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)e metro system is an important component of the urban transportation system due to the large volume of transported
passengers. Hub stations connecting metro and high-speed railway (HSR) networks are particularly critical in this system. When
HSR trains are delayed due to a disruption on the HSR network, passengers of these trains arriving at the hub station at night may
fail to get their last metro connection. )e metro operator can thus decide to schedule extra metro trains at night to serve
passengers from delayed HSR trains. In this paper, we consider the extra metro train scheduling problem in which the metro
operator decides how many extra metro trains to dispatch and their schedules. )e problem is complex because (i) the arrival of
delayed HSR trains is usually uncertain, and (ii) the operator has to minimize operating costs (i.e., number of additional trains and
operation-ending time) but maximize the number of served passengers, which are two conflicting objectives. In other words, the
problem we consider is stochastic and biobjective.We formulate this problem as a two-stage stochastic programwith recourse and
use an epsilon-constrained method to find a set of nondominated solutions. We perform extensive numerical experiments using
realistic instances based on the Beijing metro network and two HSR lines connected to this network. We find that our stochastic
model outperforms out-of-sample a deterministic model that relies on forecasts of the delay by a range of 3–5%. Moreover, we
show that our solutions are nearly optimal by computing a perfect information dual bound and obtaining average optimality gaps
below 1%.

1. Introduction

Metro lines are typically connected with high-speed railway
(HSR) lines at some transfer stations to provide seamless
transfer service for passengers. )e metro system is indeed
an important component of the urban transport system and
is crucial to meet the transportation demand of passengers
from HSR trains, especially at late night when fewer buses
and taxis are operated. For instance, HSR passengers ar-
riving at Beijing South Railway Station at night prefer using
metro trains since it usually takes more than one hour
waiting time to get a taxi service and it is inconvenient to
take buses at night [1].

Inevitably, unplanned events such as adverse weather
conditions or infrastructure failures occur in HSR opera-
tions, which may cause a major disruption. For example, on
April 21st of 2019, a disruption caused by the equipment
failure due to heavy rain occurred in the Beijing–Guanzhou
HSR in China, resulting in more than 50 delayed trains with
the longest delay time being nearly 6 hours. On July 2nd of
2020, nearly 30 trains were delayed in the Shanghai-
Kunming HSR in China because of a flood. Xu et al. [2]
present several statistics for disruptions affecting the Chinese
HSR and show that events involving more than 10 trains are
not infrequent. If a major disruption occurs at night, pas-
sengers from delayed HSR trains will arrive at the transfer
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station very late and risk to missing the last metro trains.)e
metro operator may thus consider running extra metro train
services on the connected metro lines to transport passen-
gers at the hub transfer station. We define an extra metro
train service as an additional train service which operates
later than the last train on the same metro line and is
scheduled only in emergency cases, which includes dis-
ruptions occurring in railway or aviation systems, major
events such as large concerts taking place, or particularly bad
weather conditions such as blizzards. )ese situations will
indeed cause a sudden flow of passengers to one or more
metro stations. In this study, we consider the case of a
disruption occurring on the HSR network.

In practice, the duration of a disruption is usually un-
certain and results in HSR trains arriving at their destination
with a delay which is unknown at the time the disruption
starts. When the metro operator is informed from the HSR
operator about a disruption, it only receives information on
which HSR trains are affected and some estimate of their
delay in the form of forecasts or probability distributions and
must decide how many extra metro train services to
schedule. It is important that the metro operator takes this
decision as soon as it is informed about the disruption to
have enough time to notify the drivers, metro staffs, and
passengers in the delayed HSR trains. In other words, this
decision has to be taken under uncertainty, before knowing
the exact arrival time of the HSR trains affected by the
disruption. Subsequently, the metro operator is responsible
to schedule these extra metro train services upon the HSR
delay/arrival time disclosure. )is scheduling task is par-
ticularly challenging due to the following three reasons:

(1) )e extra metro trains need to be synchronized at the
transfer station with multiple HSR trains with dif-
ferent arrival times. Moreover, the stochastic arrival
time of HSR trains requires making some scheduling
decisions under uncertainty, which complicates the
scheduling problem formulation and solution.

(2) )e extra metro train timetabling problem needs to
balance a trade-off between the cost incurred by the
metro operator and the “passenger costs,” i.e., the
number of passengers that miss the extra metro
trains. To illustrate, consider the following two so-
lutions: (i) operate one extra metro train service each
time an HSR train arrives. )is solution is ideal for
passengers since they all could leave the hub station
quickly. However, the metro company operates
many extra train services, which is expensive due to
high number of drivers and staff involved at late
night; (ii) operate one extra metro train only when
there are enough passengers to fill it, i.e., after
multiple HSR trains have arrived. )is solution is an
economic plan for the metro operator but passengers
in the earlier arrived HSR trains are subject to long
waiting times.

(3) Although several researchers have studied the clas-
sical “non-extra train” metro timetabling problem
(i.e., not related to the dispatch of additional trains),
the problem of extra train timetabling is quite

different and exhibits some nontraditional features
that should be considered and which we summarize
in Table 1.

At present, metro operators mostly make decisions re-
garding extra trains manually based on their experiences and
professional judgments, that is, without relying on analytical
tools such as forecasting and optimization. Moreover, most
related models in the extant literature rely on deterministic
assumptions on future train arrival times, whereas these values
in reality are not known in advance and should be treated as
stochastic [3].)erefore, there is the need to study and solve the
problem of extra metro train scheduling under uncertain
delayed HSR passengers, which we consider in this paper.

We tackle the extra metro train scheduling problem by
proposing a novel two-stage stochastic mixed-integer linear
program to decide the number of extra metro train services to
operate and the corresponding timetable under different HSR
train delay scenarios. )e goal of our model is on one hand to
minimize the cost incurred by the metro operator (number of
extra train services and operation-ending time) and, on the
other hand, to minimize the number of passengers that would
fail in getting the service. Since these two objectives are in
conflict, our optimization model is biobjective. We use an
epsilon-constraint method to generate a set of Pareto-optimal
solutions. We also formulate (i) a deterministic model that we
use as benchmark that relies on a single forecast of the un-
certainty instead of multiple scenarios and (ii) a perfect in-
formationmodel that relaxes the nonanticipativity constraints
and provides a dual (lower) bound on the optimal cost.

We performed extensive numerical experiments using
realistic data from the Beijing metro system and the
Beijing–Tianjin and Beijing–Shanghai HSR lines. We
model the stochastic HSR train delays at the hub station
using different probability distributions including
Gaussian, Uniform, and Weibull. We found that solutions
from our stochastic programming approach outperform
out-of-sample those from a deterministic method by
3–5% on average, which is substantial and shows the
benefit of accounting for uncertainty explicitly via mul-
tiple scenarios. Moreover, using the perfect information
dual bound, we establish an optimality gap below 1% on
average, indicating that our stochastic programming
solutions are nearly optimal.

)e rest of this paper proceeds as follows. In Section 2,
we review the literature on train timetabling problems and
state the contribution of this paper. In Section 3, we for-
malize the extra metro train scheduling problem and its
assumptions. In Section 4, we introduce the passenger and
metro operator costs and derive the stochastic programming
formulation of the problem. In Section 5, we present our
numerical study and discuss the results. We conclude the
paper in Section 6.

2. Related Works and Contributions

)e train timetabling problem has been studied in the lit-
erature both in a deterministic setting and with consideration
of uncertain passenger demand. In order to optimize the train
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timetable adapted to a dynamic passenger demand envi-
ronment, Barrena et al. [4] used flow variables to construct a
linear representation of the objective function and presented a
branch-and-cut algorithm to solve this formulation. Wang
et al. [5] considered a changing passenger arrival rate and
proposed an event-driven model to solve the train scheduling
problem for an urban rail transit network. Cadarso and de
Celis [6] introduced robust itineraries to reduce the number
of miss-connected passengers and proposed an integrated
model to update base schedules in terms of timetable and fleet
assignments while considering stochastic demand and un-
certain operating conditions. Wang et al. [7] proposed a
multiobjective mixed-integer nonlinear programming model
to solve the problem of metro train scheduling and rolling
stock circulation planning under time-varying passenger
demand. In order to improve the reliability, efficiency, and
attractiveness of public transport service under fluctuated
passenger demand, Cao et al. [8] used holding and speed
changing operational strategies to optimize real-time schedule
and proposed a solution methodology based on time-space
graphical techniques to minimize schedule changes. Meng
and Zhou [9] designed an integrated demand-service-re-
source optimization model for managing the limited infra-
structure and rolling stock resources to maximize operators’
profits and passenger travel demand satisfaction. For more
information, we refer to the review papers by Cacchiani and
Toth [10]; Harrod [11]; and Cacchiani et al. [12].

Many researchers have applied stochastic programming
(SP) approaches to transportation network planning under
uncertainty. In order to optimize slack time allocation in
train timetable on high-speed passenger dedicated lines, Niu
and Meng [13] used a two-stage SP model with recourse, in
which the first-stage decision allocates the slack time in the
train timetabling phase and the second-stage simulates the
execution of train timetable with consideration of “train
dispatching” behaviors. Meng and Zhou [14] proposed a
robust single-track train dispatchingmodel under a dynamic
and stochastic environment and designed a scenario-based
rolling horizon solution approach to systematically generate
and select meet-pass plans under different stochastic sce-
narios. Based on railway optimization by means of alter-
native graphs (ROMA) [15] and Environment for the desiGn
and simulaTion of RAIlway Networks (EGTRAIN) [16],
Quaglietta et al. [17] set up an innovative framework to
investigate the stability of optimal dispatching plans against
the dynamic evolution of randomly disturbed traffic con-
ditions. In order to minimize energy consumption in metro

operations, Li and Lo [18] formulated an integrated dynamic
train scheduling and control optimization framework to
satisfy the changing passenger demands during daily metro
operations. Hassannayebi et al. [19] presented a robust train
timetable model to adapt the dwell time variability, travel
time, and demand uncertainty of metro network and im-
prove service. )ey used a two-stage simulation optimiza-
tion approach based on genetic algorithm to minimize the
expected passenger waiting times. Shakibayifar et al. [20]
proposed a two-stage SP model to cope with stochastic
fluctuation of arrival rates in an urban train timetable
problem. Considering the uncertainty of a disruption
happening in railway operations, Zhu and Goverde [21]
formulated and solved a robust timetable rescheduling
problem using a rolling horizon two-stage SP method.

We summarize some of the most relevant studies on
train scheduling in relation to our paper in Table 2. As
shown in the table and discussed above, although several
researchers have already considered the classical train
scheduling problem, both for railways and metro systems, to
the best of our knowledge, none so far has considered to the
extra metro train scheduling problem. Since these two
problems are quite different (see also Table 1), it is not
possible to tackle the extra train scheduling problem by
adapting existing models from the standard scheduling
literature. )erefore, it is necessary to develop a new
mathematical model to describe this problem, which is
challenging due to its stochastic and biobjective nature as
discussed in Section 1. Finally, worth mentioning are also
studies that focus on the specific timetabling aspect of
synchronizing the last trains in railway or metro systems,
recent examples of which include Yang et al. [22]; Chen et al.
[23]; and Long et al. [1]. Although the last metro train
synchronization problem also considers factors such as the
successful transfer of passengers and the running time of the
last trains, this problem is conceptually very different than
the extra train scheduling tackled in this paper, where the
main decision is about how many additional trains to add at
night to serve delayed HSR passengers. Moreover, the extra
train scheduling problem involves dependencies between
two systems (HSR and metro). Based on the achievements
and gaps in the literature, the main contributions of this
paper are the following:

(1) We study the extra metro train scheduling problem,
which is a new application in the literature that has
previously not been studied. )is application has
practical relevance as it allows metro operators to

Table 1: Comparison of classical and extra-train timetabling problems.

Uncertainty factors related to passengers Operation-
ending time

Average expense
of a train service

Number of
passengers that fail to

get serviceArrival time Number of arrivals

Extra-train
timetabling

Random, it becomes known
after HSR trains have been

redispatched

Known, it can be estimated
from the loading passengers

of HSR trains

Needs to be
considered

High (night
shift)

Needs to be
considered

Classical
timetabling

Random, it is generally
unknown over the planning

horizon

Random, it is generally
unknown over the planning

horizon

Needs to be
considered Low Does not need to be

considered
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reduce operating costs and to increase passenger
satisfaction when scheduling extra metro trains in
emergency cases, e.g., disruptions on connecting
railway/HSR lines.

(2) We provide a formulation to this problem, which is
new and captures realistic but complex features such
as the trade-off between metro operator and pas-
senger cost (i.e., it is biobjective) and the uncertainty
in the arrival time of delayed HSR trains (i.e., it is
stochastic). Specifically, our formulation is a two-
stage mixed-integer linear SP model, where the
number of extra metro trains is determined at the
first stage and their schedules at the second stage. By
accounting for uncertainty explicitly in the form of
scenarios, our model produces first-stage decisions
which are reliable in each scenarios and hence im-
prove the robustness of the extra metro train
timetable.

(3) We introduce two new cost functions to model the
costs incurred (i) by the metro operator when
scheduling extra metro trains at night and (ii) by
delayed HSR passengers that may fail to get the last
metro trains. Our optimization approach accounts
for both objectives.

(4) We conduct realistic numerical experiments based
on the metro system and HSR lines in Beijing and
show that our SP approach is very effective at solving
the problem. Specifically, our approach outperforms
in an out-of-sample valuation, a deterministic op-
timization model that replaces the uncertainty with
their expected value by 3–5%, which translates to a
considerable amount of money in practice. We
further prove the quality of our SP solutions by
computing a perfect information lower bound and
obtaining average optimality gaps below 1%.

3. Problem Statement and Assumptions

In this section, we provide a statement of the problem and its
assumptions. We start below by describing the inputs to the

problem, i.e., the information which metro operator’s de-
cisions are based on.

(I1) HSR lines and the connected metro lines.
We are given a network that includes a set of HSR lines
and a set of metro lines. HSR and metro lines are
directly connected at some hub stations. In Figure 1(a),
we illustrate an example of simple network consisting
of one HSR line and two metro lines, where we only
represent the hub station for simplicity and not other
metro stations. We identify the metro lines by dis-
tinguishing between operation directions as shown in
the example in Figure 1(b).

(I2) A set of uncertain delayed HSR trains.
We are given a set of HSR trains with some un-
certain delays, e.g., a set of trains affected by a
disruption on the HSR line. For each delayed HSR
train, we know the number of passengers that are
onboard and that are divided into as many groups
as the operation directions of the connected metro
lines. For each group, we are given its volume, the
transfer walking time between the platform of the
HSR line and the corresponding metro platform.
Finally, we are given probabilistic information to
represent the arrival time of each delayed HSR
train at the hub station. )is can be a probability
distribution or a discrete set of scenarios, each
provided with a delay time and occurrence
probability.
(I3) A set of candidate extra metro train services.
For each metro line and operation direction, we
consider a set of candidate extra metro train ser-
vices that the operator may decide to schedule. For
each extra metro train service, we are given its
origin and destination stations, the running time
between two stations, the dwell time at each sta-
tion, and the passenger-carrying capacity.
Given inputs (I1)–(I3), the extra metro train
scheduling is the problem faced by the metro
operator to serve passengers from delayed HSR

Table 2: Related papers with the studied problem, objective, model, and uncertainty.

Paper Problem Objectives Model structure Passenger demand

Li and Lo [18] Metro, nonextra
train Minimize energy consumption Kuhn–Tucker conditions Known

Hassannayebi et al.
[19]

Metro, nonextra
train Minimize expected passenger waiting times Discrete event simulation Uncertain

Barrena et al. [4] Railway, nonextra
train Minimize passenger average waiting time )ree linear formulations, branch-and-cut

algorithm Uncertain

Wang et al. [5] Metro, nonextra
train

Minimize total passenger travel time and energy
consumption Real-valued nonlinear nonconvex problem Uncertain

Shakibayifar et al.
[20]

Metro, nonextra
train

Minimize expected average waiting time per
passenger Two-stage stochastic programming model Uncertain

Wang et al. [7] Metro, nonextra
train Minimize operating cost Multiobjective mixed-integer nonlinear

programming Uncertain

Meng and Zhou [9] Railway, nonextra
train Maximize total transporting profit Lagrangian relaxation algorithms Uncertain

)is paper Metro, extra metro
train

Minimize expected cost of passengers and metro
operator

Two-stage mixed-integer linear stochastic
programming

Uncertain, from delayed HSR
trains
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trains with the goal of minimizing the operational
costs while maximizing the number of served
passengers. )e metro operator has to choose the
number of extra metro train services to schedule on
each metro line and operation direction before
knowing the exact arrival times of the HSR trains at
the hub stations but only a delay distribution.
When the HSR arrival time becomes known, the
metro operator further schedules the selected extra
metro train services by defining their departure
times at the first station and the headway between
two successive trains in the same operation di-
rection. We formalize mathematically this problem
in Section 4.
In the definition of our problem and related
mathematical model, we assume the following:

(A1) Passenger transfer activities between metro trains
are not considered.

(A2) )e rolling stock rescheduling of the metro system
is neglected.

(A3) )e passenger-carrying capacity of each extra
metro train is fixed and given.

(A4) For each extra metro train service on the same
operation direction, the stopping pattern, the
running time between two stations, and the dwell
time at each station are the same.

(A5) )e passenger transfer walking time at the hub
station is known and fixed. In the numerical study,
we use parameters for the slowest transfer walking
time among passengers but other choices are
possible.

(A6) A passenger is not willing to wait for a metro train
service at night for more than a maximum, fixed
time allowance. )is allowance could be set, for
instance, to the average waiting time for a taxi
service at night. If the waiting time is higher, then
the passenger will select another transport mode.

(A7) Rescheduling the HSR system is not considered as
it is exogenous to the metro operator.

4. Biobjective Stochastic Programming Model

In this section, we present our stochastic programming
model for scheduling extra metro trains to serve uncertain
delayed HSR passengers. For convenience, we start in
Section 4.1 by summarizing the nomenclature. In Section

4.2, we formally describe the decision-making process un-
derlying our optimization model. In Sections 4.3 and 4.4,
respectively, we define the objective functions and con-
straints of the model. Since our stochastic program is bio-
bjective, we explain in Section 4.5 our approach to solve it.

4.1. Notation. In Table 3, we introduce the notation that will
be used to define our model.)is table contains, in the order,
subscripts and sets, input parameters, and decision variables.

4.2.Decision-MakingProcess. After amajor service disruption
on a HSR line at night, the metro operator needs to run extra
metro trains to transport the passengers arriving from the
delayed HSR trains. )e duration of a major disruption is
typically uncertain and may last for several hours, resulting in
HSR trains reaching the hub metro station very late, after the
working shifts of the metro staff have ended. )us, it is im-
portant that the metro operator decides on the number of extra
train services as soon as it is informed about the disruptive
event to have enough time to notify the metro staff, including
drivers, and the passengers on the delayed HSR trains. In other
words, this decision is taken under uncertainty. Formally, the
decision-making process is defined by two stages as illustrated
in Figure 2. At the first stage, the metro operator is informed
about the disruption on the HSR network and decides on the
number of extra metro train services xf,l to schedule. )is
decision is called first-stage decision (or here-and-now deci-
sion) and is made knowing the set of delayed HSR trains, the
amount of passengers on these trains, and delay information
for each HSR train in the form of a set of scenarios or
probability distribution. However, this decision has to be taken
before knowing the exact arrival times of the delayed HSR
trains so that drivers and staff for the extra metro services can
be notified with sufficient margin (see also our related dis-
cussion in Section 1); in other words, without knowing the
scenario w ∈W that will realize.

Upon disclosure of the HSR arrival times (e.g., when the
disruption is resolved and the HSR trains are rescheduled), the
metro operator defines the exact schedule of the metro train
services xf,l previously selected. Specifically, the operator
chooses the departure time of each extra metro train service
tD
f,of,w, the headway between two adjacent train services

hf,f′,l,w, and implicitly also the assignment of passengers
yf,f∗ ,w. )ese decisions are referred to as second-stage deci-
sions (orwait-and-see decisions) as they adapt to the realization
of the uncertainty, that is, they can be chosen after the un-
certain scenario w ∈W is revealed. )e power of SP is that,

HSR line
Metro line 1

Metro line 2

(a)

HSR line
Operation direction 1 

Operation direction 2 

Operation direction 3

(b)

Figure 1: Illustrative network of HSR and metro lines.
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while determining the first-stage decisions (i.e., xf,l), it also
takes into account the uncertainty and endogenously models
the second-stage decisions for the detailed extra metro train
timetable of each scenario (i.e., tD

f,of,w, hf,f′ ,l,w, yf,f∗,w).

4.3. Objective Functions: Operational and Passenger Costs.
As discussed in Section 1, the metro operator has to consider
and balance the operational cost of scheduling extrametro train
services and the amount of passengers that can be served by
these services. Below, we thus formalize two cost functions to
describe operational and passenger costs. We start by identi-
fying the three most relevant performance indicators for our
problem: the operation-ending time of the last extra metro
train service (OET), the Number of Extra metro Train services

(NET), and the Number of Passengers that are Failed in getting
services (NPF).)e first and second indicators (OETandNET)
will be used to define the operational cost, while the third
indicator (NPF) to define the passenger cost. Since these in-
dicators have different units, we convert them all intomonetary
units using conversion factors as suggested by one of the metro
operators in China [24]. )e conversion factors could be
chosen by the operator depending on the relative importance
that each of these three indicators has.

4.3.1. Operational Cost

At late night, the metro operator prefers operating
fewer extra metro trains and ending operations early to

Table 3: Sets, subscripts, input parameters, and decision variables.

Symbol Description
Subscripts and sets

L Set of operation directions in the metro network
S Set of stations
F Set of candidate extra metro train services
F∗ Set of delayed HSR trains
W Set of delay scenarios of HSR trains
l Index of metro operation direction, l ∈ L

i, j Index of metro station, i, j ∈ S

f, f′ Index of extra metro train service, f, f′ ∈ F

f∗ Index of delayed HSR train, f∗ ∈ F∗

w Index of random scenario, w ∈W

Fl Set of extra metro train services that could operate on operation direction l, Fl⊆F
Sf Set of stations that extra metro train service f may use
Ff∗ Set of extra metro train services that can connect with the delayed HSR train f∗

Input parameters
pf∗ ,l Volume of delayed passengers from HSR train f∗ that transfer to operation direction l

Θf Available passenger-carrying capacity of the extra metro train service f

of Origin node of extra metro train service f

df Destination node of extra metro train service f

ηf )e consecutive extra metro train service which follows the extra metro train service f on the same line
hmin Minimum headway between two successive extra metro trains on the same operation direction
rf,i Running time of extra metro train service f from station i to i + 1
ϖf,i Dwell time for extra metro train service f at station i

cw Occurrence probability of scenario w

t
walk
f∗ ,f Passenger transfer walking time from delayed HSR train f∗ to the platform of extra metro train service f at hub transfer station

t
A

f∗ ,w Arrival time of delayed HSR train f∗ at the hub transfer station under scenario w

ψl Predetermined operation-ending time of metro train service on operation direction l

cOET Value of per unit of operation time for metro system
cNET Value of per extra metro train service for metro operator
cNPF Value of per passenger that is failed in getting services
ϑ Time allowance for passenger transfer waiting time
M a sufficiently large positive number (big-M)
δ Sufficiently small positive number

Decision variables
xf,l 0-1 binary extra metro train service variables, equal to 1 if train service f operates online l and equal to 0 otherwise
hf,f′ ,l,w Headway time between departure time of train service f and train service f′ on operation direction l under scenario w

yf,f∗ ,w

Passenger assignment variables, i.e., the number of passengers from delayed HSR train f∗ that is assigned to the extra connecting
train service f under scenario w

σf,f∗ ,w 0-1 binary passenger assignment variables, equal to 1 if yf,f∗ ,w > 0, and equal to 0 otherwise
tD
f,i,w Departure time of extra metro train service f at station i under scenario w

tA
f,i,w Arrival time of extra metro train service f at station i under scenario w

tW
f,f∗ ,w Passenger waiting time from HSR train f∗ to the connected extra metro train service f at hub transfer station under scenario w
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reduce operating expenses, which corresponds to
having low NET and OET indicators.
We quantify NET and OET in equations (1a) and (1b),
respectively, and illustrate the two functions
in Figure 3. As shown in equations (1a) and Figure 3(a),

the metro operator pays a NETcost cNET for each extra
metro train service, which is intuitive. Moreover, the
operator incurs an OETauxiliary cost that is mainly due
to lighting, air conditioning, and overtime pay of staff
for the passed stations. )e OET cost only depends on
the operation-ending time and not on the number of
extra metro trains as NET, which enables decoupling
these two cost components. In this paper, we assume
that the OETcost increases linearly with the operation-
ending time with slope cOET, as indicated in equation
(1b) and shown in Figure 3(b). Specifically, this
equation captures, for each operation direction l ∈ L,
the difference between the last extra metro
train operation-ending time on l and the pre-
determined operation-ending time ψl of the last
(nonextra) metro train service. In contrast to CNET,
notice that COET(w) can only be determined at second
stage and is therefore indexed by the scenario w. )e
total operational cost CM(w) incurred by the metro
operator when scheduling extra metro trains is given in
equation (1c) by summing up the two components NET
and OET.

C
NET

� c
NET

· 
l∈L


f∈F

xf,l, (1a)

C
OET

(w) � c
OET

· 
l∈L

max
f∈Fl

t
A
f,df,w − ψl , ∀w ∈W, (1b)

C
M

(w) � C
NET

+ C
OET

(w), ∀w ∈W. (1c)

4.3.2. Passenger Cost. It is well known that in general a
timetable that only minimizes operational costs would be
disadvantageous to passengers. )is issue is even more
acute in our extra metro train scheduling problem since
considering operational cost alone would result in no
extra metro train scheduled at all. )erefore, it is im-
perative that passengers are also accounted for. )e cost
for passengers could be modeled using performance
measures such as the number of transported passengers
(e.g., [1]), passenger travel time (e.g., [25–27]), passenger
waiting time (e.g., [4, 28, 29]), and delay time [30]. Al-
though minimizing total or average waiting time is a
common objective in train scheduling, in case of last/
extra train optimization (i.e., at late evening/night), most
approaches regard the feasibility (i.e., passengers
reaching their house or not) rather than optimality in
terms of travel time (e.g., [1] and references therein).
)us, given the peculiarity of our scheduling problem, in
this paper, we propose using the NPF as passenger cost
function since passengers are eager to leave the transfer
station at night but also include constraints on the

maximum time passengers are willing to wait for their
metro connection. )e NPF is defined as the number of
passengers who cannot leave the hub transfer station by
any extra metro train service.

Equation (2) quantifies NPF, i.e., the passenger cost. As
shown in Figure 4, a unit cost cNPF is imposed to each
passenger that fails to use any extra metro train, giving the
total passenger cost CP(w).

C
P
(w) � c

NPF
· 

f∗∈F∗

l∈L

pf∗,l − 
f∈Ff∗

yf,f∗,w
⎛⎜⎜⎝ ⎞⎟⎟⎠, ∀w ∈W.

(2)

Our biobjective formulation below minimizes the ex-
pected costs over scenarios of the metro operator and
passengers.

minE C
M

[w] ,

minE C
P
[w] .

(3)

Second stage

First stage 

w = 1

w = |W|

...

Decisions
Uncertainty disclosure

w = 2

...

tD
f,of,2, hf,f ′,l,2, yf,f ∗,2

tD
f,of,1, hf,f ′,l,1, yf,f ∗,1

tD
f,of,|W|, hf,f ′,l,|W|, yf,f ∗,|W|

xf,l

Figure 2: Representation of the two-stage decision-making
process.
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4.4. Constraints. We specify below the different constraints
in our problem.

4.4.1. Passenger Waiting Time

t
W
f,f∗ ,w � t

D
f,of,w − t

A

f∗ ,w − t
walk
f∗,f, ∀f ∈ Ff∗ , f

∗ ∈ F
∗
, w ∈W,

(4a)

t
W
f,f∗,w + 1 − σf,f∗ ,w  · M≥ 0, ∀f ∈ Ff∗ , f

∗ ∈ F
∗
, w ∈W,

(4b)

t
W
f,f∗ ,w + σf,f∗,w − 1  · M≤ ϑ, ∀f ∈ Ff∗ , f

∗ ∈ F
∗
, w ∈W.

(4c)

)e passenger waiting time is defined as the time that
passengers have to wait for a metro train after they arrive at
the metro platform of the hub station. In particular,
constraints (4a) model the transfer waiting time based on
departure time of the connecting extra metro train service
tD
f,of,w, arrival time of HSR train t

A

f∗ ,w, and walking time
from train service f∗ to connecting extra metro train
service f. Constraints (4b) and (4c) are big-M constraints.
Constraints (4b) ensure that if there are passengers from
HSR train f∗ being assigned to extra metro train service f

(i.e., σf,f∗ ,w � 1), then the transfer between f∗ and f

should be possible for such passengers, i.e., the transfer

waiting time tW
f,f∗,w should be nonnegative. Constraints

(4c) are similar to the former constraints but put an upper
bound on the waiting time equal to ϑ (minutes), which is
the time allowance for passenger transfer waiting time. As
discussed in our assumptions, if the waiting time is more
than ϑ, then passengers would select other transportation
modes rather than waiting for a long time in the metro
station at night.

4.4.2. Mapping between Continuous and Binary Passenger
Assignment Variables

σf,f∗ ,w · Θf ≥yf,f∗,w, ∀f ∈ Ff∗ , f
∗ ∈ F
∗
, w ∈W, (5a)

σf,f∗,w ≤yf,f∗,w, ∀f ∈ Ff∗ , f
∗ ∈ F
∗
, w ∈W. (5b)

Constraints (5) are used in the model to map the pas-
senger assignment variables yf,f∗,w to the 0-1 binary pas-
senger assignment variables σf,f∗ ,w. )ese constraints
model the following if-then condition:

σf,f∗ ,w �
1, if yf,f∗,w > 0
0, if yf,f∗,w � 0 , ∀f ∈ Ff∗ , f∗ ∈ F∗, w ∈W.

4.4.3. Passenger Flow Balance


f∈Ff∗ ∩Fl

yf,f∗,w ≤pf∗ ,l, ∀l ∈ L, f
∗ ∈ F
∗
, w ∈W.

(6)

Constraints (6) ensure that the total number of pas-
sengers assigned to the connected extra metro train services
on the same operation direction l are less than or equal to the
volume of delayed passengers from train f∗ that transfer to
operation direction l.

4.4.4. Capacity of Extra Metro Trains


f∗∈F∗

yf,f∗,w ≤Θf, ∀f ∈ F, w ∈W.
(7)

Constraints (7) enforce the maximum passenger-carrying
capacity of each extra metro train.
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Figure 3: Metro operator cost functions.
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4.4.5. Starting Time of the Extra Metro Train Service at the
Origin Station.

t
D
f,of,w + 1 − xf,l  · M≥ψl, ∀l ∈ L, f ∈ Fl, w ∈W. (8)

Constraints (8) impose each extra metro train to leave
the hub station after the last scheduled (i.e., nonextra) train
on line l has departed.

4.4.6. Headway Time between Consecutive Metro Trains.

hf,f′,l,w � t
D
f′ ,o

f′ ,w
− t

D
f,of,w, ∀l ∈ L, f ∈ Fl, f′ � ηf, w ∈W,

(9a)

hf,f′ ,l,w + 2 − xf,l − xf′,l  · M≥ h
min

,

∀l ∈ L, f ∈ Fl, f′ � ηf, w ∈W.
(9b)

Constraints (9a) define the headway time between two
consecutive metro train services f′ and f on the same line l,
i.e., the difference between the departure times of two
consecutive trains from the origin station. Note that the
candidate train services are sequentially numbered and must
be selected in the sequence. If two consecutive train services
f′ and f on line l are selected by the metro operator, then
constraints (9b) enforce the headway time between them to
be no less than a minimum headway time hmin, which is
needed to ensure safe movements.

4.4.7. Mapping between First-Stage and
Second-Stage Variables

xf,l − 1≤yf,f∗,w ≤xf,l · M, ∀l ∈ L, f
∗ ∈ F
∗
, f ∈ Fl ∩F

∗
, w ∈W, (10a)

xf,l − 1≤ t
D
f,i,w ≤ xf,l · M, ∀l ∈ L, f ∈ Fl, i ∈ Sf∖ df , w ∈W, (10b)

xf,l − 1≤ t
A
f,i,w ≤xf,l · M, ∀l ∈ L, f ∈ Fl, i ∈ Sf∖ of , w ∈W. (10c)

Constraints (10) map the second-stage decision variables
yf,f∗,w, tD

f,i,w, and tA
f,i,w to the first-stage decision variables

xf,l to describe whether train service f on line l is selected by
the metro operator for serving delayed passengers.

4.4.8. Departure Time at Intermediate Stations

t
D
f,i,w + 1 − xf,l  · M≥ t

A
f,i,w + ϖf,i,

∀f ∈ F, i ∈ Sf∖ of, df , w ∈W.
(11)

Constraints (11) ensure that the departure time of an
extra metro train service f at an intermediate station i is no
smaller than the arrival time of this train at the same station
plus the minimum required dwell time.

4.4.9. Arrival Time at Intermediate Stations

t
A
f,i,w + 1 − xf,l  · M≥ t

D
f,i− 1,w + rf,i− 1,

∀f ∈ F, i ∈ Sf∖ of , w ∈W.
(12)

Constraints (12) ensure that the arrival time of an extra
metro train f at a station i is at least as large as the sum of the
departure time of this train at the previous station i − 1 and
the travel time between stations i − 1 and i.

4.5. Epsilon-Constraint Formulation. Recall that we aim to
solve a problem which is not only stochastic but also bio-
bjective and is defined by objective functions (3) subject to
constraints (4)–(12). Since all objective functions and

constraints are linear, this mathematical program is clas-
sified as a biobjective mixed-integer program.

Several approaches exist in the literature to determine the
set of nondominated (i.e., Pareto-optimal) solutions of a
multiobjective optimization problem. )e most common ap-
proaches are known as scalarization techniques.)ey construct
a single-objective problem related to the original multiobjective
one and solve it usually multiple times to find some subsets of
nondominated solutions [31]. One such scalarization tech-
nique is the weighted-summethod, in which the objectives are
combined with a convex combination into a single objective.
Although the weighted-sum method is guaranteed to produce
Pareto-optimal solutions, it also has the well-known drawback
that it can only find Pareto-optimal solutions that lie on the
convex hull of the nondominated set. In other words, if the
nondominated set (i.e., frontier in our case of two objectives) is
nonconvex, then not all Pareto-optimal solutions can be found
[31]. To overcome this shortcoming, we chose a different
scalarization technique known as the epsilon-constraint
method, which retains only one objective forminimization and
turns the others into constraints.

Our epsilon-constraint formulation minimizes the ex-
pected passengers cost alone whilst imposing a maximum
expected cost for the metro operator equal to (ε):

minE C
P
(w) , (13a)

subject toE C
M

(w) ≤ ε, (13b)

and (4) − (12). (13c)
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By repeatedly solving model (13) with different values for
ϵ, we can approximate the Pareto front of the proposed
biobjective optimization problem.

5. Numerical Study

In this section, we present our numerical experiments based
on a real-world network from Beijing in China. We describe
our case study and the scenarios of the uncertainty in
Sections 5.1 and 5.2, respectively. We then discuss our result,
starting from the trade-off between passenger cost andmetro
operator cost in Section 5.3, followed by a performance
comparison between our SP approach, a deterministic
benchmark, and a dual bound in Section 5.4. We conclude in
Section 5.5 by evaluating the methods out-of-sample.

5.1. Test Case Description. Our numerical experiments are
based on the network and operational data from the Beijing
metro system and two HSR lines: Beijing–Tianjin (BT) and
Beijing–Shanghai (BS). Specifically, the network we consider
consists of 44 stations in total and is illustrated in Figure 5.
We consider two metro lines with three operation directions
(i.e., Line 14 up, Line 4 up, and Line 4 down). Lines 4 and 14
of Beijing subway system are connected with the BT and BS
HSR lines at the Beijing South Railway Station (BSRS).

We set the maximum number of extra metro train
services that can be scheduled to 15 for each operation
direction, which based on experimentation is a reason-
able upper bound. )e travel time and passenger-carrying
capacity of each extra metro train that operates in the
same operation direction is identical. )e travel time (i.e.,
the sum of running time between consecutive stations
and dwell time at each station) of the extra metro trains
on operation direction 1, 2, and 3 is 42, 35 and 60 minutes,
respectively. )e capacity of trains on operation direction
1, 2, and 3 is 1480, 1480 and 1960 passengers, respectively.
)e minimum headway time between two successive
extra metro train services on the same operation direction

is 3 minutes. )e planned operation-ending time of the
last metro train service on operation direction 1, 2, and 3
is 23:15, 23:03, and 22:40, respectively. )e passenger
transfer walking time from the platforms of the BT line
and BS line to the metro platforms is, respectively, 10 and
15 minutes, for each metro line and operation direction.
)e unit operating cost per second is 5 Chinese renminbi
(RMB) and the fixed cost of operating an extra train
service is 20000 RMB. Moreover, we assign a per-pas-
senger cost for passengers who failed in getting services of
20 RMB and a time allowance for passenger transfer
waiting time of 15 minutes.

Regarding the two HSR lines, we consider 20 delayed
trains arriving at the hub station, i.e., BSRS. Table 4 shows
the planned arrival time and passenger-carrying volume of
each train. Since in China all HSR passengers need to book
their tickets in advance with a specified departure time
from the origin station, the precise number of passengers
onboard different trains is known from the ticketing
system.

Our optimization model is solved using CPLEX 12.3
with default settings as the mixed-integer linear program-
ming solver. )e experiments were performed on a com-
puter equipped with an Intel®CoreTM i7-8550 CPU @
1.80GHz processor with 8GB RAM.

5.2. Scenarios of the Uncertainty and Computational Time.
We model the stochastic arrival time of each delayed HSR
train at the hub station using Gaussian, Weibull, and
uniform probability distributions, which are commonly
used in the literature to model train delays [17, 21, 32–35].
)ese distributions are shown in Table 5 and are defined so
that they all have the same expected value of one hour. In
the experiments presented here and in Section 5.3, we focus
on the Gaussian distribution alone. We subsequently
consider all the three distributions in Sections 5.4 and 5.5 to
assess the robustness of our findings towards the
uncertainty.
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Figure 5: Network used in the numerical study.
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We refer to the scenarios used in the SPmodel to find the
decisions as the in-sample scenarios. It is well known in
stochastic programming that the quality of the first-stage

decisions are affected by the quality and number of in-
sample scenarios. Typically, using more scenarios results in a
better approximation of the uncertainty distribution, hence
a better decision. On the other hand, the number of variables
and constraints in the model increase with the number of
scenarios.)us, the number of in-sample scenarios is limited
by the available computing power and time. In sum,
choosing the number of such scenarios entails balancing a
trade-off between solution quality and computation and is
usually nontrivial.

We investigate this trade-off by assessing the solvability
of our SPmodel for a number of in-sample scenarios varying
between 1 and 10. For each number of scenarios n, we solve
the model 5 times, each time sampling different sets of n

scenarios from the probability distribution. Figure 6 shows
the computational time results, including the minimum,
average, and maximum computational time among the 5
runs. As expected, the computational time increases with the
number of scenarios. We can see that the model is solvable
relatively quickly for 9 scenarios, for which the average and
maximum running times are 523 and 960 seconds, re-
spectively. However, the average and maximum running
time increase, respectively, by about 140% and 240% when
moving from 9 to 10 scenarios. )erefore, we choose a
number of in-sample scenarios equal to 9 in our experi-
ments, for which the stochastic program is solved to opti-
mality in modest computation time. )e 9 scenarios that we
use in Section 5.3 are displayed in Figure 7, showing the
arrival time of each HSR train at BSRS. )e occurrence
probability of scenarios 1 to 9 is 0.09, 0.12, 0.11, 0.11, 0.1,
0.12, 0.12, 0.1 and 0.13, respectively.

5.3. Trade-Off between Passenger and Operator Cost. In this
section, we investigate the biobjective aspect of our sto-
chastic optimization problem. We consider the 9 in-sample
scenarios introduced in Section 5.2 and use the epsilon-
constrained method to produce the Pareto frontier illus-
trated in Figure 8. To obtain this figure, we first solved a
model that minimizes passenger cost alone (i.e., without
epsilon-constraints), which provided the extreme of the
Pareto frontier in the right-bottom corner of the figure with
a passenger cost of zero and operator cost of approximately
590,000 RMB.)en, we obtained 9 other Pareto solutions by
setting epsilon to values lower than 590,000, specifically
550,000, 510,000, 460,000, 420,000, 370,000, 330,000,
280,000, 230,000, and 190,000. For each value of epsilon, we
display with small solid circles the metro operator and
passenger cost for the timetables obtained under each of the
9 scenarios. )e larger circles represent the expected cost of
these 9 timetables for each value of epsilon and we call such
solutions the SP solutions.

We summarize in Table 6 the most relevant information
from Figure 8, including the metro and passenger cost of the
SP solutions.)e values in this table and the convex shape of
the frontier suggest diminishing returns when lowering
passenger cost. To elaborate, consider solution 1 in the table
in which the operator cost is low but passenger cost is high
(i.e., the leftmost point in Figure 8). By moving from

Table 4: Planned arrival time and passenger-carrying volume of
HSR trains.

Train number
Planned arrival time
at Beijing South
Railway Station

Number of
passengers onboard

BS 01 22:00 1152
BS 02 22:12 1152
BS 03 22:20 1152
BS 04 22:36 1152
BS 05 22:48 1152
BS 06 22:58 1152
BS 07 23:08 1152
BS 08 23:18 1152
BS 09 23:29 1152
BS 10 23:35 1152
BT 01 22:02 576
BT 02 22:13 576
BT 03 22:22 576
BT 04 22:28 576
BT 05 22:35 576
BT 06 22:47 576
BT 07 22:59 576
BT 08 23:04 576
BT 09 23:09 576
BT 10 23:16 576

Table 5: Probability distributions and their parameters (in
seconds).

Probability
distribution Notation Parameters Parameters

Gaussian N(3600, 6002) [Mean, variance] [3600, 600]

Weibull W(1993.9, 1.5, 1800)
[Scale, shape,

shift]
[1993.9, 1.5,

1800]

Uniform U(1800, 5400)
[Minimum value,
maximum value] [1800, 5400]
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Figure 6: Influence of the number of scenarios on computation
time.
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solution number 1 to number 2, for an additional cost of
about 50,000 RMB the operator can reduced the percentage
of failed services by 15%, which is a significant reduction.
)e operator can further reduce this percentage by 13% for a
similar cost increase when moving from solution number 2
to number 3 in the frontier. However, the more we move to

the right in the frontier, the more expensive it becomes to
reduce the percentage of failed services. For example,
moving from solution number 8 to number 9 only reduces
this percentage by an additional 3% for a similar increase in
operating costs. )is finding shows that, in our case study,
the operator should strive to reduce the percentage failed
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services down to at least 30–40% as it is relatively cheap to do
so, but satisfying more than 90–95% of passengers might be
too expensive and hence not economical.

For the extreme SP solution number 10 in which all
passengers are served (i.e., passenger cost equals 0 and
operator cost is maximal), we report in Figure 9 the

departure time of each extra metro train service from the
BSRS station, respectively, for operation direction 1, 2, and 3,
under each scenario. As illustrated in these figures, the first-
stage decision (i.e., the number of extra metro train services)
is the same in each scenario, that is, we need 7 extra metro
train services for each operation direction. It is not a general
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Figure 9: Departure time of each extra metro train service from BSRS in the three operation directions. (a) Operation direction 1. (b)
Operation direction 2. (c) Operation direction 3.

Table 6: Expected metro operator cost and passenger cost for the 10 Pareto-optimal solutions.

Pareto solution number Metro operator cost (RMB) Failed service percentage (%)
1 180,293 75
2 229,614 60
3 277,503 47
4 324,330 36
5 368,828 26
6 417,501 17
7 459,923 10
8 500,768 6
9 541,914 3
10 584,323 0
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result that the same number of extra metro train services is
needed in three operation directions, it just happens here.
)e departure time decisions of each extra metro train
service are typically different in each scenarios since they are
second-stage decisions, hence they can adapt to the reali-
zation of the uncertain HSR train arrival time.

5.4. Deterministic Benchmark and Dual Bound. In the fol-
lowing, we define a deterministic model that replaces future
uncertainties with their expected values and that we use as
benchmark to our stochastic model. We call the solution
from this model the expected value solution, henceforth EV
solution. We also define a perfect information model that
provides a lower bound on the optimal cost. We name the
solution from this model the perfect information solution, or
PI solution. We discussed both models below.

5.4.1. EV Solution. A common solution procedure to solve a
stochastic optimization problem is to replace all random
variables with their best available estimate, namely, their
expected value, and solve a deterministic model. In our case,
this means constructing the timetable using the expected
values of the delay time of high-speed trains rather than
multiple delay scenarios. To formalize, the EV solution is the
extra metro train timetable that is obtained as optimal so-
lution to the following formulation:

minC
P
(E[w]), (14)

subject toC
M

(E[w])≤ ε, (15)

and constraints (4a)–(12).
EV and SP solutions are computed based on models that

differ in both objective function and constraints. Conse-
quently, the resulting objective value from the EV model is
not directly comparable to that of our SPmodel. To provide a
fair comparison, we need to evaluate the EV solution using
the same 9 scenarios that we used in SP. Specifically, the EV
solution provides a first-stage decision, i.e., number of extra
metro trains, based on deterministic information.We fix this
decision, and for each scenario w, we optimize the second-
stage decision (i.e., the timetable) and calculate the cost of
passengers and metro operator. )e sample average across
scenarios represents the expected cost of the EV solution.

5.4.2. PI Solution. )ePI solution is obtained by relaxing the
nonanticipativity constraints embedded in our SP model
and assuming full information about the future. Mathe-
matically, this means making the first-stage decision (i.e.,
number of extra metro trains) scenario-dependent, i.e., this
decision also adapts to the uncertainty. )e PI solution
provides a dual (lower) bound on the optimal cost since it
exploits information that in reality is not available to the
decision maker. For the same reason, this solution is also not
feasible. In practical terms, PI solutions are infeasible as the
operator needs time to arrange the unplanned shifts of metro
drivers and staff, which cannot be done after the HSR train
has already arrived. Formally, for a given scenario of the

uncertainty w ∈W, the PI solution solves the following
hindsight model:

minC
P
(w), (16)

subject toC
M

(w)≤ ε, (17)

and constraints (4a)–(12).
PI solutions should also be evaluated on the same 9

scenarios used in the SP and EV solutions.
We now compare the SP, EV, and PI solutions for a

specific point in the Pareto frontier corresponding to
ε � 550, 000. For the three solutions, Figure 10 shows the
total expected cost of passengers and metro operator
resulting under the three probability distributions in Table 5.

As shown in Figure 10, SP solutions decrease the ex-
pected total cost compared to EV solutions by 3.93%, 2.23%,
and 3.10%, respectively, for Gaussian, Weibull, and uniform
distributions. On average across distributions, our SP
method improves the EV approach by 3.09%, which is a
significant improvement. )e difference between EV and SP
solutions is also known as the value of stochastic solution
(VSS; [36]).)e high VSS value indicates that accounting for
the uncertainty explicitly through multiple scenarios is
valuable in our extra metro train scheduling application and
would allow the metro operator to save a considerable
amount of money to obtain the same service level to
passengers.

Compared to SP, using perfect information decreases the
expected total cost by 1.31%, 0.23%, and 0.72% in the three
distributions. In other words, our SP solutions achieve an
average optimality gap of 0.75%, i.e., they are near optimal.
)e difference between the SP and PI objective values is
known as the expected value of perfect information (EVPI;
[36]). On average, the EVPI that we obtain is 4146 RMB,
which is relatively low and represents the maximum cost the
metro system would be willing to pay to access information
about the uncertainty in advance.

5.5. Out-of-Sample Valuation. Recall that we employ a two-
stage SP model to solve our extra metro train scheduling
problem and that the solution from this model is tied to the
scenarios that are chosen, i.e., the in-sample scenarios de-
scribed in Section 5.2. Due to limitations in the available
computing power and the complexity of the SP model, we
selected 9 in-sample scenarios. Our SP model implicitly
assumes that these 9 scenarios are the only possible reali-
zations of the uncertainty. However, these scenarios only
provide a discrete approximation of the entire uncertainty
outcome, which is given by the full delay probability dis-
tributions of all incoming HSR trains. As a consequence, the
SP results based on the in-sample scenarios might be op-
timistically biased.

To investigate, if this is the case, and to obtain a fair
and unbiased method comparison, we evaluate the per-
formance of the three solutions (SP, EV, and PI) out-of-
sample. )e out-of-sample valuation proceeds as follows.
We sample 50 new scenarios for each HSR train from each
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Figure 10: Total expected costs with SP, EV, and PI models.
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Figure 11: Continued.
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of the three probability distributions illustrated in Table 5
(i.e., Gaussian, Weibull, and uniform). For each scenario,
we fix the SP first-stage decision and obtain the second-
stage optimal decision by solving the recourse optimi-
zation problem. )e sample average over the 50 scenarios
provides the out-of-sample expected cost of the SP so-
lution. We proceed analogously using the EV model
discussed in Section 5.4 to obtain the out-of-sample
valuation of the EV model. Regarding the PI model, we
proceed as in SP and EV with the exception that the first-
stage decision is not fixed but is free in each out-of-sample
scenario, i.e., it can adapt to the scenario of the
uncertainty.

Figure 11 reports the probability density function of
the total expected cost (operator and passengers) and the
expected passenger cost resulting from the out-of-sample
valuation of the different methods under Gaussian,
Weibull, and uniform distribution. As we can see from
Figures 11(a), 11(c), and 11(e), the SP distribution is
substantially shifted to the left compared to the EV
distribution. )e total expected cost in SP is 4.19%,
4.91%, and 3.12% lower than the analogous cost in EV for
the three distributions. Moreover, the perfect informa-
tion lower bound is 0.99% lower than SP on average
across distributions. )ese results are consistent with the
in-sample results previously discussed and provide
support for our choice of the 9 scenarios. Finally, the
relative performance of the methods is similar when
considering the probability density function associated
with passenger cost displayed in Figures 11(b), 11(d), and
11(f ).

6. Concluding Remarks

In this paper, we studied the problem of scheduling extra
metro trains to serve uncertain delayed high-speed
railway passengers, which is a new application in the
literature. To solve this problem, we proposed a two-stage
stochastic program that we formulated as a mixed-integer
linear programming model. Our optimization problem is
biobjective and balances the operational cost incurred by
the metro operator with the passenger cost, defined as the
number of passengers that miss the last metro trains. To
illustrate the relevance of our two-stage SP approach, we
performed numerical experiments using real-world data
from the Beijing metro network and two HSR lines
connected to this network. We generated a Pareto
frontier and provided insights on how to balance the
operator and passenger costs. Additionally, we compared
the performance of our SP solution, a deterministic
model that uses a forecast of the uncertainty (EV solu-
tion) and a hindsight model that relaxes nonanticipativity
constraints (PI solution). We found that our SP solution
evaluated out-of-sample which improves the EV solution
by about 3% on average and that the former solution
exhibits average optimality gaps below 1%, hence it is
near optimal.

Future research avenues include the following exten-
sions of the problem. First, we could consider a detailed
passenger’s origin-destination (OD) demand and passen-
gers’ behavior to provide better services for passengers [37].
)e resulting problem would become more complex as it
would require scheduling extra trains in the whole metro
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Figure 11: Out-of-sample evaluation of the SP, EV, and PI solutions. (a) Gaussian distribution: total cost; (b) Gaussian distribution:
passenger cost; (c) Weibull distribution: total cost; (d) Weibull distribution: passenger cost; (e) uniform distribution: total cost; (f ) uniform
distribution: passenger cost.
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network and not only at the connecting metro-HSR station,
as we do in this paper. Alternatively, stopping patterns could
be included in the model to identify the optimal stop pattern
for each extra train service according to the passenger OD
demand. Finally, another option would be considering the
number of allocated passengers to metro trains as first-stage
decision so that the metro operator could more conveniently
dispatch the rolling stock. )is extension would also be
challenging due to involving the joint schedule of extra metro
train services and rolling stock.
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