 8:08:26 20.1 21.52
3 8:09:34 8:11:00 20 21.84

South Huangpi Road⟶People’s Square 1526.8
1 8:07:14 8:09:00 20 18.04
2 8:08:46 8:10:20 20 21.4
3 8:11:20 8:13:06 20 18.04

People’s Square⟶Xinzha Road 961.2
1 8:09:20 8:10:25 — 21.6
2 8:10:40 8:11:47 — 21.12
3 8:13:26 8:14:33 — 20.08
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Figure 9: Changes in net energy consumption with different strategies under the −2.37 s dwell disturbance.
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Table 7: ,e rescheduled timetable with the MGA-GRU method of the three-train system.

Section Spacing (m) Train no. Departure instant Arrival instant Dwell time (s) Coasting speed (m/s)

Xujiahui⟶Hengshan Road 1458.5
1 8:00:00 8:01:41 20 18.12
2 8:02:00 8:03:29 29.9 19.88
3 8:04:00 8:05:35 26.8 18

Hengshan Road⟶Changshu Road 1125.7
1 8:02:01 8:03:18 17.6 21.8
2 8:03:59 8:05:13 20 20.92
3 8:06:01 8:07:15 20.1 21.84

Changshu Road⟶ South Shaanxi Road 979.2
1 8:03:35 8:04:42 27.3 20.68
2 8:05:33 8:06:39 28.1 20.76
3 8:07:35 8:08:41 20 18.76

South Shaanxi Road⟶ South Huangpi Road 1377.4
1 8:05:09 8:06:35 24 18.76
2 8:07:07 8:08:32 21.5 19.92
3 8:09:01 8:10:26 20.1 21.76

South Huangpi Road⟶People’s Square 1526.8
1 8:06:59 8:08:31 21.7 19.52
2 8:08:54 8:10:27 25.8 19
3 8:10:47 8:12:19 22.8 19.08

People’s Square⟶Xinzha Road 961.2
1 8:08:53 8:09:59 — 18.2
2 8:10:52 8:11:58 — 20.56
3 8:12:42 8:13:47 — 18

Table 8: Performances with three strategies in the three-train metro system.

Strategy Calculation time (s) Net traction energy consumption (kWh) Energy-saving percentage compared with no-action
strategy (%)

No action 0 412.23 —
MGA 13768.68 380.82 7.62
MGA-GRU 0.27 386.84 6.16
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Figure 10: Bidirectional metro line with five trains on two tracks.

Table 9: Performances with three strategies in the five-train metro system.

Strategy Calculation time (s) Net traction energy consumption (kWh) Energy-saving percentage compared with no-action
strategy (%)

No action 0 741.85 —
General GA 17941.36 696.22 6.15
MGA 21074.15 677.09 8.73
MGA-GRU 0.33 688.51 7.19

Table 10: Configuration of the train’s onboard computer.

Items Configuration information
CPU Intel Celeron G3900
RAM 4GB DDR4 2133MHz
ROM 120G SSD
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5. Conclusion

In this paper, a Modified Genetic Algorithm-Gate Recurrent
Unit (MGA-GRU) method is proposed to solve the train
timetable rescheduling (TTR) problem.,e proposedMGA-
GRU method can reschedule timetable to optimize the net
traction energy consumption of the metro system under a
random dwell disturbance in real time. Specifically, the
outcomes of modified Genetic Algorithm (MGA) under
different dwell disturbances are used as the training set to
train the Gate Recurrent Unit (GRU) network (the decision
network). After a disturbance occurs, the well-trained de-
cision network can provide appropriate coasting speed and
dwell time in real time.

Better than traditional optimization methods, such as
enhanced brute force (EBF), ant colony optimization
(ACO), and Genetic Algorithm (GA), MGA-GRU can
achieve real-time train timetable rescheduling. Superior to
CDSA, MGA-GRU can rearrange the coasting speed and
dwell time of all trains in real time after disturbances occur,
so as to achieve better energy-saving effect.

Four experiments are conducted on the Shanghai Metro
Line One (SML1) pilot network to verify the energy-saving
effect and real-time performance of the proposed method.
,e experimental results show that in the two-train metro
system, the three-train metro system, and the five-train
metro system (a bidirectional metro line on two tracks) after
a disturbance occurs, the MGA-GRU strategy can save an
average of 4.45%, 6.16%, and 7.19% of energy compared with
the no-action strategy, while the average calculation time for
each group of coasting speed and dwell time is only 0.15 s,
0.27 s, and 0.33 s, respectively. In all the two-train metro
system, the three-train metro system, and the five-train
metro system, the proposed MGA-GRU method can solve
the TTR problem under random disturbances in real time.

In the future work, according to Taguchi’s experimental
design method [36] and other intelligent optimization
methods [37], the impact of user-defined parameters on the
performance of the proposed algorithm should be analyzed,
other parameters should be compared, and the best settings
should be decided.
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